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Abstract

This is a survey paper on Explainable Artificial Intelligence (XAI).
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Abstract—Artificial intelligence (AI) and Machine Learning
(ML) have come a long way from the earlier days of conceptual
theories, to being an integral part of today’s technological society.
Rapid growth of AI/ML and their penetration within a plethora
of civilian and military applications, while successful, has also
opened new challenges and obstacles. With almost no human
involvement required for some of the new decision-making AI/ML
systems, there is now a pressing need to gain better insights
into how these decisions are made. This has given rise to a
new field of AI research, Explainable AI (XAI). In this paper,
we present a survey of XAI characteristics and properties. We
provide an in-depth review of XAI themes, and describe the
different methods for designing and developing XAI systems,
both during and post model-development. We include a detailed
taxonomy of XAI goals, methods, and evaluation, and sketch
the major milestones in XAI research. An overview of XAl for
security, and cybersecurity of XAI systems, is also provided.
Open challenges are delineated, and measures for evaluating XAI
system robustness are described.

Index Terms—Explainable AI (XAI), Artificial Intelligence,
Machine Learning, Robust Al, Explainability

I. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) have
come a long way from early conceptual theories, to being an
integral part of today’s technological society. Recent advances
in Al and ML have resulted in the widespread application of
data-driven learning systems. In many cases these advances
now require almost zero human involvement/supervision, with
the AI/ML systems making decisions based on the learned
data. When these decision-making systems are used in ways
that impact human lives, such as healthcare and military
applications, there is a crucial need to understand how the
AI/ML systems make decisions [1f], [2].

How can we be sure that the AI/ML systems can be trusted?
How can we be sure that there is no inherent bias within
these systems decisions? There have been many real-world
examples of Al system failures. Amazon’s recruitment Al had
bias against women, with preference given to male candidates,
and Facebook’s advertisement Al was biased against race,
gender and religion [3]] [4]]. Within the US healthcare system,
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bias against people of color has been reported in many Al
algorithms [5].

Al bias may be a reflection of human training or data
collected by human operated systems for machine learning,
but regardless of cause private companies and government
agencies alike are trying to make sure that the AI/ML systems
provide unbiased explainable decisions.

This has led to the creation of new policies and laws, not just
in the United States, but across the world. For example, the
European Union General Data Protection Regulation, which
provides consumers with a “Right to Explanation” [6]. The US
Algorithmic Accountability Act of 2019 dictates “assessments
of high-risk systems that involve personal information or make
automated decisions” [7].

Accountable Al is the solution to make sure that Al decision
systems can be trusted. This has given rise to research on
Explainable Artificial Intelligence (XAI). Yearly publications
reflect the recent and rapid rise in XAlI, Interpretable, Intelli-
gible, and Transparent Al (Fig. 1), with XAI’s emergence in
2017 along with the US DoD DARPA XAI program.

Even though there are related surveys on XAI [1]], [8]-[12].,
which provide great overviews of XAlI, a recent and updated
survey that provides a more comprehensive look at not just
XAT’s development, but it’s goals and evaluation metrics is
also needed. Further, there is a lack of studies that highlight
the current state of the art, when it comes to the security of
XAI systems. This survey paper aims at filling the gaps in
literature by providing a comprehensive survey that looks at all
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Fig. 1: Yearly publications for Explainable, Interpretable,
Transparent and Intelligible Al (Data derived from SCOPUS)



aspects of XAI from development to evaluation, and highlights
some of the more recent breakthroughs and advances that have
been made towards XAI. The main contributions of this survey
include:

o We present a detailed overview of XAl by focusing on
all aspects of the field from design & development to
evaluation.

o We provide a comparison of the XAl development meth-
ods by characterizing them into either transparent models
or post-hoc models and provide examples of current ML
models that are compatible with each method.

o We summarize a comprehensive taxonomy for design/de-
velopment and evaluation of XAI.

o We present the major milestones in XAI development
since 1983.

e We provide an insight into the security of XAI and
highlight recent advances towards secure XAl

o We present an open discussion of challenges that still
remain within the field and perspectives on recommen-
dations for addressing them.

This paper is organized as follows. Section II presents a
taxonomy and insight into the terms, design, and development
methods for XAI Section III provides a brief survey of the
design and development methods for achieving explainability
with AI/ML systems. Section IV describes techniques that
are used for measuring the effectiveness of XAl systems, and
Section V overviews XAl security. Section VI discusses open
challenges and current trends in XAI research, followed by
concluding remarks in Section VII.

II. OVERVIEW OF EXPLAINABLE AI (XAI)

While explanation systems have been around since the
1980’s, recent years have seen a major increase in XAI
research with ML/AI models. The prevalence of black-box
models in most military and commercial AI/ML systems using
Deep Learning (DL) and other machine learning techniques
has given rise to the need for more transparent systems capable
of explaining their decisions. The U.S Defense Advanced Re-
search Projects (DARPA) Agency defined XAI as “Al systems
that can explain their rationale to a human user, characterize
their strengths and weakness, and convey an understanding
of how they will behave in the future” [13|]. Fig. 2 provides
a conceptual overview of XAl Even though there are works
and studies on XAI that existed before 1983, the timeline in
Fig. 4 simply presents some of the more significant milestones
in XAI research since 1983.

Explainability is central to developing a trustworthy and
explainable system. Proper implementation of explainability
needs to ensure that the system is accountable to build public
confidence in the algorithmic implementation. For a system
to be accountable measures should be implemented to ensure
that input biases are recognized and mitigated.

Busuioc, listed the following criteria for Al systems to be
accountable (see Fig 3) [14].

o The input information and data must be free of any and
all biases - As it may not be possible to rid of bias

completely, Al systems must be able to recognize and
mitigate biases.

o Decisions must be explainable to the end user - The
absolute end user must be capable of understanding the
decisions/predictions made by the Al systems.

o There must be consequences for its actions - meaningful
accountability dictates the imposition of sanctions and
affording redress to those negatively affected.

Although the words interpretability, understandability, com-
prehensibility, and explainability have been used interchange-
ably within the literature, we should distinguish between
them in reference to XAI systems. The explanation of the
system must go beyond the interpretation of the system. The
system’s decision-making processes and detailed steps must be
comprehensible to the (possibly non-technical) end-user. The
end-users must understand why and how the system came to
a particular result versus alternatives; they must be able to
identify incorrect results and understand why they are wrong;
and they must be able to decide when to trust, and when not
to trust, the system.

A. XAI Terminology

A challenge with XAl is the free and interchangeable use of
terms when it comes to explanation. For example, in the litera-
ture, interpretable and explainable are often used as synonyms
although generally representing two distinct concepts. Other
terms such as transparency and comprehensibility have also
been used as substitutes for explainability. Each of these have
a pronounced definition, and therefore should not be used so
freely. This section reviews the major nomenclature that has
been used within the XAI research field.

Transparency is how understandable a model is without
providing any insights into the actual algorithmic process of
the AI system. It’s the degree to which an end user can
understand the function of the model, without any technical
details [[15]], [16].

Comprehensibility is commonly associated with the com-
plexity of the AI/ML model. It represents the algorithms’
ability to portray/display its learned results in human terms
[17]-{19].

Interpretability in reference to XAl is the ability of the
AI/ML system to be explained in human terms [[1] [9].

Explainability is a set of processes or methods that ensures
that the system to capable of allowing humans to compre-
hend its overall decision and reasoning. Explainability can
be understood as a summary of the overall working features
and calculations that produce the final system output. Arrieta,
et al., gave an excellent definition of explainability in terms
of machine learning (ML) as, “Given a certain audience,
explainability refers to the details and reasons a model gives
it make its functioning clear and easy to understand” [[1] [[16]]
[20] [21].

B. XAI Goals

The explosive growth of Al enabled applications that are
able to operate autonomously has increased the need to exam-
ine the effectiveness of these systems. Due to the inability of
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many of these autonomous or Al enabled systems to fully
be expressed by humans, DARPA seeks to address these
limitations through designing a suite of machine learning
tools that can be implemented to make the system robust and
trustworthy. These techniques aim to: [[13]

1) Produce more explainable models, while maintaining a
high level of learning performance (prediction accuracy);
and

2) Enable human users to understand, appropriately trust,
and effectively manage the emerging generation of arti-
ficially intelligent partners.”

This dictates a need for merging the understandability of
the system by the user, and their trust of the system. While
understandability and trust are both undoubtedly vital goals
for robust XAI systems, various other goals should also
be considered for the development of these systems. Goals
such as transparency, fairness, bias avoidance, informativeness,
causality, confidence, transferability, privacy and safety, and
ease of use should also be considered essential for XAl design
and development 1], [8]l, [13], [22]-[24].

Trust in AI/ML systems has been viewed by many as the
main goal of XAI models. It is the level of confidence in
the actions of an AI/ML system making decisions for specific
problems. However, this should not be taken at face value
as the only goal of XAI systems. While a crucial aspect of
any XAl system, trust alone is not sufficient for explainability.
Like the saying, “not everything that shines is gold”, not every

trustworthy AI/ML system is explainable [1] [8] [25]-[28]l.

Understandability represents the features of the AI/ML
system to make an end-user understand how it works, with
or without the explanation for its algorithm and decision-
making processes. Its explanations should aim at improving
the user experience via the understanding of the system and

its decisions [10].

Fairness and bias avoidance are two very critical goals. Due
to the inherent bias within today’s society in a multitude of
fields, XAI systems must be designed and developed without
any biases to guarantee that they can be trusted to not make the
mistakes of their creators (Humans). As mentioned previously,
real-world examples of biased Al decision-making may have
serious consequences. Some of the sources of bias within
these systems arise from biased training data and feature
learning. Explainable systems can provide the end-user with
the choice to either trust or not trust the systems based upon
improved understanding of factors that influenced the result.
Explainability can thus aide in avoiding biases that cause

unethical and harmful consequences [1] [6] [31].

Insightfulness should also be considered a crucial goal for
XAI design and development. As Arrieta, et al., stated in
their survey, problems being solved by AI/ML systems aren’t
necessarily the same as those intended by the users. Therefore,
it is very important that a system’s explainability helps the user
to gain insight into the overall goals of the system. There is a
need to extract information about the systems

Causality among data is an important source of information
for XAl systems. The study of causal reasoning from observed
data is already a robust field of research. Several studies
have presented explainable systems as an important tool for
investigating and deriving causal relationships among different
variables [32]-[34]. Causality in relation to explainability,
gave rise to a new term causability. Causability, coined by
Holzinger, et al.,is defined as “’the extent to which an explana-
tion of a statement to a human expert achieves a specified
level of causal understanding with effectiveness, efficiency,
and satisfaction in a specified context of use” [35]. A current
argument within the field of XAl states that for AI/ML systems
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to generate human-like explanations, they human causally
understandable explanations are crucial [36]). Kilbertus, et al.,
emphasized the importance of causal approaches for avoiding
bias and discrimination, and providing better explanations
[36], [37]]. Holzinger et al., introduced the System Causability
Scale (SCS), a method of evaluating the quality of explanations
based on causability [38].

Transferability is one of the major challenges for AI/ML.
The practicality of adapting one AI/ML model for different
applications is still being heavily researched for numerous
models and systems. It is therefore desirable that XAl systems
be able to adapt explainability to different problems/applica-
tions as well.It should however be noted that transferability
does not always imply explainability, and it should not be
assumed that all transferable models will be explainable [39]—
[41]].

Privacy protection and data protection are a major challenge
in many applications. Data driven AI/ML systems must be
designed with the privacy of information in mind, and XAI
systems that use large datasets from the public domain must
be able to protect the consumers privacy. This is a potential
vulnerability if an XAI system might reveal private data in
the course of explanation. To this end, XAI systems must be
developed that can hide/protect sensitive data from users and
developers alike .

Mohseni, et al., suggested characterizing the design goals of
XAI systems according to the designated end users and divided
them into three groups: Al/data novices, data experts, and Al

experts. Al novices are defined as regular users with little or no
technical knowledge of AI/ML systems. Data experts refers to
researchers and scientists that make practical use of AI/ML on
a daily basis for research, commercial, or military applications.
Al experts are the scientists and engineers that design and
develop AI/ML systems. The paper noted that while there are
overlaps and similarities between the goals for the different
user groups, distinctions can be made in the design methods,
implementation and research objectives. (Table I) .

While the development of trustworthy and robust XAI
models is a priority, delivery of the explanation created by the
model to the end-user is also a focal goal of XAI. DARPA’s
XAI program put an emphasis on the explainable interface of
the AI/ML systems, to not only create better explainable mod-
els, but also improve on how these explanations are relayed to
the users. The integration of state-of-the-art human-computer
interface (HCI) methods with the XAI principles, strategies
and models, along with psychological theories of explanations
is carried out to achieve more effective explanations for the
user [13].

III. XAI DEVELOPMENT AND DESIGN

XAI systems can be designed using either a transparent
model approach or a post-hoc explainability approach [20].
The difference between these methods stems from systems
that are inherently explainable by design, and those that need
to be made explainable. Within the classification of transparent
models, three specific distinctions can be made for the degree



TABLE I: XAI design goals based on user groups.

User Group

Design Goals

Al/Data Novices

Algorithmic Transparency, User and Trust Reliance, Bias Mitigation, Privacy Awareness

Data Experts

Model Visualization and Inspection, Model Tuning and Selection.

Al Experts

Model Interpretability, Model Debugging.

of transparency of the models, simulatability, decomposability,
and algorithmic transparency [1]]. Post-hoc explainable models
can also be further characterized into text explanation, visual
explanation, global explanation, local explanation, rule-based
explanation, explanation by simplification, explanation by ex-
ample, and feature relevance. Tables II and III provide an
overview of the different methods used to achieve explainabil-
ity and Fig 5. presents a taxonomy for the goals, development
and evaluation of XAI [1] [20] [8]] [42].

A. Degree of Transparency

Transparent models are designed to be both interpretable
and explainable. The three levels of transparency act in a “Rus-
sian doll” manner, where the highest degree encompasses all
three transparency levels. Models that are simulatable maintain
the highest level of transparency, followed by decomposable
models and finally algorithmically transparent models.

Simulatability is the ability to be simulated by the user.
Lipton, et al., defined a simutalable model as “a model where
a human can take in input data together with the parameters
of the model and in reasonable time step through every
calculation required to produce a prediction” [[15] [27].

Decomposability, also referred to as intelligibility, can be
defined as the ability of the system to explain all its processes
[43]. Challenges of making AI/ML systems decomposable
lie in the fact that not every system can be made as such.
The inherent strain in making systems decomposable is the
difficulty in explaining all the parts and processes of the
systems, as it requires all the input parameters and variables
to be easily interpretable [[1].

Algorithmic transparency, as explained by Gareth, et al.,
refers to the ability of the user to logically understand the
AI/ML system’s error surface, allowing the user to predict the
system’s actions in different problems or situations [40]. It
is the level of a user’s understanding of the AI/ML systems’
operations to process the data and produce the result/deci-
sion. Algorithmic transparency is however limited to specific
models, such as linear models, but is not applicable to deep
learning (DL) models due the requirement of the model’s
comprehensibility via mathematical techniques [44] [45].

B. Post-hoc Explainability

The post-hoc explainability approach is a set of techniques
that can be implemented after the system is complete to
make the system more explainable. This is done using post
development/design methods such as text explanation, visual
explanation, and local explanation.

Text explanations encompass all explanation methods that
yield symbols/texts representing model functions by mapping

the algorithms’ rationale to the symbols. This approach seeks
to improve the overall explainability of the AI/ML system by
generating text explanations of their results [31].

Visual explanations use visual representations of system
behaviors to improve the systems overall explainability. This
approach can be effective at explaining internal system be-
haviors and processes for non-technical users, and can be
coupled with other procedures such as text explanations to
further enhance the explanation’s effectiveness.

Explanation by example provide examples of the results
generated by the AI/ML systems, allowing for a better compre-
hension of the system. These explanations provide examples
of historical situations that are similar to the current one.
[42] One of the most effective types of explanations by
examples, are counterfactual explanations. Various studies
have highlighted the importance of counterfactuals as the
missing link for XAI to achieve human-like intelligence and
human-understandable explanations [[35[]. Chou, et al., defined
counterfactuals as “a conditional assertion whose antecedent
is false and whose consequent describes how the world would
have been if the antecedent had occurred (a what-if question).”
[36] They provide specific explanations to convey what fea-
tures need to be changed to achieve desired prediction/decision
[46[, [47].Choy et al, also analyzed 18 model agnostic XAl
counterfactual algorithms currently in use and classified them
based on their theoretical approach as listed below: [36]

« Instance-centric algorithms

o Constraint-centric algorithms

o Genetic-centric algorithms

o Regression-centric algorithms

o Game-centric algorithms

« Probabilistic-centric algorithms
o Case-based reasoning algorithms

Rule based explanations provide “if..then..” explanations for
results. Even though these methods can be used post-hoc, they
can be inherently transparent for a rule-based learner. [42] [48]]

Explanation by simplification methods create a new sim-
plified version of the trained AI/ML system for explanations.
This reduces complexity and can simplify the explanation as
well.

Explanation by knowledge extraction Explanation via
knowledge extraction is done via two common approaches;
decompositional and pedagogical [49]]. Decompositional ap-
proaches extract knowledge rules directly form the model’s
structures and weights. Whereas pedagogical approaches ex-
tract knowledge from input-output pairings [49], [S50]. An
excellent example of pedagogical approaches is the novel tree
induction algorithm introduced by Craven, et al., TREPAN
[51]. It extracts decision trees from statistical classifiers.



TABLE II: An overview of different explanation methods and machine learning models.
XAI Model Explainability Method Machine Learning Model
Decision Trees
K-Nearest Neighbors
Transparent
Models Rule—basefi'Learners
General Additive Methods
Bayesian Methods
Test Explanation Neural Networks
Visual Explanation Ensemble Methods, Classifier Systems, SVM, Neural Networks
Post-Hoc Global & Local Explanations Decision Trees, Rule-based learners, Neural Networks
Explainability Explanation by Example Neural Networks
Explanation by Simplification | Rule Based Learners, Decision trees, SVM, Probabilistic methods
Feature Relevance Ensemble methods, classifiers systems, SVM, Neural Networks

TABLE III: An overview of different available post-hoc explanation methods.

Explainable Method Explainable Model Model Specific/Agnostic | Global/Local Explanations
Feature Relevance Shapley Values (SHAP) Agnostic Local
Local Explanation Local Interpretable Model-Agnostic Explanations (LIME) Agnostic Local
Global Explanation Skater Agnostic Global
Visual Explanation Individual Conditional Expectation (ICE) Specific Both
Text Explanation Visual Question Answering (VQA) Agnostic Local

Confalonieri, et al., expanded TREPAN, with their TREPAN
Reloaded algorithm which included domain knowledge to
enhance the understandability of surrogate decision trees. They
used ontologies that model domain knowledge to generate
better explanations. [52]

Feature relevance explanations generate a relevance score of
the managed variables. The approach produces a comparison
of the relative scores for each variable, providing the emphasis
of each of the variables on the results generated by the system.

Global explanations are model explanations that articulate
the operating procedures of the entire AI/ML system. These
are meant to be thorough in their explanation of the entire
system model. Local explanations, in contrast to global expla-
nations, provide reasoning for only a section of the AI/ML
system. They explain by dissecting the solution space and
providing explanations for specific input/output pairs.

Global and local explanations are a higher level concept in
comparison to the aforementioned explanation methods, and
are mentioned here to classify between specific explanations
within the ML pipeline and the entire ML system as a whole.

Both transparent and post-hoc explainable Al systems can
be achieved via numerous available ML techniques including
linear regression, decision trees, support vector machines,
Bayesian models, and k-nearest neighbors. Some approaches
are more transparent, and linear/logistic regression, decision
trees, K-nearest neighbors, rule-based learners, Bayesian mod-
els and general additive models have been used due to their
various levels of transparency [1]], [53[]-[60].

Post-hoc explainable techniques have also been studied
extensively with a plethora of ML models being used for
various applications. Arrieta, et al., presented a distinction
within the post-hoc models consisting of model-agnostic and
model specific post-hoc explainable methods [1]]. Model-
agnostic methods can be used with any ML model without
the challenges associated with transferability. Whereas model
specific post-hoc explainable methods are designed for specific

ML models, these techniques can be applied to other ML
models including deep learning (DL) models.

Riberio, et al., proposed the Local Interpretable Mode-
Agnostic Explanations (LIME) technique that provides in-
terpretable and trustworthy explainability of classifier pre-
dictions. LIME uses explanation by simplification and local
explanation methods to generate a local interpretable model
around the prediction [27] [61].

Genetic rule-extraction (G-rex) is a method for providing
explanations by simplification via rule extraction from opaque
models to increase the accuracy of comprehensible represen-
tations [62] [63].

Tan, et al., presented a “distill and compare” method for
explanation by simplification of black-box models. Model
distillation was done by training transparent models from the
original black-box model to duplicate its results [64].

Lundberg, et al., presented a unified framework for inter-
preting predictions, SHapley Additive exPlanations (SHAP).
SHAP provides explanations via feature relevance where an
importance value is assigned to each feature for specific
predictions. It provides additive feature importance values for
accurate and consistent explainable predictions of how much
each feature was involved in the system’s decision/prediction
[65].

Cortez, et al., presented visual explanation techniques for
black-box models by using Sensitivity Analysis (SA) based
visualization. They built upon an existing SA model to propose
a Global SA (GSA) that extended the method’s applications to
numerous visualization techniques for the assessment of input
relevance [|66] [67].

Hugh, et al., presented DeepSHAP for explanations of com-
plex models. It provides layer wise propagation of SHapley
values for deep learning models [11].

Vazquez, et al., developed a compact support vector machine
(SVM) model called growing support vector classifier, to give
explanations with high fidelity and accuracy for decisions



made by SVM systems via input space segmentation in
Voronoi selections. Voronoi selections of a feature are defined
as "the set of points that are closer to that feature than to any
other” [68].

Zilke, et al., presented the explanation by simplification
method for deep learning models. The Deep neural network
Rule Extraction via Decision tree induction (DeepRED) algo-
rithm to extract rules form deep neural networks by adding
more decision trees and rules. [69]

Che, et al., introduced the Interpretable Mimic learning
(IML) approach for deep learning. They extracted interpretable
models by using gradient boosting trees with predictions as
strong as the original deep learning model. Their results
showed excellent performance along with explanations for
clinicians [[70].

Shrikumar, et al. presented the DeepLIFT (Learning Im-
portant FeaTures) method for explanation of deep neural
networks. The method provides importance scores for multi-
layer neural networks by calculating the distinction between
the each neuron’s activation and its reference activation [71] .

IV. XAI EVALUATION

Different measures are needed to evaluate and verify the
validity and performance of explanations given by XAI sys-
tems, that may be designed with different explanation goals.
To this end, DARPA’s XAI program assessed XAI systems
using these measures [/13]].

o User Satisfaction
e Mental Model

e Task Performance
e Trust Assessment

User satisfaction measured the clarity and utility of the
explanation based on the views of the end-user [13[.Both
subjective and objective approaches have been explored to
measure the usefulness, understandability/comprehensibility,
and end user satisfaction. Common approaches found in the lit-
erature are user-interviews, self-reporting questioners, Likert-
scale questionnaires, and expert case studies. Studies by Bunt,
et al., Gedikli, et al., and Lim, et al., employed user interviews
to investigate their satisfaction and the most efficient ways to
provide explanations [72]-[75]]. Other studies such as Coppers,
et al.,, and Lage, et al., use a Likert-scale questionnaire to
quantify the user’s satisfaction [76] [[77].

Mental models are derived from the philosophical, psycho-
logical, and naturalistic models of human explanatory rea-
soning to measure the effectiveness of an explanation, which
is the user’s understanding of the system and the ability to
predict its decisions in different situations [|13[].This aids in the
users’ decisions to either trust or doubt the AI/ML systems
decisions, based on how much they understand/comprehend
the system and how it came to a specific decision. These
measures focus on understanding individual decisions, the
overall model, strengths and weaknesses of the system, and
what/how predictions. Different approaches have been used
to evaluate how effective mental models are at measuring
the user-understanding of the system, prediction of the

system decision/results and the failures. Lombrozo suggested
the importance of the feature’s explanation which impacts
the categorization and is critical to the understanding of the
conceptual representation [[78]]. Lim, et al., studied the different
types of explanations expected by users in different scenarios
[74]]. Penney, et al. and Rader, et al., investigated the users’
interpretations of the AI/ML systems and their algorithms [[79]]
[80]]. Dodge, et al., Kim, et al., Kulesza, et al, and Lakkaraju,
et al., employed user interviews and questionnaires to evaluate
the mental models of the explanations [81]-[84]. Model output
and failure predictions were also measured to evaluate the
mental model in studies by Ribeiro, et al., Nushi, et al., and
Bansal, et al. [27] [85]—[87].

Task performance for the XAl system measures whether
the explanation improves the user’s decision making or not,
and also how well the user understands the XAI systems. User
task performance was the evaluation of the user’s performance
for the designated task supported by the system. [13] Studies
from Lim, et al., Lakkaraju, et al., Kahng, et al., Groce, et al.,
and Kulesza, et al., investigated the performance, throughput,
and the prediction accuracy of the end users. [75] [84] [88]—
[[90] While other studies, such as the ones from Kulesza, et
al., M. Liu, et al., S. Liu, et al., Stumpf, et al., evaluated
the performance of the XAI system itself by measuring the
model accuracy, tuning and selection. [91]]-[94] Confalonieri,
et al., presented task performance evaluations based on both
subjective and objective methods for their proposed Trepan
Reloaded algorithm. Objective evaluations were based on
syntactic complexity of a decision tree, whereas subjective
evaluations were based on user performance and ratings [95]]

Trust Assessment in any Al system is of the utmost im-
portance. For XAI systems specifically, the user’s trust in
the system is a measure of its effectiveness. Ultimately it is
the evaluation of the user’s ability to know when to trust or
doubt the decisions made by the XAI systems. [[13|] Trust in
these systems has been investigated in literature in various
ways, including user knowledge, confidence, competence and
use over time. Studies by Nourani, et al., and Ming, et al.,
investigated how the system’s properties such as accuracy,
precision, inclusion, and level of explanation affected user’s
trust on the system. [96] [97|] Other studies have measured
the trust based on subjective and objective measures such as
interviews/questionnaires (subjective) and user’s understand-
ability, compliance and their perception of systems confidence
(objective). [96]-[102]

V. XAI SECURITY

XAI and cybersecurity are closely related. On the one hand,
the XAI system needs to be secure, and on the other hand XAI
may aid security.However, there is relatively little work on how
to make XAI systems more robust, and how to protect them
from adversarial attacks [103].

As one of the most famous quotes from Marvel’s cinematic
universe states “With great power, comes great responsibility.”
Explainable AI’s explanations also bring about a great deal of
responsibility for Al systems to generate precise and accurate
explanations. Especially in time-critical applications such as
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medical or military. This is derived from the essential XAI
goal of Trust, as false explanations will result in a complete
loss or reduced trust in the system.

Due to the inherent white-box nature of XAI systems,
whether they are transparent or post-hoc explanations, they are
more susceptible adversarial attacks than black-box models.
With explanations provided for not only the decisions/predic-
tions of the AI/ML systems, but also their inner-workings,
they can be easily manipulated for adversarial purposes. To
this end, the security of XAI systems is of vital importance
to protect them from adversarial attacks and perturbations
leading to false and inaccurate explanations Therefore, it is
essential to develop techniques to make them more robust
and better protected against the attacks and exposure of any
private/sensitive data.

The development of secure XAI systems likely requires a
multi-faceted approach. Vigano, et al., introduced the concept
of Explainable Security (XSec) for research on the security of
XAI systems and provided a thorough review on how to secure
these systems [104]. They proposed a multifaced approach for
securing XAI systems using the “Six - W’s” : who, what,

when, where, why and how as follows.

o Who gives and receives the explanation?
« What is explained?

o When is an explanation given?

o Where is the explanation given?

o Why is explainable security needed?

« How to explain security?

Vigano, et al., expanded on “’Six - W’s” very well, as each
”W” by itself holds major implications for the security of XAI
systems. who, as listed above is concerned with the personnel
involved with not just design and development of the XAI sys-
tems, but also the end-user, the possible adversarial attackers,
the analyst for the systems and the security experts defending
them against such attacks. As with any math equation, the
larger the number of variables, the more complex systems
become. And with almost anyone involved, becoming a vital
part of the security for the XAl systems, it is a very complex
topic that needs to probed further to gain valuable insights
into securing XAIl. For the what, explanations will defer in
accordance to the stakeholders, aims and the level of details



needed. Several parameters will also influence the explanations
such as the system model, its properties, threat model and
vulnerabilities. When the explanation is provided will also play
a vital role in XAI security. All the security aspects of the
XAI system will need to be defined during all major phases
of design, development, deployment, and defense. where the
explanation is given will also impact the security of the XAI
system. The explanation could be treated as its entity from the
Al system and be separated and delivered. The authors believe
the best-option forward, would be a “security-explanation-
carrying-system”, which requires a significant amount of work
to secure the explanation. The how will depend on the XAI
system itself, it will have to be explained in a method suited
for the specific stakeholder. Finally, the why seems like an
obvious question, as XAl systems will no-doubt need to be
secured to protect the end-user and their privacy. [[104]

Kuppa, et al., also presented a taxonomy for XAl in relation
to cybersecurity. They proposed three different approaches
with a) X-PLAIN — explanations of the predictions/data, b)
XSP — PLAIN - explanations for security and privacy, and
finally, ¢) XT- PLAIN - explanation for the threat models
[1O5].

Additionally, protecting the confidentiality, integrity, and
availability of XAI systems (the so-called CIA principles) is
crucial for their practical deployment. As adversarial learning
techniques grow more advanced and robust against current
ML and DL techniques we must assume that attacks will
be forthcoming against XAI systems. Due to their innate
sensitivity, ranging from their learning datasets to the deci-
sions/recommendations made, securing them against any and
all perturbations to the data, learning models, and biases
is critical for XAI [12]]. Xu, et al.,, presented adversarial
perturbations for misleading classifiers and causing variations
to the network interpretability maps [106]. Ghorbani, et at.,
demonstrated the fragility of deep learning explanations when
two identical images with minute perturbations can lead to
different explanations [[107]]. Mittlelstadt, et al., demonstrated
the vulnerabilities of the available XAI algorithms such as
LIME and SHAP [108]. Kuppa, et al., presented a black-box
attack on gradient-based XAI systems [[105].

For a more realistic scenario where attackers don’t have
knowledge of the network architecture, model inputs and
weights are manipulated to attack XAl Heo, et al., demon-
strated the vulnerabilities of state of the art saliency-map
based systems by fooling the system with adversarial model
manipulation [[109]]. They were able to a change the explana-
tions given by the system without affecting its accuracy, by
incorporating the explanations directly within the penalty term
of the objective function. They proposed two different types
of “fooling” attacks, passive and active. Passive fooling causes
the XAI systems to generate uninformative results, whereas
active fooling generates false explanations.

Another common attack method is to attack the input data it-
self to alter the explanation given by the system. Dombrowski,
et al., demonstrated that adversarial manipulations of the input
data can drastically change the explanation maps [[110]. The
authors also demonstrated methods to make the XAI systems
more robust from the insights they gained by attacking. They

were able to increase system resiliency to attacks by smoothing
the explanation process.

As robust and trustworthy AI/ML systems require privacy
and transparency as foundational pillars, the trade-off between
explainability and privacy preservation is another major con-
cern within XAI security. While the explanations help the user
understand the systems decisions/predictions, privacy is of the
utmost importance for protecting sensitive information. Exist-
ing studies have shown the vulnerability of transparent and
explainable models to leak such sensitive data. [[111[]-[114]]
Shokri, et al., explored the privacy related risks of explainable
ML models via the use of membership inference attacks. They
demonstrated the significant privacy leakage from propagation-
based explanations by revealing statistical information about
the decision boundaries of the model. Additionally, they
quantified the leakage of private information based on the
model predictions and their explanations. Privacy-preserving
algorithms, such as the ones by Agarwal, et al., Aggrawal et
al., and Zhong, et al., for AI/ML systems will play a major
role in making XAI systems more robust [[115]—[117]]. Harder,
et al., presented simple interpretable models to approximate
complex models via locally linear maps to achieve a high
classification accuracy, while also preserving the privacy of
the model [118[]. Quantifying the trade-off between privacy
and explanations will provide insightful details into how far
explanations can be taken without risking the system’s privacy.

Motivated by ensemble defense techniques for robust ma-
chine learning models, Rieger, et al., proposed a simple yet
effective technique of combining explanation methods, AGG-
Mean (Aggregated Explanations), to make the XAI system
more robust adversarial manipulation [[119]]. Their method was
effective against white-box attacks where the adversaries have
the exact knowledge of the model.

While the security of these XAl systems remains a challenge
for the field, the use of these systems for cybersecurity
purposes also remains to be properly evaluated. Their inherent
nature makes them an excellent option for securing AI/ML
systems where explanations are crucial in identifying and
defending against different types of attacks. If explanations
are provided for adversarial attacks, they become easier to
defend against.

Mahbooba, et al., demonstrated the use of XAl to reinforce
an intrusion detection system (IDS) via decision trees [[120].
Using simple if...then decision tree rules with logical condi-
tions, the authors were able to distinguish between normal
network traffic and malicious traffic. The rules, which are
explainable aide the security personnel to take the proper
course of action against incoming adversarial attacks.

Another example of XAI systems for cybersecurity is pre-
sented by Islam, et al., [[121]]. The authors proposed a domain
knowledge aided XAI system for better explainability for an
IDS. The infusion of CIA principles in the XAl-based black
box model provided better explainability and generalizability.
This was shown effective in detecting adversarial attacks, even
unknown attacks. A major advantage of this work was the
finding that it can accommodate big data.

Rao, et al., presented a novel new approach for protecting
systems against the alarm flooding problem. By using explana-
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tions for anomalies, they applied a zero-shot method for detect-
ing alarm labels generated by security information and event
management(SIEM) and intrusion detection systems(IDS) to
match them to specific adversarial attacks on the systems.
XALI is used to characterize the incoming attacks into specific
categories based on the attack’s feature [[122].

Mane, et al., presented a deep neural network model
combined with XAI for intrusion detection. XAI algorithms,
SHAP, LIME, Contrastive Explanations Method (CEM), Pro-
toDash and Boolean Decision Rules via Column Genera-
tion (BRCG) are used to generate explanations on which
features influences the predictions of the IDS system for
an impending attack [[123]. Marino, et al., demonstrated an
adversarial XAl approach for misclassifications made by IDS.
Minimum perturbations to correct misclassified samples into
accurate classifications are made to generate explanations for
the misclassifications of the samples in the first place [[124]]

XAI systems have also been used to carryout various
types of cyberattacks. Kuppa, et al., presented four different
explanation based black-box attacks to compromise the CIA
principles of the classifiers. They presented privacy attacks
with Explanation-based model extraction, and Explanation-
based membership inference attacks. Evasion attacks were
performed via Explanation-based poisoning attacks and Ex-
planation based adversarial sample generation attacks. Evasion
attacks were demonstrated on commercial anti-virus systems,
while membership inference attacks were used to extract
user passwords. They also provided possible defenses against
XAl-based attacks such as adversarial training, input/network
randomization [125]]. Garcia, et al., also demonstrated the use
of XAI for adversarial attacks against host fingerprinting and
biometric authentication systems. XAl was used to extract
decision boundaries from an oracle, and determine the most
relevant features within the model. This was done without the
need or any prior information about the potential victims. [|126]]
These types of studies have done an excellent job highlighting
the risks that XAl pose to both the users and attackers.

VI. OPEN CHALLENGES & PERSPECTIVES

Even though remarkable strides have been made in both
AI/ML systems and XAI itself, numerous challenges still
remain. These include transferability of the post-hoc explain-
ability methods, the lack of universally adopted definition,
standards, and measures for the explainability of AI/ML sys-
tems, the balance between explainability and performance, and
the challenges of making deep learning models explainable.

Explainability vs Performance - The trade-off for the bal-
ance of explainability and performance is also a major issue.
As deep learning models become more and more complex
and successful at solving learning problems, their inherent
“non-transparency’’ presents a major challenge in making them
explainable for XAI purposes. As stated by Rudin, higher
complexity does not inherently mean higher accuracy, and this
has been very true for such DL models. [127] As shown in
Fig 6, ML models with higher performance for prediction
accuracy have the lower explainability performance. Thus,
more research needs to focus on improving the performance
and higher accuracy of these systems. There must be an
optimal balance for which both the systems performance and
explainability are accepted.

Lack of a universal standard - One of the major challenges
within the field of XAI is terminology and ambiguity of
definitions.As shown in the earlier sections, numerous terms
are used when trying to articulate explainability to an AI/ML
system. Furthermore, terms like interpretability, understand-
ability and comprehensibility have been used as synonyms and
only in the past few years have the terms taken on distinct
meanings.However, a lack of a standard unified definition for
the theory of explainability is noted.A unifying framework
will provide common ground for researchers to contribute
towards the properly defined needs and challenges of the field.
Also metrics, other than simple interviews and questionnaires,
are needed for measuring and evaluating the effectiveness of
XAI A study by Hoffman, et al., presented one of the only
evaluation metrics for measuring the explanations of AI/ML



systems [[128]]. To this end, survey papers such as the ones by
Arrieta, et al., Mohseni, et al., and the one presented in this
paper will aid the overall development of XAl as an emerging
new field [1]], [8].

Fairness of Al - Another major concern for XAl coincides
with one of the vital reasons/goals for the creations of such
explainable systems: fairness and bias detection. As the fields
of accountable Al and XAI were born out of a need for fair
and unbiased decision making that affects human lives, getting
rid of such biases remains a challenge within this young
field. Benjamins, et al., noted that the discipline of fairness in
Al inherently includes bias detection. Proposals for datasets
with private and sensitive data may disproportionately affect
underrepresented groups [129]. These datasets, when used for
training black-box models such as DL systems, can result in
biased decisions, which can cause discriminatory, unethical
and unfair issues [[130].

In addition to datasets, other sources of biases can include
limited features, disparities in sample sizes and proxy features
[131]. Different techniques have been proposed to mitigate
biases within XAI systems. Kamiran, et al., proposed a pre-
processing technique for the learning dataset by reweighing
it, to eliminate discrimination [132]]. Zemel, et al., presented a
technique to achieve fairness via optimizing the representation
of the data that presents the best encoding while also obscuring
some parts to protect the membership information [[133]]. Other
approaches included techniques such as adversarial de-biasing
during data processing, equalized odds for post-processing,
and bias detection techniques [[131]] [[134]—[136].

Transferability - of post-hoc explanation methods is also
a vital challenge. Transferability of post-hoc explainability
techniques remains one of the most challenging issues. Most
post-hoc techniques are designed to explain specific AI/ML
models/systems. While some techniques successfully explain
certain models, they may be deemed difficult and perform
poorly when explaining other models. These post-hoc tech-
niques are typically very much intertwined with the particular
ML model and network architecture. There is a need for more
generalized methods and AI/ML designs that are inherently
explainable with different post-hoc methods. Deep Learning
methods for example are very difficult to explain due to their
black-box nature.
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Fig. 7: A comparison of studies for XAI security against
studies for XAl (Data derived from SCOPUS)

XAI Security - Finally, as explained in the previous section,
the security of XAl also remains a major challenge. Due to the
infancy of the field, major work is being done in improving
the explainability to bring it up to par with performance of the
model. While this is a crucial step forward for the development
and practical deployment of XAl systems, their security cannot
be ignored. As shown in Figure 7, the amount of research
being done for the security of XAl systems is very limited. The
number of publications for XAI compared to XAl and Security
is almost negligible. Therefore, if these systems are to be used
for both civilian and military purposes, they must be made
robust and resilient against adversarial attacks. The field of
adversarial machine learning (AML) grows and progresses to
include efficient attacks against most AI/ML models.The goal
of robust AI/ML systems is coupled with the goal of making
them explainable. Using the explanations from the system to
detect and defend them against different adversarial attacks
may play a crucial role in overall performance and successful
application.

Semantics - In addition to the previously mentioned con-

cepts, semantics also plays an integral role in XAI. Con-
falonieri, et al. emphasized explanations that can support
common-sense reasoning when based upon ontologies, con-
ceptual networks or knowledge graphs. They also stated the
importance of these semantic methods for the development
of AI/ML systems capable of providing stakeholder specific
explanations [49].
Neural-symbolic learning and reasoning, in regard to se-
mantics, also will play a major role within XAI It is an
interdisciplinary fusion of different (research subjects/topics)
for generation of better explanations. Garcez, et al., stated,
“neural-symbolic reasoning seeks to integrate principles from
neural networks learning and logical reasoning.” [137]] They
state the goal of neural-symbolic reasoning is to ‘“integrate
robust connectionist learning and sound symbolic reasoning.”
For neural-networks, neural-symbolic computation can provide
dynamic alternatives for knowledge representation, learning
and reasoning. Garcez, et al., presented the effectiveness of
neural-symbolic computing by highlighting its characteristic
as the "integration of neural learning with symbolic knowledge
representation and reasoning allowing for the construction of
explainable AI systems.” [138] Borges, et al., presented a
novel neural-computation model for neural networks that is
capable of learning and representing temporal knowledge. The
model extracts temporal knowledge from trained networks via
effective representation, adoption of the temporal models and
learning from examples [139]. de Penning, et al., introduced
a novel model for online learning and reasoning in complex
training environments, capable fo learning new hypotheses
from observed data and making recommendations based on
them via the combination of neural learning and symbolic
representation [[140]]

VII. SUMMARY

XAI will play an important role in the development and
application of AI/ML systems.In this paper we presented a
taxonomy and literature survey of Explainable Al (XAI). We



defined terms associated with the field and laid out goals and
methods for the design and development of trustworthy XAI
systems, including robustness and security against adversarial
attack. A variety of challenges were also described.
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