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Abstract

The k-anonymity problem introduced by Samarati and Sweeney in 1998, guarantees that it is impossible to distinguish user

data from at least (k - 1) others in the same database. The methods used to achieve k-anonymity result in an information

loss as the data in the database is modified, making it less accurate through a process of generalization or micro-aggregation

of the stored data. Mauger et al. proposed a O(n²)-time sequential algorithm that gives good results while minimizing the

information loss using their designed metrics. However, their solution is very time-consuming and therefore not suitable for large-

scale databases. In this paper, we tackle this problem using parallelism. We propose three coarse-grained parallel algorithms

to solve the k-anonymity problem. The first is the straightforward algorithm that runs in O(n ²/p) execution time with O(n)

communication rounds, where n is the number of lines in the database and p is the number of processors. The second runs in

O(n² /p²) execution time with O²(p) communication rounds. The third runs in O(n² /plog2(p)) execution time with O(np/

(log2(p))²) communications rounds. For the latter two algorithms, we introduce the concept of data reorganization to minimize

the information loss when data are partitioned. Experimental results show that for a database of size n = 10ˆ6 , p = 2ˆ7 ,

and k = 10ˆ2 , second, and third parallel algorithms are respectively 1127.59× and 41.13× faster than the sequential algorithm

while achieving anonymity with 4.03% and 2.62% information loss.
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Abstract—The k-anonymity problem introduced by Samarati
and Sweeney in 1998, guarantees that it is impossible to dis-
tinguish user data from at least (k − 1) others in the same
database. The methods used to achieve k-anonymity result in
an information loss as the data in the database is modified,
making it less accurate through a process of generalization or
micro-aggregation of the stored data. Mauger et al. proposed a
O(n2)-time sequential algorithm that gives good results while
minimizing the information loss using their designed metrics.
However, their solution is very time-consuming and therefore
not suitable for large-scale databases. In this paper, we tackle
this problem using parallelism. We propose three coarse-grained
parallel algorithms to solve the k-anonymity problem. The
first is the straightforward algorithm that runs in O

(
n2/p

)
execution time with O (n) communication rounds, where n is
the number of lines in the database and p is the number of
processors. The second runs in O

(
n2/p2

)
execution time with

O (p) communication rounds. The third runs in O
(
n2/p log2(p)

)
execution time with O

(
np/ (log2(p))

2) communications rounds.
For the latter two algorithms, we introduce the concept of data
reorganization to minimize the information loss when data are
partitioned. Experimental results show that for a database of
size n = 106, p = 27, and k = 102, second, and third parallel
algorithms are respectively 1127.59× and 41.13× faster than the
sequential algorithm while achieving anonymity with 4.03% and
2.62% information loss.

Index Terms—k-anonymity, information loss, privacy-
preserving data publishing, parallel computing, coarse-grained
multicomputer

I. INTRODUCTION

THE masses of data collected today in various domains,
especially in health, banking, and insurance, to name

a few, are intended to be published for research purposes,
for example. Among these data, some are private (referred
to as sensitive data), which implies that they must be pre-
served when published. However, these data are subject to
several risks when they are published. In particular, identity
disclosure, attribute disclosure, inference disclosure, as well
as membership disclosure [1]. Different methods have been
proposed to address these different attacks. l-diversity and t-
closeness have been introduced to deal with attribute disclo-
sure attacks, as well as several other methods. In their work,
Li et al. [2] addressed inference attacks, where attackers use

a derived distribution from the published data. Among the
proposed methods, some can address multiple attacks at once.
Samarati and Sweeney [3] introduced k-anonymity for identity
disclosure, and several variants have been developed in recent
years [1]. In the rest of this paper, the focus is on k-anonymity.

The solutions proposed in the literature vary in their ability
to preserve the data utility [4]–[12]. However, it is important
to note that optimizing data utility during the k-anonymity
process is an NP -hard problem [6], [9]. As a result, striking
the right balance between information loss and computational
cost becomes critical, especially in scenarios where the volume
of data to be anonymized continues to grow over time.
Parallelism serves as a solution to reduce the execution time
of computationally intensive applications.

Over the past two decades, the landscape of parallel
computing has been marked by the emergence of various
parallel models, each aiming to harness the power of dis-
tributed systems architecture. Notable among these models
are MapReduce [13], LogP [14], Bulk Synchronous Parallel
(BSP) [15], and Coarse-Grained Multicomputer (CGM) [16].
The diversification of these models has presented a formidable
challenge in crafting parallel algorithms for intricate problems
such as recommender systems, optimal binary search trees, and
minimum cost parenthesizing [17]–[19]. Among these models,
the CGM model stands out as an apt choice for contemporary
parallel systems comprised of distributed computing nodes,
offering a platform for the creation of algorithms that are both
efficient and portable.

The CGM model consists of computation rounds, in which
individual computational units execute sequential algorithms
on different subproblems, interspersed with communication
rounds that allow data exchange between computational units.
This distinctive approach has attracted attention for its ability
to strike a balance between computation and communication,
making it conducive to parallel algorithm design.

The focus of this paper is to address the challenge of par-
allelizing the k-anonymity problem within the confines of the
CGM model. The aim is to exploit its strengths to efficiently
solve this problem in a distributed memory environment.

In the following, a database is typically structured as a
table, comprising rows referred to as records or tuples, and
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columns known as attributes. There are three distinct types
of attributes: identifiers that uniquely index users from the
database, quasi-identifiers that do not provide any information
about users, but which when cross-referenced with external
data sources (such as electoral lists) allow users to be identified
(for example postal code, gender, etc.). Finally, the sensitive
attributes do not give any information about user identity (e.g.
salary, medical illness, etc.). This last attribute type is usually
the reason one wants to anonymize the database. It is important
to clarify that this paper exclusively focuses on quasi-identifier
attributes.

A. Related works
Anonymity can be achieved through various techniques,

including non-perturbative techniques like global recoding,
generalization, local recoding, suppression, and clustering, as
well as perturbative methods such as noise addition, data swap-
ping, micro-aggregation, and de-associative techniques [1] like
bucketization [20], [21], angelization, and anatomization. To
maintain clarity and focus, we will primarily explore ap-
proaches based on generalization in the following discussions.
Generalization involves replacing specific values with more
general or less precise ones, thereby reducing the level of detail
in the data to ensure anonymity.

Global recoding-based approaches involve recoding records
across the entire dataset by grouping specific categories of
values together to create more generalized categories [4], [22],
[23]. This method allows for the creation of more general
representations of the data. On the other hand, local recoding-
based approaches map attribute values to generalization values
based on their respective groups [24]. In these approaches, the
same attribute values may be generalized differently if they be-
long to different groups. Both global and local recoding-based
approaches have the advantage of preserving good data utility
by maintaining a higher level of detail in the anonymized
data. However, the main drawback of these approaches is the
significant computational cost associated with the recoding
process. The computational complexity and time required for
recoding the data can pose challenges, especially when dealing
with large datasets.

Clustering-based approaches draw inspiration from the field
of clustering research [9]–[12], [25], [26], such as the widely
known k-means algorithm. In these approaches, clusters are
referred to as equivalence classes, which consist of similar
records based on a specified similarity criterion. Clustering-
based methods offer reduced computation time due to the
quadratic nature of their algorithms. However, they generally
exhibit weaker data utility compared to global recoding tech-
niques. For example, the GkAA algorithm employs a greedy
heuristic based on a local choice approach [11]. It identifies
suitable records that best fit into the same equivalence class,
using a similarity measure based on calculated distances
between records. It optimizes an information loss metric by
considering attribute generalization hierarchies.

Sang et al. [10] proposed the GCCG algorithm for achiev-
ing k-anonymity and demonstrated its parallelizability to ex-
pedite the anonymization process. They proposed a shared-
memory parallel algorithm based on their sequential solution.

Their experimental results showed that the parallel algorithm
is 10.5× faster than the sequential algorithm with four threads.
However, as the number of threads increased, the parallel
approach exhibited more significant data loss compared to the
sequential one.

It is important to note that clustering-based approaches often
rely on greedy algorithms that do not guarantee optimality in
terms of data utility in the anonymized database. Neverthe-
less, these approaches offer more flexibility for execution on
distributed systems that handle larger datasets.

There has been extensive research conducted on dis-
tributed privacy preserving data publishing over the last
twenty years [27]–[31]. Within this domain, the primary
challenges revolve around data partitioning and aggregation
strategies. Researchers commonly assume that, data is dis-
tributed across multiple parties and needs to be combined
to achieve anonymization for the global database, which is
considered as the collective union of all parties’ databases.

Wei and Chris [27] proposed an approach to anonymize
a database by vertically partitioning it into subsets of quasi-
identifier attributes from two different homogeneous sources.
Their focus lies within the realm of IoT network security,
where the different sources should not be able to decrypt
data they don’t have access to. Each source (party) performs
generalizations on their respective data, and then the tables
are joined based on well-defined comparison criteria. In a
different study, Jurczyk and Xiong [28] introduced the first
framework for horizontal database partitioning. This involves
partitioning a dataset into multiple subsets with the same at-
tributes but different records. However, Mohammed et al. [29]
demonstrated that applying k-anonymization algorithms to
different subsets of a database, viewed as a horizontally
partitioned database in a distributed memory environment,
leads to significant information loss compared to a centralized
environment. In this scenario, all parties have their own data
with the same attributes but different records (similar to [28]).
Each party applies anonymization techniques to their data, and
the anonymized data is shared with a designated party for
aggregation. The resulting joined anonymized dataset is then
published.

In 2021, Wook [30] proposed an approach for anonymizing
data resulting from an SQL query on a database. In this
approach, an SQL query is sent to a central server (the master
node), which executes the query on relevant database servers
(slave nodes). Each slave node returns its result to the master
node for aggregation, and the master node anonymizes the data
before returning it. The author acknowledged that achieving
k-anonymity can be computationally expensive and time-
consuming, especially with large datasets containing millions
of records. To address this issue, the author leveraged the
computational power of each slave node to anonymize data
locally and then returned the anonymized result to the central
server. The central server aggregates the different results
and returns the anonymized data. The resulting table may
not initially satisfy the k-anonymity constraint during result
aggregation, so the anonymization process must be repeated
until a k-anonymous table is obtained.

While these distributed-based approaches offer advantages,
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they still face computational cost challenges. The anonymiza-
tion algorithms used by each party do not effectively utilize
the computational power of the processing units. This becomes
problematic when parties have large amounts of data to
process, making it difficult to handle even with quadratic
algorithmic approaches.

In a later study conducted in 2022, researchers explored an
approach to scalable data anonymization, as detailed in [31].
This approach was designed to address the challenges of
anonymizing large datasets within a distributed memory en-
vironment, specifically utilizing Apache Hadoop. The founda-
tion of their work stemmed from an extension of the well-
established centralized Mondrian algorithm, as outlined in the
original Mondrian paper [32]. The primary focus of their
research revolved around optimizing computational efficiency
through two key partitioning strategies. The first, known as
quantile-based partitioning, showcased superior performance,
especially when the number of available computing workers
was not a power of 2. However, a limitation emerged as
this strategy capped the number of partitions at the attribute
with the largest domain size. On the other hand, the second
strategy, termed multi-dimensional partitioning, demonstrated
the potential to yield an unbalanced workload distribution
among workers, potentially resulting in double the computa-
tional burden for some. Consequently, the efficiency of their
approach hinged strongly on the ability to decompose the
number of workers into a power of 2. The study’s findings
were promising, indicating substantial computation time sav-
ings ranging from 28% to 98% when applied to a dataset
consisting of 1,000,000 records for various values of k (5,
10, and 20). These results were especially evident when the
approach was executed with worker counts ranging from 2 to
12. Notably, the quantile-based partitioning strategy incurred
only a slight difference in terms of information loss compared
to the centralized Mondrian algorithm.

B. Our contribution

In the realm of distributed memory environments, the parti-
tioning of databases can lead to a notable loss of information.
This challenge becomes particularly pronounced as the number
of processors (or workers) and the value of k (the anonymity
constraint) increase, or when dealing with relatively small
datasets. The earlier study conducted and detailed in [31] was
restricted to a mere 12 workers. Consequently, this limitation
failed to provide a comprehensive view of the information
loss, particularly for higher k values, such as k = 100,
resulting from excessive dataset partitioning. Moreover, the
requirement for the number of workers to be a power of 2, as
identified in previous work, imposes constraints on solution
efficiency. In this paper, our primary focus is to tackle the
challenges associated with mitigating information loss and
optimizing computation time while achieving k-anonymity
within a distributed memory environment. To address these
concerns, the contributions proposed in this paper are twofold:

1) We introduce data reorganization as a preprocess-
ing task, which involves pre-constructing equivalence
classes to arrange records with higher similarity in

close proximity. This objective is achieved through the
application of a stable sorting method. We explicitly
demonstrate the influence of the sorting order of quasi-
identifier attributes on the partitioning procedure. By
considering the generalization hierarchy levels of quasi-
identifiers, we derive a generalized optimal order for data
reorganization. Notably, this strategy proves effective
in maintaining data utility within a distributed memory
environment for high values of p and k.

2) We propose three coarse-grained parallel algorithms
based on two partitioning strategies. The initial partition-
ing strategy focuses on identifying pairs of equivalence
classes that can be iteratively merged until the desired
k-anonymity level is achieved. This approach serves
as the basis for the design of the first parallel algo-
rithm, called PGkAA. However, the scalability of the
PGkAA algorithm becomes limited as the database size
increases. To overcome this issue, we propose a second
partitioning approach. This approach claims that the
process of database anonymization can be streamlined
by anonymizing multiple partial databases extracted
from the main database. We consider a scenario where
a database T can be viewed as a union of p sub-
databases (T =

⋃p
i Ti) where each couple (Ti, Tj) have

exactly same attributes, with the assumption that these
sub-databases either remain disjoint or have overlapping
properties. This partitioning scheme forms the basis for
the formulation of two advanced parallel algorithms,
called PGPkAA and H-PGPkAA. The PGPkAA algo-
rithm stands as a testament to the reduction in execution
time during the anonymization process as the number
of processors increases. Conversely, the H-PGPkAA
algorithm deftly strikes an optimal equilibrium between
the execution time incurred and the information loss that
accompanies the anonymization process.

The PGPkAA and H-PGPkAA algorithms reorganize the data
during a preprocessing phase. Experimental results showed
that data reorganization mitigates information loss while
achieving k-anonymity in a distributed memory environment.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the k-anonymity concept. Sec-
tion III describes the reorganization concept and our parallel
algorithms. Section IV outlines experimental results. Finally,
Section V concludes the paper.

II. PRIVACY PRESERVING AND k-ANONYMITY

Sweeney [33] showed how the identity of the Mas-
sachusetts state government could be found just by crossing
the pseudonymized medical data of an insurance organization
and the electoral list of Cambridge (USA). Samarati [4]
introduced the k-anonymity concept which guarantees that it
is impossible to distinguish an individual data in the database
from at least (k − 1) others.

Fig. 1 shows an example of a database inspired by the Adult
database [34]. First and last names are the identifiers, age,
gender, workclass, and education are the quasi-identifiers and
the income is the sensible value.
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Sensible
First name Last name Age Gender Workclass Education Income
John Doe 39 M State-gov Bachelors  =50K
Josef Novák 32 M Private Masters <50K
Navn Navnesen 18 M Never-worked 11th  =50K
Jan Jansen 75 M Federal-gov Doctorate  =50K
Marie Dupont 38 F Private Bachelors <50K
Erika Mustermann 22 F State-gov Doctorate  =50K
Kari Nordmann 65 F Federal-gov Masters <50K
Anna Kowalska 39 F Private 11th  =50K

Identifiers Quasi-identifiers

Fig. 1: Example of a database

A. Data generalization

Some of the approaches used to achieve k-anonymity,
use data generalization and suppression, making data less
precise and leading to information loss. In clustering-based
approaches, k-anonymity is considered a partitioning problem
that consists of grouping objects with similar characteristics
based on specific criteria. Thus, to achieve k-anonymity,
we group the lines (records) of the database in clusters of
equivalence classes such that all records have the same values
according to quasi-identifiers. So all equivalence classes have
at least k records.

Fig. 2a displays the generalized values for the quasi-
identifier age. Here, we have grouped ages into distinct age
categories. Fig. 2b highlights the possible generalizations for
the education levels; the ”*” symbol represents any education
level and denotes also the highest level of generalization.

It is crucial to note that the choice of how to generalize
a value can significantly impact the data’s utility once the
database has been made k-anonymous. Indeed the more the
value is generalized, such as ”*” or ”[16-75] age group”, the
more information loss increases by decreasing the precision.

B. Information loss metrics

Data utility of a k-anonymous database can be measured
with information loss metrics [11] or according to the effi-
ciency obtained during the training of an AI model processed
with the k-anonymous database [35]. This last evaluation is out
of the scope of this paper. Indeed, if such efficiency measures
can be very useful, they are also dependent on the context
of the use of the data and the objectives sought (inference,
generation, etc.). We focus on general information loss metrics
that, in our sense, are more suitable for privacy-preserving data
publication without having an idea of the end use of the data.

To evaluate the information loss rate, we use metrics based
on generalization cost functions. These functions compute the
cost of merging two rows as the sum of the generalization costs
of their quasi-identifiers to make them identical as follows:
If there is a direct path between two nodes n and m of
the hierarchy then for a metric µ, cost(n,m) = µ(n,m).
If there is no direct path from node n to node m, we
determine the lowest common ancestor (LCA (n,m)1), then
for a metric µ we find cost(n,m) = µ (n,LCA (n,m)). Note
that cost(n,m) is generally not equal to cost(m,n) because
the path from one node to the LCA is generally not equal

1It represents the common ancestor of the two nodes which is the far from
the root [36].

to the cost from the other node. Moreover, when there is a
direct path from n to m, cost(n,m) = cost(n,LCA (n,m)).
To determine all possible generalizations, these values are
represented in matrices that completely define the cost metric
for each attribute. We rely on these matrices to find a k-
anonymous version of the database that minimizes information
loss. Fig. 3 shows the corresponding cost matrices for the
generalization hierarchies presented in Fig. 4.

Such a generalization metric can be arbitrarily defined (e.g.
one can choose that generalizing a PhD in ”Professional
Degree” must cost more than generalizing a Master degree
in the same value). However, defining such generalization
costs can be very time-consuming or even impractical when
the attribute can take many values. Many information loss
metrics have been proposed over time to define automatically
the generalization costs of semantic hierarchies. Moreover, the
choice of these costs can lead to very different versions of the
same database, with more or less information loss. In their
work [11], Mauger et al. evaluated information loss for seven
metrics (Distorsion [7], NCP [8], Total [9], LLM, NLLM,
WLLM, NWLLM [11]) for large range of values of k (from 2
up to 15,000 for a dataset of 30,162 lines). Their results show
that the NLLM metric is well suited to limit information loss
when used to k-anonymize a database. We used it for our
later experiments, but any other metric could easily be used
by simply changing the cost matrices.

For an information loss metric µ, the data utility of a k-
anonymous version of the database T is determined by the
following relation [38] :

Aµ (T ) =
µ (T )

µ (T ∗)
× 100 (1)

where T ∗ represents the k-anonymous database with max-
imum generalization (where all information has been lost).
Considering such a metric, finding the best version of a k-
anonymous database (i.e. using the minimum generalization
possible) is NP -hard [9].

C. Sequential algorithm of Mauger et al. [38]

To minimize information loss, the authors of [11] adopted
a strategy of merging two equivalence classes with the least
merge cost, effectively seeking the pair of classes whose
merger minimizes information loss. To achieve this objective,
they introduced an algorithm that proceeds as follows: it
initially selects a class, denoted as Csmall, from the set
of the smallest classes. Subsequently, within the remaining
equivalence classes, the algorithm identifies the class whose
merging incurs the minimal cost. These two classes are then
merged, resulting in the formation of a new class. Throughout
this process, it is essential to ensure that each equivalence class
maintains a size of at least k. Algorithm 2 succinctly outlines
the procedural steps undertaken within the search function for
the class with the best merging cost with Csmall.

Let T be a table of n records and C(T ) the set of equivalence
classes composed of r equivalence classes.

Theorem 1. The GkAA algorithm runs in O
(
n2

)
time.
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16 17 18 19 … 74 75

[16-20] [21-25] [71-75]…

[16-45] [46-75]

[16-75]

(a) Age

Primary
School

Secondary
School

Bachelor’s
Degree

Professional
Degree

Masters Doctorate7th 8th 11th… 1st 4th1st … 6th …

High School Postsecondary

*

(b) Education

Fig. 2: Generalization hierarchy

16 17 18 19 … 74 75

[16-20] [21-25] [71-75]…

[16-45] [46-75]

[16-75]

1 1 1 1 1 1

2 2 2

3 3

(a) Age

Primary
School

Secondary
School

Bachelor’s
Degree

Professional
Degree

Masters Doctorate7th 8th 11th… 1st 4th1st … 6th …

High School Postsecondary

*

6 6 5 5 5 4 4 2 2

2 2 2 2

2 2

(b) Education

Fig. 3: Weighted Generalization hierarchy [37]



16 17 · · · 75 [16−20] · · · [16−75]

16 0 1 · · · 6 6 · · · 6
17 1 0 6 6 6

· · ·
... . . .

...
...

75 6 6 · · · 0 6 · · · 6
[16−20] 0 0 0 0 3

...
...

... . . .
...

[16−75] 0 0 · · · 0 0 · · · 0


(a) Age



1st · · · 7th · · · M D Pr. · · · HS · · · ∗

1st 0 · · · 8 · · · 10 10 6 · · · 8 · · · 10

2nd 6
. . . 8 10 10 6 8 10

...
...

...
Pr. 0 · · · 2 · · · 4 4 0 · · · 2 · · · 4
HS 0 0 2 2 0 0 2

...
... . . .

...
∗ 0 · · · 0 · · · 0 0 0 · · · 0 · · · 0


(b) Education

Fig. 4: Quasi-identifiers cost matrices [37]

III. OUR CGM-BASED PARALLEL ALGORITHMS FOR
k-ANONYMITY

The strong dependencies between data in consecutive itera-
tions limit the available sources of parallelism for this problem.
In the following sections, we present three parallel algorithms
based on the CGM model to minimize computation time.

Algorithm 1 Greedy k-anonymity algorithm
1: procedure GkAA(T, k, µ)
2: while ∃C ∈ C(T ) as ∥C∥ < k do
3: Choose a class Csmall of C(T )
4: C ← SEARCH(C(T ), Csmall, µ)
5: Cmerge ←Merge(Csmall, C)
6: C(T ) ← C(T ) ∖ {Csmall, C} ∪Merge(Csmall, C)

Algorithm 2 Search of the suitable pair of equivalence classes
to merge
1: function SEARCH(C(T ), Csmall, µ)
2: while C(T ) ̸= ∅ do
3: Choose a class C from C(T )
4: if µ(Csmall, C) < min then
5: min ← µ(Csmall, C)
6: Cmin ← C

7: C(T ) ← C(T ) ∖ {C}
8: return Cmin

A. PGkAA: CGM-based parallel algorithm based on the par-
titioning of the search space

We introduce the PGkAA algorithm, which aims to re-
duce the computation cost of the k-anonymity problem by
employing parallelism in the search for suitable pairs of
equivalence classes to merge. In this approach, we propose a
straightforward partitioning method. Indeed, the computation
of merging costs for two disjoint pairs of equivalence classes
is entirely independent.

The set of equivalence classes, denoted as C(T ), is par-
titioned into s subsets of equivalence classes during each
iteration to facilitate the search. Furthermore, each processor
searches within a subset of equivalence classes, denoted as
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Algorithm 3 CGM-based parallel algorithm based on the
partitioning of the search space
1: procedure PGkAA(T , k, µ, p)
2: Sort in ascending order of size the C ∈ C(T )
3: while ∃C ∈ C(T ) as ∥C∥ < k do
4: Choose a class C from C(T )
5: C ← PSEARCH(C(T ), Csmall, µ, p)
6: One-To-All communication of C
7: Cmerge ←Merge(Csmall, C)
8: C(T ) ← C(T ) ∖ {Csmall, C} ∪ Cmerge

Algorithm 4 Search for the suitable pair of equivalence classes
to merge in parallel
1: function PSEARCH(C(T ), Csmall, µ, p)
2: Each processor get its subset of r/p equivalence classes δC(T )
3: while δC(T ) ̸= ∅ do
4: Choose a class δC from δC(T )
5: if µ(Csmall, δC) < min then
6: min ← µ(Csmall, δC)
7: δCmin ← δC

8: δC(T ) ← δC(T ) ∖ {δC}
9: All-to-One communication of δCmin to the master processor

10: return SEARCH(δCmin(T ), Csmall, µ)

δC(T ), ensuring that this subset contains at least (r/p+ 1)
equivalence classes, where p is the number of processors.

Algorithm 3 summarizes the main steps of our distributed
parallel solution. The parallel search function proceeds the
search within a smaller range of equivalence classes that help
speed up the global solution. Algorithm 4 summarizes the
steps of PSEARCH (in Algorithm 3).

Each processor partitions the set of equivalence classes,
denoted as C(T ), and selects its specific subset, δC(T ), for
local computation based on its rank. Subsequently, each pro-
cessor conducts a search within its designated subset of equiv-
alence classes. Upon completion of their respective searches,
the slave processors transmit the equivalence class with the
minimum merge cost to the master processor via an All-to-
One communication. The master processor then carries out
the merging process and subsequently shares the updated set
of equivalences with the other processors using a One-to-All
communication.

Theorem 2. The PGkAA algorithm runs in O
(
n2/p

)
execu-

tion time with O (np) communications rounds.

It is worth noting that the number of communication rounds
in the PGkAA algorithm is heavily dependent on the size of
the database, denoted as n. This dependence poses a significant
challenge when attempting to scale this solution for use with
large databases. In fact, the communication time emerges as
a notable drawback in this context.

B. PGPkAA: CGM-based parallel algorithm based on the
partitioning of the dataset

The main goal of this approach is to reduce the number of
communication rounds generated by the PGkAA algorithm,
thereby enhancing the overall solution’s speedup. Our strategy
involves simplifying the problem by working with a dataset
consisting of (n/p) records, which constitutes a partial dataset.
Sang et al. [10] demonstrated that partitioning the dataset

accelerated their solution, albeit at the expense of introducing
a new challenge: information loss, which escalates as the
number of partitions increases. Indeed, the dissimilarities ob-
served between partitions represent one of the primary factors
contributing to the expansion of information loss during the
anonymization process.

1) Data reorganization: It is important to note that, at-
tributes with higher generalization costs tend to result in
greater information loss when the dataset is randomly par-
titioned with a high number of partitions. We propose the use
of data reorganization as a preprocessing technique to reduce
information loss of k-anonymization in distributed memory
environments. This technique involves arranging records in
the database in a way that groups the more similar lines
together. By suitably reorganizing the data, we can define the
order in which quasi-identifier attributes are aggregated. In
this paper, we specifically focus on a multidimensional stable
sorting approach based on attributes generalization hierarchy
levels. When sorting the data, two schemes can be considered.
Scheme 1 (resp. scheme 2) consider sorting the attributes from
the highest (resp. lowest) generalization hierarchy level to
the lowest (resp. highest). The generalization hierarchy level
indicates the degree of generalization for two attribute values,
where a higher level implies a lower generalization cost.

Let Q = {Q1, . . . , Qt} be a set of quasi-identifiers. Let
l1, . . . , lt be the generalization hierarchy level associated with
Q1, . . . , Qt respectively and n1, . . . , nt the number of unique
values for each quasi-identifier. In the case of performing
horizontal partitioning on a dataset, sorting the dataset based
on its quasi-identifier attributes in ascending order of the
cost of generalization for each attribute helps to preserve
information loss in a distributed memory environment. In
this article, we consider that a higher level of generalization
hierarchy for an attribute implies a lower cost of generalizing
its values [11].

Lemma 1. For two attributes Qi, Qj with li = lj and i ̸= j,
if ni < nj the dataset must be sorted according to Qi before
being sorted according to Qj .

For example, let us consider a situation where we have a
dataset T with three quasi-identifiers Q1, Q2, Q3 associated
with generalization hierarchy levels l1, l2, l3 respectively. Let
us assume that l1 < l2 < l3 (i.e. Q1 has the highest generaliza-
tion cost penalty, followed by Q2, then Q3). Let Q1, Q2, Q3

be assigned to 2, 3, and 6 distinct values, respectively. Fig. 5
illustrates how the choice of reorganization scheme can impact
the resulting information loss after partitioning the dataset.
In particular, Fig. 5a and 5c (resp. Fig. 5b and 5d) illustrate
the partitioning of T , with each partition having 2 (resp. 4)
records. Note that Fig. 5a and 5b (resp. Fig. 5c and 5d) adopt
reorganization in scheme 2 (resp. scheme 1) and are crops of
Fig. 12a (resp. Fig. 12b) in appendix A. In Fig. 5a and 5b, we
start by sorting the whole dataset on Q1 (step 1), then on Q2

(step 2), and lastly on Q3 (step 3), while in Fig. 5c and 5d, the
attributes are sorted in the reverse order. Note that, each color
in these figures represents unique values for the correspondent
attribute and sorting is applied on all lines of the database.

Therefore, Fig. 5a shows that the values of Q1 will be
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Fig. 5: Example of reorganization influence on a 2-partitioning and 4-partitioning of a dataset

Algorithm 5 CGM-based parallel algorithm based on the
dataset partitioning with reorganization
1: procedure PGPkAA(T , k, µ, p)
2: Reorganize the dataset T
3: Partition the dataset T into p subsets ∆T
4: GkAA (δT, k, µ), where δT ∈ ∆T
5: Slave processors send their local k-anonymous dataset δTµ,k to the

master processor for aggregation using All-to-One communication

locally generalized, leading to a significant global information
loss. This is due to the high generalization cost associated with
Q1, as it has the lowest hierarchy level. Conversely, Fig. 5c
shows that the values of Q1 will not undergo generalization.

In the other scenario, Fig. 5b depicts how the values of
Q1 and Q2 will be generalized in all partitions while Q3 will
be generalized in some partitions. This results in increased
information loss. On the other hand, Fig. 5d demonstrates
that only Q3 will be generalized in all partitions, thereby
preserving the information loss to a greater extent.

Based on the above observations, scheme 2 might be more
suitable for preserving information loss compared to scheme 1.
In the subsequent parallel algorithms, we adopt the approach
of reorganizing the dataset following scheme 2.

It is important to acknowledge that the partitioning process
may potentially introduce some disruption to the obtained
results, with a slight increase in terms of information loss [10],
[31] compared to the centralized GkAA algorithm [12]. How-
ever, we anticipate that the time savings achieved through our
method will outweigh this trade-off.

Overall, we propose the PGPkAA algorithm to strike a
balance between minimizing computation time and controlling
information loss, with the expectation that the advantages of
our approach will outweigh any potential drawbacks.

2) Partial greedy parallel k-anonymity algorithm: Each
processor reorganizes the dataset, dividing it into p subsets.
It selects a subset corresponding to its rank and independently
applies the centralized GkAA algorithm [12] to its respective
partition. After completing the local computation round, each
processor transmits its locally generated k-anonymous dataset
to the master processor (or coordinator) for aggregation.
Algorithm 5 summarizes the main steps of our solution.

Theorem 3. The PGPkAA algorithm runs in O
(
n2/p2

)
execution time with O (p) with communication rounds.

Algorithm 6 Hybridization of PGkAA and PGPkAA
1: procedure H-PGPkAA(T , k, µ, p)
2: Determine the number of subsets b = f(p) = ⌊log2 p⌋+ 1
3: Reorganize the dataset T
4: Partition T into b subsets ∆T
5: Form blocks of processors ∆B, each consisting of

(
⌊ p
b
⌋+ 1

)
6: PGkAA(δT , k, µ, δB), where δB ∈ ∆B and δT ∈ ∆T
7: Master processors of each block send their local k-anonymous tables

δTµ,k to the main master processor for aggregation using All-to-One
communication

C. H-PGPkAA: CGM-based parallel algorithm based on the
partitioning of the search space and the dataset

The number of dataset partitions, or fragments, is deter-
mined by the number of processors. As p increases, the subsets
become smaller, resulting in an increased level of information
loss in the resulting k-anonymous tables. While the PGPkAA
solution achieved significant speedup, it also led to a slight
increase in information loss, particularly for higher values
of p and smaller datasets. To address this issue, we propose
the H-PGPkAA algorithm, which combines the strengths of
both the PGkAA and PGPkAA algorithms to further minimize
information loss while achieving k-anonymity.

To achieve this objective, we reduce the number of subsets
by partitioning the dataset using a given positive definite func-
tion. We define a function b = f(p) = (⌊log2 p⌋+ 1), which
determines the number of subsets required for the PGPkAA
parallel algorithm. This function assists us in determining
the minimum number of processors needed to minimize the
number of communication rounds. Consequently, for a given
number of processors p, we leverage these remaining (p− b)
processors to expedite the search process within the PGkAA
algorithm (see Algorithm 3) by forming dedicated processor
blocks. Each block comprises (p/b) processors working on the
same subset, each processing a maximum of

(
n
b + 1

)
records.

Processors within the same block collaborate to search
for the appropriate pair of equivalence classes for merging.
Following the completion of the search within each block, the
slave processors communicate their search results to the master
processor of the block (typically the processor with the lowest
rank) using an All-to-One communication. The master proces-
sor performs the merge operation and returns the updated set
of equivalence classes to the slave processors through a One-
to-All communication. Once each block finishes its execution,
the master processor of each block utilizes an All-to-One
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communication to transmit its local k-anonymous tables to
the main master processor responsible for aggregation. This
processor serves as the master of the first block.

Algorithm 6 offers an overview of our solution, outlining the
key steps involved in achieving k-anonymity while minimizing
information loss through the use of data partitioning, block-
based processing, and communication among processors.

Theorem 4. The H-PGPkAA algorithm runs in O
(

n2

p log2 p

)
execution time with O

(
np

(log2 p)2

)
communication rounds.

IV. RESULTS

We conducted a comparison between our distributed parallel
algorithms and the centralized GkAA algorithm [11], [12].
The implementations were done in C++ and Python3, and
they were executed on a CentOS Linux operating system
within the MatriCS platform at the University of Picardie Jules
Verne [39]. To facilitate communication between processors,
we utilized the MPI (Message Parsing Interface) library and
mpi4py framework for Python. Our experimental evaluations
were performed using two datasets: the Adult dataset sourced
from the University of California in Irvine’s machine learning
repository [34] and the Florida voters list dataset [40]. The
Adult dataset is a commonly used benchmark for experiment-
ing with k-anonymity algorithms.

The reported results are based on various combinations
of the triplet (n, p, k). Here, n represents the dataset size,
with values selected from {30,162} for the Adult dataset
and {60,000; 120,000; 240,000; 500,000; 1,000,000} for
the Florida dataset. The variable p denotes the number
of processors, chosen from {1, 2, 4, 8, 16, 32, 64, 128}, and
k the k-anonymity constraint , with values taken from
{2, 3, 5, 10, 100}. In cases where p is set to 1, the GkAA
algorithm [12] is executed.

The parallel speedup metric was employed to assess the
relative speed improvement achieved by our parallel algo-
rithms in comparison to the sequential algorithm. For a deeper
understanding, Kruskal et al. discussed this topic in [41].

A. Adult dataset evaluation

For the evaluation of the Adult dataset, we carefully selected
nine quasi-identifier attributes: Age, Gender, Race, Marital
status, Education, Native country, Work class, Occupation,
and Salary. Any tuples with missing values were meticu-
lously removed, resulting in a dataset containing precisely
30,162 records. These records were subsequently organized
into 19,502 pre-existing equivalence classes. Table I furnishes
a succinct summary description of the Adult dataset.

The anonymization process for this dataset was initiated
to generate a k-anonymous dataset, with a primary focus
on optimizing a metric that minimizes information loss. The
anonymization procedure closely follows the methodology
outlined in [11]. Initially, we applied the GkAA algorithm,
followed by the utilization of three parallel algorithms intro-
duced in this paper: PGkAA, PGPkAA, and H-PGPkAA.

Table V shows an overview of the execution times for the
algorithms discussed in this paper, specifically concerning the

TABLE I: Description of Adult dataset attributes

Attributes Number of values Generalization (graph’s height)

Age 74 5−, 10−, 20−year intervals (5)
Gender 2 Suppression (2)
Race 7 Suppression (2)

Marital status 5 Hierarchy (3)
Education 16 Hierarchy (4)

Native country 41 Hierarchy (3)
Work class 7 Hierarchy (3)
Occupation 14 Hierarchy (3)

Salary 2 Suppression (2)

Adult dataset. These results serve as crucial inputs to compute
the speedup and efficiency of the parallel algorithms.

1) Evaluation of the overall computation time: Fig. 6a
demonstrates that the execution time increases as k increases.
This observation aligns with the expected behavior, as higher
values of k naturally lead to longer processing times for
generating the anonymous database.

Fig. 6b shows that the overall execution time decreases
as the number of processors increases. This effect is par-
ticularly pronounced in the PGPkAA approach compared to
the PGkAA approach. The PGPkAA algorithm effectively
reduces execution time by optimizing processor utilization.
Furthermore, with the increasing number of processors, each
processor handles smaller subsets of the k-anonymity problem,
resulting in improved performance. This acceleration can
be attributed to the quadratic complexity of the sequential
algorithm concerning the number of records in the database.
By partitioning the database into multiple subsets, we achieve
a theoretical speedup proportional to the square of the number
of processors.

However, it is important to note that excessive parallelism
may come at the cost of compromising data integrity. In
Section IV-A3, we will delve into the impact of parallelism
on information loss within the k-anonymous database.

Table II in Appendix C presents evidence that the PGkAA
algorithm, on average, exhibits a speedup of 2.5× compared
to the sequential algorithm when executed on 32 processors.
Likewise, the PGPkAA algorithm showcases a superlinear
speedup, being 300× faster than the GkAA algorithm. These
results underscore the scalability of the PGPkAA approach,
particularly in scenarios involving larger datasets.

2) Evaluation of the overall communication time: Fig. 7
illustrates varying behaviors in communication time as the
number of processors increases for the three algorithms. Sim-
ilar trends were also observed in the results reported in [10].
For the PGPkAA algorithm, communication time decreases
as the number of processors increases. This suggests that the
algorithm benefits from parallelization, as more processors
enable faster inter-processor communication.

Conversely, the communication time increases for the
PGkAA algorithm with an increase in the number of proces-
sors. This is primarily due to the fact that, in each iteration
of the loop, two rounds of communications are performed,
resulting in a greater communication overhead as the number
of processors grows (2× p× n).

Regarding the H-PGPkAA algorithm, communication time
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Fig. 6: Overall execution time with n = 30162, p ∈ {1, 2, 8, 32}, and k ∈ {2, 3, 5, 10, 100} for Adult dataset

TABLE II: Speedup of parallel algorithms with n = 30162, p ∈ {2, 8, 32}, and k ∈ {2, 3, 5, 10, 100} for Adult dataset

Algorithm
k = 2 k = 3 k = 5 k = 10 k = 100
Number of processors Number of processors Number of processors Number of processors Number of processors
2 8 32 2 8 32 2 8 32 2 8 32 2 8 32

PGkAA 1.53 2.58 3.15 1.51 2.47 2.96 1.5 2.33 2.82 1.48 2.29 2.78 1.46 2.34 2.76
PGPkAA 3.68 42.07 278.99 3.69 41.3 294.2 3.76 42.71 308.97 3.77 43.7 327.18 3.75 45.67 309.56
H-PGPkAA 3.73 11.36 46.01 3.77 11.65 46.13 3.81 11.87 48.21 3.8 11.29 46.8 3.8 12.07 47.74
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Fig. 7: Overall communication time with n = 30,162, p ∈
{2, 8, 32}, and k ∈ {2, 100} for Adult dataset

decreases as the number of blocks increases. This reduction
in communication time is a direct result of using blocks,
which helps minimize the number of processors involved in the
search for the best pair of equivalence classes to merge during
each iteration. The overall communication time decreases by
reducing the number of processors engaged in this task.

In summary, these findings underscore the critical impor-
tance of carefully considering communication overhead and
optimizing communication strategies during the design and
implementation of parallel algorithms. As the number of

processors increases, the amount of data to be transmitted
decreases. This reduction occurs because the workload is
distributed across more processors, resulting in smaller subsets
for each processor to manage. Consequently, communication
time between processors decreases.

As an illustration, for p = 32 and k = 100, the PGPkAA
algorithm showcases a communication time of 5 seconds,
whereas the PGkAA algorithm records a communication time
of 82 seconds. Thus, PGPkAA demonstrates significantly
faster communication compared to PGkAA. In Section IV-B,
our experiments will solely focus on the PGPkAA and H-
PGPkAA algorithms. The decision to exclude the PGkAA
algorithm is rooted in its escalating communication time
as the number of processors and dataset size increase. The
inefficiency observed in the PGkAA algorithm is primarily
attributed to its heavy dependence on the database size n.

3) Evaluation of the information loss: For the PGPkAA
and H-PGPkAA algorithms, the subsequent results are em-
ployed to compute the distributed information loss:

Apar
µ (T ) =

∑
δT∈∆T

Aµ (δT )×
∥δT∥
n

(2)

where ∆T is the set of k-anonymous tables produced by
processors or blocks of processors, ∥δT∥ signifies the size of
the subset, n is the size of the original dataset, and µ stands for
a specific optimization metric. The following sections evaluate
and compare the amount of information loss when executing
the PGPkAA algorithm with and without data reorganization.

Fig. 8a illustrates that the difference in information loss
increases as the value of k rises between the approach with
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Fig. 8: Information loss with n = 30,162, p ∈ {1, 2, 8, 32}, and k ∈ {2, 100} for Adult dataset

and without data reorganization. This contrast becomes more
pronounced with a larger number of processors. However, de-
spite the reduction in computation time, the algorithm remains
impractical for real-life applications. For example, there is an
observed information loss of 46% for p = 8 and k = 100
when the data reorganization is not employed. In contrast,
the information loss is reduced to 31% when reorganization
is utilized. In the subsequent analysis, the PGPkAA and H-
PGPkAA algorithms were executed with data reorganization
as a preprocessing step to enhance information loss.

Fig. 8b demonstrates that both the sequential and PGkAA
algorithms yield the same level of information preservation.
However, as mentioned before, the PGPkAA approach tends
to slightly increase information loss compared to the GkAA
algorithm. This difference becomes more pronounced when
using higher values of p and k. Specifically, as the number
of processors increases, the size of the local dataset on each
processor decreases. This reduction in dataset size dimin-
ishes the search space for identifying the most appropriate
equivalence classes to merge, potentially resulting in higher
information loss. It was observed that, for smaller values of
k, the information loss incurred by the PGPkAA approach
is relatively close to that of the sequential approach. As an
example, Table VIII in Appendix C presents the information
loss for the PGPkAA algorithm for p = 32 and k = 2, the
information loss is 2.56%, while the information loss of the
GkAA algorithm is 2.28% for k = 2.

Certainly, the reorganization preprocessing conducted on the
data enables the PGPkAA approach to distribute computations
across multiple processors while maintaining reasonable in-
formation loss in the resulting k-anonymous database. This
preprocessing step plays a crucial role in optimizing the
distribution of workload and minimizing the overall impact
on data integrity. As a result, the PGPkAA approach can
effectively leverage parallel processing capabilities without
compromising the quality and privacy guarantees of the final
k-anonymous database.

TABLE III: Description of Florida dataset attributes

Attributes Number of values Generalization (graph’s height)

Residence Zipcode 1026 500−, 1000−zipcode intervals (4)
Gender 2 Suppression (2)
Race 8 Suppression (2)

Year of birth 109 10−, 20−, 30−year intervals (5)
Party affiliation 10 Suppression (2)

B. Florida dataset evaluation

The Florida dataset used in this study is a publicly avail-
able dataset accessible online. It is derived from the Florida
Voter Registration System and contains information about
registered voters as of the previous month’s end. The raw
dataset initially consists of 38 attributes and includes a total
of 14 million records. However, for these experiments, only 5
specific attributes were selected, resulting in a subset of one
million records. These records were organized into 151,061
pre-existing equivalence classes. Table III provides a summary
of the dataset attributes considered within the scope of this
research. Table VI and Table VII in Appendix C provide
a summary of the overall execution time for the algorithms
discussed in this paper.

1) Evaluation of the overall computation and communica-
tion time: As expected, fig. 9a showcase how the overall com-
putation time increases with the growth of k. This behavior
is typical as the creation of large equivalence classes results
in increased computational demands. Similar to what was
discussed in section IV-A1, Fig. 9b demonstrates the reduction
in execution time for the PGPkAA parallel algorithm as the
number of processors increases. This trend becomes more
prominent when dealing with larger databases. Additionally,
Fig. 9c and 9d showcase the decrease in overall execution
time as the number of processors increases, indicating the
scalability of the PGPkAA approach when handling larger
datasets. For example, according to Table IV, on 128 pro-
cessors, the PGPkAA algorithm achieves an average speedup
of 770× faster than the centralized GkAA algorithm (about
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600% computation time saving).
Fig. 10a and 10b show that the communication time de-

creases as the number of processors increases. This observa-
tion is attributed to the characteristics of the CGM model,
where the communication time is heavily influenced by the
size of the data transmitted through the network and the
number of data items to be transmitted. As a result, when
the size of the data in the network is smaller, the transmission
speed increases, leading to a reduction in communication time.

2) Evaluation of the information loss: Fig. 11a and 11b
reveal that the information loss decreases as the size of the
database increases for both the sequential and parallel solu-
tions. This indicates that our parallel solutions can effectively
handle larger datasets while maintaining lower information
loss.

Zooming in on the case of n = 1,000,000, Fig. 11c and 11d
highlight the minimal increase in terms of information loss for
both the PGPkAA and H-PGPkAA algorithms compared to
the GkAA algorithm. This further emphasizes the efficiency
of the PGPkAA approach in managing large-scale datasets.
For example, according to Table IX, the PGPkAA algorithm
achieves an information loss of 0.91% with p = 128 and
k = 10, while the information loss of the GkAA algorithm
is 0.63%. These results demonstrate the effectiveness of the
parallel approach in handling large-scale datasets with minimal
information loss.

V. CONCLUSION

In this paper, we first proposed data reorganization as a
preprocessing step to enhance information loss while achieving
anonymity for large-scale databases in a distributed memory
environment. The preprocessing has proven to be effective.
It has significantly reduced information loss in a distributed
memory environment, especially with the increasing number
of processors and the constraint k. As baseline, we proposed
the PGkAA parallel algorithm based on a straightforward
partitioning approach. This solution has proven to be more
suitable for small-sized datasets and has the advantage of
achieving the same information loss as the GkAA algorithm
while speeding up the process by an average factor of 2.
Furthermore, we proposed two avanced parallel algorithms
(PGPkAA and H-PGPkAA) based on the CGM model, which
uses data reorganization as a preprocessing step. Through
experimental evaluation, we observed that the substantial
speedup achieved by the PGPkAA algorithm (600% com-
putation time saving) compensates for the slight increase in
information loss compared to the GkAA algorithm. Notably,
the PGPkAA algorithm exhibited scalability and efficiency
by effectively handling increasing values of n and k as
the number of processors increased. Therefore, this solution
proves to be both efficient and scalable for databases. The
H-PGPkAA algorithm showed good acceleration with slightly
equal information loss as that of the GkAA algorithm. Ad-
ditionally, we believe that the data reorganization used in
these algorithms can be applied to improve data utility while
achieving k-anonymity in other distributed parallel algorithms
employing horizontal data partitioning, including the GCCG
algorithm [10] or the extended Mondrian algorithm [31].

As future directions for this work, we aim to explore
methods that can enhance the data utility of the PGPkAA
parallel algorithm. This can be achieved by reducing the
number of subsets in the dataset. Additionally, we plan to
leverage artificial intelligence techniques, such as machine
learning approaches (similar to those used by Viton et al. [35]),
to further improve data utility. Furthermore, we intend to
enhance the speedup of our parallel solutions by incorporating
automatic parallelism in shared memory architectures. This
can be achieved through the utilization of GPUs or FPGAs,
which have the potential to significantly accelerate algorithm
execution. By pursuing these avenues, we aim to not only
improve the data utility of the parallel algorithms but also
enhance their performance and efficiency on modern shared
memory architectures.
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Fig. 9: Overall execution time with n ∈ {6× 104, . . . , 106}, p ∈ {1, 32, 64, 128}, and k ∈ {2, 3, 5, 10, 100} for Florida dataset

40 60 80 100 120
processors

10
2

10
3

10
4

co
m

m
un

ic
at

io
n 

tim
e 

(s
ec

)

k
2
10

Algorithm
H-PGPKAA
PGPKAA

(a) n = 106, p ∈ {32, 64, 128}, and k ∈ {2, 10}

0.2 0.4 0.6 0.8 1.0
database size 1e6

10
0

10
1

10
2

10
3

co
m

m
un

ic
at

io
n 

tim
e 

(s
ec

)

processors
32
64
128

Algorithm
H-PGPKAA
PGPKAA

(b) n ∈ {6× 104, . . . , 106}, p ∈ {32, 64, 128}, and k = 2

Fig. 10: Overall communication time with n ∈ {6× 104, . . . , 106}, p ∈ {32, 64, 128}, and k ∈ {2, 10} for Florida dataset



13

TABLE IV: Speedup of parallel algorithms with n = 106, p ∈ {32, 64, 128}, and k ∈ {2, 3, 5, 10, 100} for Florida dataset

Algorithm
k = 2 k = 3 k = 5 k = 10 k = 100
Number of processors Number of processors Number of processors Number of processors Number of processors
32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

PGPkAA 121.12 234.12 438.3 145.45 300.56 603.42 163.75 354.5 740.64 204.11 448.3 951.08 239.08 524.6 1127.59
H-PGPkAA 17.03 23.29 36.44 16.6 23.39 34.96 15.92 23.32 35.92 18.63 26.26 39.9 19.61 27.77 41.13
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APPENDIX B
Proof of Theorem 1

Proof: The number of steps for finding the minimum merge
cost class C at each iteration is (r − 1) (algorithm 2). At each
iteration of the while loop, one equivalence class is extracted
from C(T ). Let t (n) be the execution time of the algorithm :

t (n) = (r − 1) + (r − 2) + · · ·+ (r − s) = s (2r − s− 1) /2

with s the number of iterations for the while loop. The
following configuration reflects the worst of cases:
− all tuples of T are all distinct according to their quasi-

identifiers. That means each tuple forms its own equiva-
lence class, i.e. r = n;

− the k-anonymous table has the maximum generalizations.
It’s a table in which all tuples are identical, i.e. k = n
and s ≤ n.

For these reasons, t (n) = n (n− 1) /2. Thus, GkAA runs in
O
(
n2

)
execution time.

Proof of Theorem 2

Proof: Each processor performs (r−1)
p steps for the search for

the minimum merge cost class δC at each iteration, with r as
the number of equivalence classes. Thus the computation time
for this processor is given by:

tcals (n) =

(
r − 1

p

)
+

(
r − 2

p

)
+· · ·+

(
r − s

p

)
= s

2r − s− 1

2p

With r = n and s ≤ n, tcals (n) = n (n− 1) /2p. Each
while loop iteration requires 2 communication rounds, of
(p− 1) communications for each. Thus we have 2 (p− 1)
communications by iteration. In the worst case, k = n and
tcomms (n) = 2n (p− 1). Thus PGkAA runs in O

(
n2/p

)
execution time with O (np) communication rounds.

Proof of Theorem 3

Proof: The data reorganization preprocessing runs in
O (m× n log (n)), where n is the number of records, m the
number of quasi-identifier attributes, with m ≪ n. Indeed, for
sorting each attribute, the TimSort [42] algorithm is applied.

Each processor performs (r − 1) steps to find the minimum
merge cost class at each iteration. Thus the execution time for
a processor is given by:

tcals (n) = (r − 1)+(r − 2)+· · ·+(r − s) = s (2r − s− 1) /2

In the worst case, r = n
p and k = n

p (i.e. s ≤ n
p ). We obtain :

tcals (n) =
n

2p
×

(
n

p
− 1

)
+m× n log2 (n)

= O
(
n2

p2
+m× n log2 (n)

)
As n log (n) < n2

p2 (when n → +∞), thus:

tcals (n) ≈ O
(
n2

p2

)
An All-to-one communication round is Necessary at the end of
the local computation. We get (p− 1) communications. Thus,
PGPkAA algorithm runs in O

(
n2

p2

)
with O (p) communica-

tion rounds.

Proof of Theorem 4

Proof: The data reorganisation preprocessing runs in
O (m× n log (n)). The execution time for a block of pro-
cessors according to theorem 2 and 3 is given by:

tcals (n) =
b

p

s∑
i=1

(r − i) =
bs (2r − s− 1)

2p
+m× n log2 (n)

In the worst case we have: r = n
b and k = n

b (i.e. s ≤ n
b ).

Thus, tcals (n) = n
2p ×

(
n
b − 1

)
. Since b ≤ log2 p+ 1,

tcals (n) =
n

2p
×

(
n

(log2 p)
− 1

)
+m× n log2 (n)

.
So,

tcals (n) ≈ O
(

n2

p log2 p

)
Thanks to theorem 2, we obtain O

(
np

(log2 p)2

)
commu-

nication rounds in a block of processors. At the end of
local computations by each block, there is an All-To-One
communication round. Thus, H-PGPkAA runs in O

(
n2

p log2 p

)
execution time with O

(
np

(log2 p)2

)
communication rounds.
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TABLE V: Overall execution time (in minutes) of parallel algorithms for Adult dataset

Algorithm
k = 2 k = 3 k = 5 k = 10 k = 100
Number of processors Number of processors Number of processors Number of processors Number of processors
1 2 8 32 1 2 8 32 1 2 8 32 1 2 8 32 1 2 8 32

PGkAA 44.17 28.9 17.15 14.04 55.9 37.14 22.67 18.88 61.79 41.3 26.48 21.89 64.89 43.7 28.29 23.31 65.01 44.41 27.82 23.59
PGPkAA 44.17 12.02 1.05 0.16 55.9 15.16 1.35 0.19 61.79 16.44 1.45 0.2 64.89 17.2 1.49 0.2 65.01 17.34 1.42 0.21
H-PGPkAA 44.17 11.85 3.89 0.96 55.9 14.84 4.8 1.21 61.79 16.21 5.21 1.28 64.89 17.06 5.75 1.39 65.01 17.09 5.39 1.36

TABLE VI: Overall execution time (in minutes) of the PGPkAA algorithm for Florida dataset

DB size
k = 2 k = 3 k = 5 k = 10 k = 100
Number of processors Number of processors Number of processors Number of processors Number of processors
1 32 64 128 1 32 64 128 1 32 64 128 1 32 64 128 1 32 64 128

6× 104 19.32 0.47 0.24 0.17 27.70 0.50 0.24 0.18 34.37 0.55 0.25 0.18 41.93 0.51 0.26 0.18 46.56 0.51 0.25 0.18
12×104 44.38 1.27 0.51 0.27 65.77 1.49 0.54 0.28 82.45 1.49 0.59 0.28 96.41 1.57 0.56 0.29 120.04 1.56 0.57 0.29
24×104 150.69 1.32 0.75 0.51 214.90 1.67 0.89 0.55 278.58 1.79 0.96 0.57 381.97 2.01 1.00 0.58 459.55 2.10 1.02 0.61
5× 105 738.91 5.41 3.67 1.82 1019.90 6.70 4.47 2.07 1541.98 7.84 4.75 2.20 1865.10 8.33 4.93 2.25 2335.05 8.79 4.99 2.25
106 3140.39 25.93 13.41 7.17 4742.91 32.61 15.78 7.86 6115.18 37.35 17.25 8.26 8035.01 39.37 17.92 8.45 9608.98 40.19 18.32 8.52

TABLE VII: Overall execution time (in minutes) of the H-PGPkAA algorithm for Florida dataset

DB size
k = 2 k = 3 k = 5 k = 10 k = 100
Number of processors Number of processors Number of processors Number of processors Number of processors
32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

6× 104 0.93 0.69 0.64 1.24 0.90 0.81 1.48 1.03 0.97 1.65 1.13 1.07 1.74 1.18 1.10
12×104 1.84 1.33 1.25 2.64 1.92 1.73 3.34 2.34 2.12 3.83 2.65 2.37 4.31 2.96 2.64
24×104 6.51 4.60 3.95 9.58 6.77 5.69 12.43 8.66 7.26 14.71 9.97 8.85 17.45 11.18 9.64
5× 105 40.39 28.61 19.63 60.52 42.03 28.21 79.47 53.71 37.86 93.20 64.56 44.87 102.01 72.30 51.24
106 184.45 134.87 86.17 285.73 202.79 135.68 384.04 262.19 170.25 431.29 305.97 201.39 490.02 346.06 233.63

TABLE VIII: Information loss of parallel algorithms for Adult dataset

Algorithm
k = 2 k = 3 k = 5 k = 10 k = 100
Number of processors Number of processors Number of processors Number of processors Number of processors
2 8 32 2 8 32 2 8 32 2 8 32 2 8 32

PGkAA 2.28 2.28 2.28 4.14 4.14 4.14 6.5 6.5 6.5 10.11 10.11 10.11 26.98 26.98 26.98
PGPkAA 2.29 2.42 2.56 4.2 4.48 4.8 6.58 7.18 7.82 10.25 11.44 12.55 27.41 31.0 35.43
H-PGPkAA 2.28 2.31 2.37 4.18 4.24 4.36 6.58 6.62 6.91 10.19 10.41 10.88 27.74 28.14 29.43

TABLE IX: Information loss of the PGPkAA algorithm for Florida dataset

DB size
k = 2 k = 3 k = 5 k = 10 k = 100
Number of processors Number of processors Number of processors Number of processors Number of processors
1 32 64 128 1 32 64 128 1 32 64 128 1 32 64 128 1 32 64 128

6× 104 0.24 1.85 2.52 0.35 0.43 3.0 4.06 0.66 0.73 4.47 6.0 1.17 1.31 6.66 9.18 2.21 4.5 24.84 40.09 11.66
12×104 0.14 1.38 1.89 0.2 0.26 2.26 3.06 0.38 0.45 3.38 4.53 0.67 0.81 5.1 6.77 1.28 3.27 16.39 25.26 7.46
24×104 0.12 0.14 0.16 0.18 0.22 0.26 0.29 0.33 0.38 0.44 0.5 0.58 0.68 0.8 0.93 1.11 2.87 3.76 4.6 5.8
5× 105 0.12 0.14 0.15 0.17 0.22 0.25 0.27 0.3 0.36 0.41 0.45 0.49 0.65 0.74 0.8 0.9 2.55 3.22 3.7 4.6
106 0.12 0.13 0.14 0.16 0.21 0.24 0.27 0.31 0.36 0.41 0.45 0.51 0.63 0.72 0.8 0.91 2.52 2.96 3.35 4.03

TABLE X: Information loss of the H-PGPkAA algorithm for Florida dataset

DB size
k = 2 k = 3 k = 5 k = 10 k = 100
Number of processors Number of processors Number of processors Number of processors Number of processors
32 64 128 32 64 128 32 64 128 32 64 128 32 64 128

6× 104 0.25 0.25 0.25 0.44 0.44 0.45 0.76 0.75 0.77 1.37 1.35 1.37 5.0 5.21 5.12
12×104 0.15 0.15 0.15 0.27 0.27 0.27 0.46 0.45 0.46 0.84 0.84 0.85 3.62 3.58 3.65
24×104 0.13 0.13 0.13 0.23 0.23 0.23 0.39 0.39 0.39 0.7 0.7 0.71 3.07 3.1 3.11
5× 105 0.12 0.12 0.12 0.22 0.22 0.22 0.37 0.37 0.37 0.66 0.66 0.65 2.67 2.68 2.65
106 0.12 0.12 0.12 0.22 0.21 0.22 0.37 0.37 0.37 0.65 0.65 0.65 2.59 2.59 2.62


