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Abstract—Unmanned aerial vehicles (UAVs), or drones, are
transforming industries due to their affordability, ease of use,
and adaptability. This emphasizes the need for reliable commu-
nication links, especially in beyond-line-of-sight scenarios. This
paper investigates the feasibility of predicting future quality of
service (QoS) in UAV payload communication links, with a special
focus on 5G cellular technology. Through field tests conducted
in a suburban environment, we explore challenges and trade-offs
that cellular-connected UAVs face, particularly in the context
of frequency band selection. We employed machine learning
models to forecast uplink (UL) throughput for UAV payload
communication, highlighting the significance of diverse training
data for accurate predictions. The results reveal the effect of
frequency band selection on UAV UL throughput rates at varying
altitudes and the influence of integrating diverse feature sets,
including radio, network, and spatial features, on ML model
performance. These insights provide a foundation for addressing
the complexities in UAV communications and enhancing UAV
operations in modern networks.

Index Terms—UAV, 5G, 6G, Machine Learning (ML), QoS

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have
seen significant growth in use across various civilian appli-
cations, including aerial surveillance, traffic control, photog-
raphy, package delivery, and communication relaying. Current
UAV systems often rely on point-to-point communication in
unlicensed bands, offering limited data rates and range while
being susceptible to interference and security concerns. There-
fore, several technical challenges must be addressed before the
full potential of UAVs can be utilized. A critical requirement
is the establishment of high-capacity, low-latency, and ultra-
reliable two-way wireless communications between UAVs and
ground entities. This is pivotal for ensuring the safety of
both UAV operations and the effective transfer of mission-
specific payload data. UAVs typically depend on two dis-
tinct communication channels: the command and non-payload
communication link for control instructions and the payload
communication link for transmitting data such as video and
sensor information. As the number of UAVs continues to rise,
there is a pressing need for innovative wireless technologies
to enhance UAV-ground communications.

One promising solution is cellular-connected UAVs, where
UAVs are integrated with existing and forthcoming cellular
networks. This approach presents numerous advantages, such
as ubiquitous availability, enhanced performance, simplified
monitoring and management, robust navigation, and cost-

effectiveness. Leveraging the extensive global coverage of cel-
lular networks, this integration facilitates remote UAV control,
live video streaming, and large-scale air traffic monitoring [1].
However, challenges exist in adapting existing cellular network
designs primarily intended for ground users to meet the unique
requirements of UAVs such as air-to-ground channel models
and frequent handovers.

Previous studies have evaluated the performance of uplink
(UL) throughput in LTE-A and 5G networks for UAVs, em-
phasizing the impact of altitude or the three-dimensional (3D)
movement of UAV on data transmission and network-related
issues such as network planning challenges [2] [3] [4]. There-
fore, the dynamic wireless channel conditions and network-
related issues pose significant challenges in maintaining un-
interrupted data transmission. To achieve uninterrupted data
transmission, we propose the use of future QoS prediction.
Specifically, we aim to predict the future UL throughput QoS
parameter in the UAV’s payload communication link using
machine learning (ML) techniques. This proactive approach
enables application adaptation based on the anticipated QoS.

ML-based QoS prediction has been recently considered also
in the context of vehicular communications [5]. Predictive
quality of service (PQoS) has been examined within the
context of the vehicle to everything (V2X) applications in
[6], specifically in teleoperated driving scenarios. However,
PQoS considerations for UAV use cases have not received
any attention in the existing literature. Aerial users and ground
users need to be treated differently, primarily because UAVs
require comprehensive 3D coverage due to their operations in
airspace. Therefore, in this paper, we evaluate the feasibility
of using PQoS for UL throughput prediction in 5G networks
for UAV mobility scenarios. We collect physical layer radio
metrics and UL throughput data by flying a drone at different
altitudes and employing time series ML models to make
predictions. We compare various centralized ML models to
determine the most accurate predictor by validating the models
using a test dataset derived from practical experiments.

This paper is organized as follows: in Section II we pro-
vide an overview of the challenges associated with cellular-
connected UAVs and explore the concept of PQoS for cellular-
connected UAVs. Section III delves into the field trial setup,
data collection, and analysis process. In Section IV, we
discuss the implementation of ML techniques and evaluate the
obtained results. Finally, Section V concludes the paper with
a summary of the main results.



II. BACKGROUND

A. Characteristics and Challenges of UAV Propagation Over
Network

Communication channels between UAV and base station
(BS) are subject to various influencing factors, including flight
altitude, environmental conditions, and obstacles, resulting in
varying propagation characteristics. Line of sight (LoS) links
are more common for smaller UAVs, reducing signal fading
and enabling the use of lower transmit power levels. These
channels exhibit small-scale fading often modeled as Ricean
fading when LOS components coexist with multipath com-
ponents. UAV velocity introduces Doppler shifts, mobility-
induced changes in the channel impulse response, and antenna
effects also play a significant role in the UAV communication
quality [7]. Higher altitudes generally provide better LoS
connectivity with the BS, reducing shadowing and path loss
[8]. However, an optimal UAV operation altitude remains
challenging to determine. UAVs operating at higher altitudes
necessitate BSs to provide 3D communication coverage. UAVs
require specific antenna configurations since existing base
stations, which have downward-tilted antennas, are primarily
designed for terrestrial users [9]. One should also consider the
potential of UAVs to cause harmful interference to the ground
system unless well-designed [10]. Performance evaluations
reveal that UAVs experience frequent handovers due to their
mobility, leading to increased latency and data transmission
challenges. UAVs are estimated to undergo approximately five
times more handovers than ground-level UEs [3]. Network
planning challenges include the provision of coverage for
aerial users and addressing issues like Physical Cell Identity
(PCI) allocation. In the context of 5G, the number of available
PCIs has doubled in comparison to 4G. These distinct PCIs
complicate allocation, especially for UAVs flying at higher
altitudes, where they may have LoS connectivity to multiple
cells sharing the same PCI [2]. Additionally, Channel State
Information (CSI) exchange between UAVs and BSs is cru-
cial for resource allocation. However, communication delays
(feedback delay) can hinder adaptive scheduling, potentially
leading to inefficient resource allocation. An underestimation
of channel quality can result in spectral resource wastage,
while overestimation can lead to transmission failures [4].
UAVs owing to their mobility necessitate more frequent
transmission of CSI information. In high-mobility scenarios,
narrow beams can also restrict the duration for which the
UAV remains within a particular beam, posing challenges for
channel estimation and link adaptation. This increased beam
switching can lead to decreased performance, requiring more
resources and resulting in longer data transmission times. It
is evident from these considerations that the unique UAV
propagation channel characteristics present both opportunities
and challenges for cellular-connected UAV communication.

B. Predictive QoS

In the context of cellular-connected UAV communication,
perception data which includes sensor, video, and image

Fig. 1. PQoS Model.

data, is transmitted to a remote control station via a cellular
network. The configuration of this data transmission relies on
factors such as drone speed, environmental conditions, and
QoS requirements. Achieving the desired QoS is influenced
by various factors, including user equipment (UE) density,
interference, mobility, and handovers. For mission-critical
UAV services such as safety and automated piloting, it is
essential to avoid sudden session interruptions arising from
QoS degradation. Traditional networks employ reactive QoS
management which responds to QoS changes as they occur.
However, this approach presents significant challenges for
automated piloting, where uninterrupted data transmission is
critical. By proactive QoS management, the system predicts
potential changes in QoS levels during established commu-
nication sessions and promptly notifies the UAV application
of anticipated QoS changes (improvements or degradation)
before they occur. In response to these predictions, the UAV
application adjusts its communication strategy, for instance,
opting for a low-bandwidth approach for UL payload trans-
mission when QoS levels are expected to decrease and switch-
ing to a high-bandwidth approach when QoS levels tend to
increase. Alternatively, in video transmission, the bitrate of
the encoder can be adjusted based on the prediction. Fig.
1 illustrates the PQoS model. The accurate prediction of
QoS parameters depends upon the selection of relevant fea-
tures. Specifically, different QoS metrics, such as latency and
throughput, may be influenced by distinct set of features. This
distinction holds true for both uplink and downlink scenarios.
The prediction horizon, which represents the duration during
which a prediction remains valid needs to be chosen carefully.
This horizon can vary depending on the specific use cases of
UAVs. The prediction horizon is inherently tied to factors such
as the mobility speed of the UAV and the nature of the use
case. For instance, in mission-critical applications where split-
second decisions are crucial, a relatively shorter prediction
horizon is essential. This ensures that the predictions made
align with the rapidly changing conditions and meet the strict
requirements of mission-critical tasks.



III. DATA COLLECTION AND ANALYSIS

A. Data Collection

The drone flights for data collection were conducted in the
outskirts of Oulu, Finland. Traficom’s civil aviation regula-
tions were adhered to during the trials to ensure safety and
compliance. The trials were carried out below the maximum
flying limit of 120 meters in a non-prohibited flying area, with
the drone remaining within the operator’s LoS throughout the
flights. Permission for the trials was obtained from a mobile
network operator, referred to as ’Operator A’. The available
networks were primarily 5G Non-Standalone networks. For
data collection MediaTek prototype phones, equipped with
SIM cards from Operator A, were utilized for data collection.
Measurements were systematically collected along a pre-
defined drone route that instructed the drone to make a 90-
degree turn every 300 meters. The MediaTek device was
attached to one of the legs of a DJI M300 drone to replicate
the scenario of a cellular-connected drone, as commercially
available cellular-connected drones are not yet available. Data
was collected at a frequency of 3 seconds, and flights were
conducted at various altitudes with multiple repetitions to
ensure data accuracy. The UL throughput configuration was
set to maximum for all measurements. Two phones, UE1 and
UE2, were employed for data collection. UE2 was used for
drone flights at altitudes of 100 meters and for manual flights
due to battery constraints in UE1. We used UE1 to collect
measurements at altitudes of 50, 70, 80, and 90 meters. UE1
generated a total of 1677 data points, while UE2 collected

581 data points during the data collection process. Each round
of measurements lasted approximately 5 minutes, and data
collection concluded when the drone’s battery was depleted.

B. Data Analysis

In this paper, we focus on 5G-related metrics as illustrated
in Table I, and we selected these metrics based on prior
research in QoS prediction. The data collected during flights
includes physical layer radio metrics, some network features,
and spatial information such as location and speed. Fig. 2
illustrates that UE2 exhibited higher NR RSRP values com-
pared to those of UE1. It could also be observed from Fig. 2
that, UE2 consistently achieved higher UL throughput rates,
ranging from 70 to 100 Mbps throughout its flight. In contrast,
UE1’s UL throughput peaked when the drone was at 50 meters,
with throughput declining as the drone ascended to 70, 80, and
90 meters. Therefore, UE1’s UL throughput exhibited a clear
inverse relationship with increasing altitude.

UE2 outperformed UE1 in several key aspects. UE1 expe-
rienced an increase in the number of handovers as the drone
flew at higher altitudes, UE2 demonstrated notably different
behavior despite sharing identical hardware. Fig. 3 which
corresponds to handover events, i.e., the changes in NR PCI
as the drone moved both vertically and horizontally. Handover
decisions for UE1 are primarily influenced by variations in
the RSRP values received from different BS antennas. UAVs
rely on the side lobes of the BS antennas for communication,
and they often encounter similar RSRP values from different
cells. Even minor fluctuations in RSRP could trigger frequent

Fig. 2. Overview of Measurements (UE1 is shown with blue and UE2 with orange lines).



TABLE I
MEASUREMENTS COLLECTED

Column Name Meaning
timestamp Timestamp of the observation
NR PCI Physical Cell ID of NR network
NR RSRP Reference Signal Received Power in NR
NR RSRQ Reference Signal Received Quality in NR
NR SNR Signal-to-Noise Ratio in NR
Tput UL Uplink Throughput in Mbps
ULBLER Uplink Block Error Rate
NR UL Modulation Uplink Modulation in NR
Altitude Altitude of drone
Latitude Latitude of the drone
Longitude Longitude of the drone
SPEED Speed of the drone

handover events, as the UAV struggles to identify the optimal
cell providing the best RSRP value to meet its connectivity
requirements [3]. However, even when operating at an altitude
of 100 meters, UE2 experienced no handovers. Drones flying
at 100 meters are likely to have LOS connectivity with multi-
ple BSs in the network. However, UE2 remained consistently
connected to the same cell throughout its flight. One could
also see from Figs. 2 and 3 that UE2’s performance surpassed
that of UE1, showcasing superior connectivity stability and
throughput.

C. Performance Discrepancy Analysis Between UE1 and UE2

Table II presents a summary of the BSs and frequency
bands to which the UEs connected during the flight trials. UE2
established connections with both n78 3500 MHz time divi-
sion duplexing (TDD) and n28 700 MHz frequency division
duplexing (FDD) frequency bands, whereas UE1 remained
connected exclusively to the n78 (3500 MHz TDD) band

Fig. 3. 3D plot that shows the handover events.

Fig. 4. Cell coverage.

throughout the flight trials. The identification of these BSs
is based on NR PCI data obtained from CellMapper.

TABLE II
UE1 AND UE2 BASE STATION CONNECTIONS AND FREQUENCY BANDS

Base station NR PCI Frequency band (MHz) UE connected
gNB ID 3571 899 3500 (n78 TDD) UE1, UE2
gNB ID 3571 933 700 (n28 FDD) UE2
gNB ID 1563 125 3500 (n78 TDD) UE1
gNB ID 956 657 3500 (n78 TDD) UE1
gNB ID 943 946 3500 (n78 TDD) UE1

gNB ID 2074 375 3500 (n78 TDD) UE1

We noticed that at altitudes above 80 meters, UE1 occa-
sionally connected to the distant gNB 2074 (NR PCI 375),
which was an unexpected occurrence considering the distance
from the measurement location. This highlights the influence
of unexpected BS interference on UAV handovers. The per-
formance difference between UE1 and UE2 can be attributed
to the frequency bands they were connected. UE2 supported
both n28 and n78 bands and maintained stable performance
without handovers due to the n28 band’s wider coverage and
better interference tolerance. Fig. 4. shows the coverage area
of the main cells to which the UEs were connected during
measurements. On the other hand, UE1’s connectivity was
limited to the n78 band and hence experienced more handovers
at higher altitudes.

The n78 band, operating at 3500 MHz is categorized as C-
Band 5G spectrum, bridging the gap between low band and
high-band frequencies. It offers faster data speeds compared
to low band frequencies and wider coverage compared to high
band frequencies, making it suitable for various scenarios like
fixed user connections and slow moving indoor users. While
it strikes a favorable balance between speed and coverage for
ground based 5G applications, it may not be the optimal choice
for aerial applications like UAVs.



The 700 Mhz n28 band frequency band is particularly well-
suited for mobile broadband users in rural areas who may
be moving at medium to high speeds. It’s ideal for scenarios
where maintaining communication with mobile subscribers in
conditions of high Doppler carrier frequency shift is crucial.
The lower frequency of the 700 MHz band offers advantages
for communicating with subscribers moving at higher speeds.
As evidenced by Fig. 4, n28 provided excellent coverage and
stable performance during UAV flight operations at higher
altitudes. Therefore, it appears to be a promising frequency
band for UAV operations, providing consistent performance
even at higher altitudes. However, further research is needed
to determine the optimal n28 frequency for UAV applications
across different traffic conditions and locations.

IV. ML BASED PREDICTION METHODS

We employ different ML techniques to enhance QoS at
the application layer by predicting the QoS parameter UL
throughput at the next time step. UL throughput signifies the
data transmission rate from UE to the network. This parameter
plays a pivotal role in shaping the performance of applications
on the user’s device. Accurate QoS prediction is of paramount
importance to ensure seamless and reliable data transmission,
as well as efficient resource allocation.

The collected dataset is used to train ML models, which
include ensemble methods like random forest and XGBoost, as
well as recurrent neural networks (RNNs) such as long short-
term memory (LSTM) and gated recurrent unit (GRU). These
model choices are based on insights from related research
in V2X applications like teleoperated driving, autonomous
system and video transmission. To assess the model’s per-
formance, we employed several key metrics, including mean
absolute error (MAE), mean squared error (MSE), root mean
squared error (RMSE), and mean absolute percentage error
(MAPE). Lower values for MAE, MSE, and RMSE signify
higher model accuracy, while achieving a lower MAPE, typ-
ically below 10%, is considered good. The dataset required
minimal cleaning, involving outlier removal and handling null
values. Data was transformed into sequences of length 5 for
the RNN model, with 90% used for training and the last 10%
for testing. The MinMaxScaler function was utilized for data
normalization, and Python, TensorFlow, and Keras were used
for model implementation.

A. Feature Engineering

The features used for training the ML model are grouped
into four distinct sets. Table III illustrates each feature set con-
taining specific subsets of columns from the original dataset
which captures different aspects of the data.

• Feature set A includes all available features in the
dataset, providing the most comprehensive set of features
for analysis and model training.

• Feature set B comprises essential radio-related features,
along with location and speed information. These features
are important for evaluating radio signals while consid-
ering spatial and speed characteristics.

TABLE III
FEATURE GROUPS

Features Feature set A Feature set B Feature set C Feature set D
NR RSRP x x x x
NR RSRQ x x x x
NR SNR x x x x
Tput UL x x x x
ULBLER x

UL Modulation x
NR PCI x
Altitude x x x
Latitude x x

Longitude x x
SPEED x x x

• Feature set C consists of features selected based on
strong correlations with the target variable (UL through-
put at the next time step) based on Pearson’s correlation
coefficient.

• Feature set D focuses only on radio-related metrics and
throughput, while excluding spatial and speed character-
istics. This aids in assessing whether spatial factors have
a positive or negative impact on the model’s predictions.

B. Model Training and Evaluation Using UE1 Data

Test data comprises of the last 140 data points from the
dataset. The drone maintained an altitude of approximately
90 meters above sea level for most of the data points. These
data points exhibit both rapid increase (e.g., 33, 46 Mbps)
and decrease (e.g., 16, 21 Mbps) in UL throughput values,
indicating significant fluctuations over short periods as well as
instances of minor fluctuations. Among the models considered,
we found that RF from the ensemble category and GRU from
the RNN category demonstrated slightly better performance.
Fig. 5 and 6 provide an informative overview of RF and GRU
model performance on the test data.

The analysis of the RF model’s performance on the test data,
illustrated in Fig. 5, demonstrates that predicted throughput
values generally closely align with actual values. Despite
deviations during rapid changes, the model captures the overall
trend effectively. The RF model exhibits its best performance
when trained with all feature columns (Feature set A), with
the lowest MAE (1.888 Mbps) as indicated in Table IV. The
results in Table IV highlight that the RF regressor consistently

Fig. 5. Best RF model predictions (Feature set A) on UE1 data.



Fig. 6. Best GRU model predictions (Feature set C) on UE1 data.

TABLE IV
REGRESSION MODEL PERFORMANCE METRICS

Model Feature set MAE MSE RMSE MAPE
RF A 1.888 7.601 2.757 0.060
RF B 2.235 8.919 2.986 0.071
RF C 2.172 9.216 3.036 0.069
RF D 2.310 9.976 3.158 0.073

XGB A 2.389 9.936 3.152 0.078
XGB B 2.397 9.936 3.152 0.079
XGB C 2.427 10.571 3.251 0.079
XGB D 2.381 10.566 3.250 0.076
GRU A 2.906 13.326 3.650 0.089
GRU B 3.165 16.642 4.079 0.099
GRU C 2.148 10.166 3.188 0.065
GRU D 2.232 11.220 3.349 0.068

LSTM A 3.002 14.593 3.820 0.092
LSTM B 3.142 17.310 4.161 0.100
LSTM C 2.588 11.462 3.386 0.080
LSTM D 2.171 11.395 3.376 0.068

performs well across all feature sets, demonstrating low MAE,
MSE, RMSE, and MAPE values, indicating its robustness and
versatility for this dataset. The evaluation of different feature
sets provides insights into feature relevance, for instance, as
illustrated in Table IV, Feature set D, which includes radio
metrics and UL throughput, performs well across models,
emphasizing the importance of these radio-related metrics for
accurate predictions.

While the performance of LSTM and GRU models is
competitive with RF and XGBoost regressors, they tend to
exhibit slightly higher MAE, MSE, RMSE, and MAPE values,
particularly in certain feature sets. This suggests that, for this
specific task, simpler models like the RF regressor can achieve
comparable or better performance.

In our study, we found that training ML models on a diverse
set of flying scenarios and altitudes improved predictive per-
formance. However, in rapidly changing environments, shorter
prediction horizons may be more effective. The quality of
training data significantly influences accuracy, emphasizing the
need for a wider variety of scenarios.

V. CONCLUSIONS

This paper introduced the concept of PQoS in cellular-
connected UAV and demonstrated how ML techniques can

predict UL throughput, emphasizing the importance of diverse
training data for accuracy. Analysis of frequency bands re-
vealed that lower-frequency bands, like the 700 MHz band,
offer superior signal propagation characteristics compared to
higher-frequency bands, highlighting the importance of fre-
quency selection in optimizing UAV communication. Based
on our measurements, 700 MHz proved to be a promising
choice for UAV operations than 3500 MHz, delivering robust
performance and improved throughput at higher altitudes
without performance trade-offs. We found that the RF model,
trained with a comprehensive feature set that included radio,
network, and spatial information, exhibited better performance
compared to other ML models. This research provides valuable
insights for designing reliable UAV communication systems
and emphasizes data-driven approaches to tackle UAV-specific
challenges, offering a foundation for further advancements in
UAV communication integration into modern networks.
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