
P
os
te
d
on

26
J
an

20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
70
63
07
60
.0
7
07
79
03
/v

1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Unsupervised-based Distributed Machine Learning for Efficient

Data Clustering and Prediction

Vishnu Baligodugula1, Fathi Amsaad1, Vincent Schmidt1, and Noor Zaman Jhanjhi1

1Affiliation not available

January 26, 2024

Abstract

Unsupervised ML-based approaches have emerged for driving critical decisions about training data samples to help solve

challenges in many life critical applications. This paper proposes parallel and distributed computing unsupervised ML techniques

to improve the execution time of different ML algorithms. Various unsupervised ML models are developed, implemented, and

tested to demonstrate the efficiency, in terms of execution time and accuracy, of the serial methods as compared to the parallelized

ones. We developed sequential, parallel, and distributed cloud computing unsupervised ML models based and determined the

most efficient model through comparative analysis. As a case study, sequential, parallel, and distributed approaches of Simple

K-Means, Minibatch K-means, and Fuzzy C-Means are investigated to study the developed models’ efficiency using country

datasets for multiple organizations to train and test the developed model. Parallel and distributed computing models are

developed utilizing could computing architect, i.e., cloud Amazon SageMaker, to study their efficiency in the execution time

and model accuracy. The results show that the proposed parallel and distributed Fuzzy C-Means outperforms the other two

clustering methods in terms of execution time with 0.932ms and 0.623ms with a minimal impact on the accuracy of the developed

models.

1



1

Unsupervised-based Distributed Machine Learning
for Efficient Data Clustering and Prediction

∗Vishnu Baligodugula, Student Members, IEEE;
∗Fathi Amsaad, †Vincent Schmidt, and ‡Noor Zaman Jhanjhi, Senior Members, IEEE

Abstract—Unsupervised ML-based approaches have emerged
for driving critical decisions about training data samples to
help solve challenges in many life critical applications. This
paper proposes parallel and distributed computing unsupervised
ML techniques to improve the execution time of different ML
algorithms. Various unsupervised ML models are developed,
implemented, and tested to demonstrate the efficiency, in terms of
execution time and accuracy, of the serial methods as compared
to the parallelized ones. We developed sequential, parallel, and
distributed cloud computing unsupervised ML models based
and determined the most efficient model through comparative
analysis. As a case study, sequential, parallel, and distributed ap-
proaches of Simple K-Means, Minibatch K-means, and Fuzzy C-
Means are investigated to study the developed models’ efficiency
using country datasets for multiple organizations to train and test
the developed model. Parallel and distributed computing models
are developed utilizing could computing architect, i.e., cloud
Amazon SageMaker, to study their efficiency in the execution
time and model accuracy. The results show that the proposed
parallel and distributed Fuzzy C-Means outperforms the other
two clustering methods in terms of execution time with 0.932ms
and 0.623ms with a minimal impact on the accuracy of the
developed models.

Index Terms—Clustering, K-Means, Minibatch K-Means,
Fuzzy C-Means, Parallel MPI, Parallel Cloud Computing.

I. INTRODUCTION

In machine learning, one of the primary goals is to extract
valuable insights or patterns from large datasets. One

widely adopted technique for grouping similar data is the data
clustering algorithms. These algorithms evaluate the similarity
among distinct objects within a dataset and subsequently
group them based on these similarities. With the growing
volume of data being amassed using scientific data collection
techniques, it has become increasingly imperative to ensure
that machine learning algorithms are effective, efficient, and

The authors would like to express their sincere gratitude for the technical
and financial support provided by the Air Force Research Lab (AFRL) under
the Assured and Trusted Digital Microelectronics Ecosystem (ADMETE)
grant, BAA-FA8650-18-S-1201. Additionally, partial support for this work
was received from the National Security Agency (NSA) funding to Wright
State University in Dayton, Ohio, USA. This project adhered to CAGE
Number: 4B991 and DUNS Number: 047814256.

Vishnu Baligodugula and Fathi Amsaad, Corresponding Authors, are
affiliated with the Department of Computer Science and Engineering, Wright
State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA. Emails:
(ghimire.18, fathi.amsaad)@wright.edu

Vincent Schmidt is a Senior Research Computer Engineer at the United
States Wright Patterson Air Force Research Lab (US WP-AFRL) Email:
(vincent.schmidt us.af.mil

Noor Zaman Jhanjhi is associated with the School of Computer Science
Faculty of Innovation and Technology, Taylor’s University, 47500 Subang
Jaya, Selangor, Malaysia. Email: noorzaman.jhanjhi@taylors.edu.my

scalable. One way to improve machine learning algorithms’
performance is to parallelize them, leveraging modern com-
puting infrastructures. However, the efficacy of parallelization
is heavily contingent upon the data organization and choice of
parallelization approach.

Simple K-Means algorithm is one of the first and most
commonly utilized techniques. There are a few issues related
to the K-Means algorithm. They are as follows: one is the
initial centers initialized randomly, which is a significant issue.
The other issue is that there will need to be some idea of
the clusters in the dataset. Minibatch K-Means is a clustering
algorithm that splits a dataset into a fixed number of groups
or clusters.

Instead of processing the entire dataset, Minibatch K-Means
works on smaller, randomly chosen subsets of data known
as mini-batches. This approach makes it more efficient and
capable of handling larger datasets that may not fit into
memory. The algorithm assigns each data point to the nearest
centroid and updates centroid positions based on the mean of
the assigned data points. While Minibatch K-Means is faster
and more scalable, it may only sometimes produce optimal
results compared to the standard K-Means algorithm, mainly
when the mini-batch size is too small.

Fuzzy C-Means (FCM) is an effective clustering algorithm
that groups data points into distinct clusters based on their sim-
ilarities. This unique algorithm enables overlapping clusters by
ascribing a fuzzy membership value to each point, signifying
its membership degree to each cluster. FCM continually calcu-
lates and updates the cluster centers and membership values
until a predefined stopping point is reached. Many scholars
have concentrated on parallelizing these techniques based on
these issues.

Nevertheless, all these algorithms have a few drawbacks,
One such drawback is the utilization of parallel systems
with constrained programming models that automatically par-
allelize data line by line. This approach assumes the need
to store all data in memory line by line simultaneously,
which becomes highly impractical when dealing with exten-
sive datasets containing millions of records. Consequently,
a trade-off between speed and efficiency is often observed,
where prioritizing one aspect may come at the expense of the
other. To achieve optimal performance, it is essential to strike
a balance between efficiency and accuracy.

This paper aim to investigate multiple Parallel and dis-
tributing computing for efficient unsupervised clustering. We
developed different ML models for countries with funding for
necessities and assistance during disasters and environmental



2

Fig. 1. Basic Model of Machine Learning

harm. For that, we divided the nations into categories based
on the economic and medical factors that will contribute to
their overall development. Organizations can determine which
country needs support with the aid of analysis.

The K-Means, minibatch K-Means, Fuzzy C-Means serial
approach, open MPI parallel technique, and AWS distribution
strategy were all used in the investigation. We tested the
speed and accuracy of the algorithms using the three different
ways to make the comparison, and we then presented the
findings. We used Python to implement parallelized MPI-based
algorithm on AWS for computing distribution from scratch.
Similarly, Minibatch K-Means, and Fuzzy C-Means utilizing
the AWS cloud platform. The results shows that parallel
and distributed computing MPI approaches can enhance the

performance and quality of the solution of the developed ML-
based models.

The reset of this paper is organized as follows. Section 2
provides background information on machine learning algo-
rithms, Message Passing Interface and Amazon SageMaker.
Section 3 related work. Section 4 focuses on parallelization
strategies, describing the methods and requirements necessary
for parallelization. Section 5 details the research contributions
to K-Means, MiniBatch K-Means, and Fuzzy C-Means, as well
as the understanding of parallelization and cloud algorithms,
and the experimental setup.

Section 6 covers the evaluation matrix. Section 7 presents
the results, discussions, and conclusions regarding the perfor-
mance of cloud and parallel clustering distribution techniques



3

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Fig. 2. Clusters formation

versus sequential clustering. Section 8 explores potential ap-
plications. Finally, the References are included.

II. BACKGROUND

This section will cover six major topics: Machine Learn-
ing models, K-Means, Minibatch K-means, Fuzzy C-Means,
Parallel Message passing interface and AWS Sage maker

A. Machine Learning

Machine learning is a subclass of artificial intelligence
which allows computer systems to improve performance by
learning from experiences without human instruction. It entails
using large datasets to train algorithms capable of detect-
ing patterns, making predictions, and enhancing decision-
making abilities. Machine learning is classified into three main
categories: supervised learning, unsupervised learning, and
reinforcement learning, each having its unique techniques and
areas of application.

Supervised learning deals with labeled data wherein the
algorithm learns to recognize patterns, relationships, and cor-
relations between inputs and outputs to produce accurate
predictions or classifications. Unsupervised learning, on the

other hand, works with unlabeled data, which means that the
algorithm must identify and extract insights from the data by
itself without any predefined labels. Reinforcement learning,
often used in robotics and game development, relies on trial-
and-error to learn the best approach to solve a particular task.

As machine learning continues to evolve, it has found
applications across several industries, including healthcare,
finance, retail, and transportation. It has enabled organizations
to analyze diverse data sources, make informed decisions, and
increase operational efficiencies. With the growing availability
of data and processing power, the potential for machine
learning is enormous, and its impact on various industries is
expected to be transformative and here i am presenting basic
model of ML Figure 1.

B. K-Means Algorithm

These grouping issues in machine learning or information
science are resolved using unsupervised learning K-Means
Clustering. In this chapter, we will study the K-means clus-
tering method, how something operates, and how to apply it
in Python.



4

Unsupervised training method K-Means Cluster divides a
piece of unlabeled information into various clusters. Thus, K
describes how several clusters that were not previously present
should be generated due to the procedure; for instance, if K=2,
the outcome will primarily be two types. If K=3, the outcome
will be three clusters, and so on.

This iterative method separates the unlabeled information
into k distinct clusters, each containing one dataset and sharing
a set of features. It allows us both to categorize all data into
different groups. It offers a workable technique for quickly
and effectively determining the groups within the unlabeled
dataset without having to do any training.

Every cluster has a corresponding centroid in this centroid-
based approach. The principal objective of such an approach is
to reduce the distance between the data points and the groups
they belong.

This method starts with an intake of an unlabeled dataset,
separates this into k clusters, and continues the procedure until
no better clusters are found. In this method, the k value must
be known in advance.Its two main functions of the k-means
suggested method are:

• Determines the optimal quantity of K points or centroids
via an iterative algorithm.

• Each piece of information is paired with the closest
k-center.Those information fragments near a certain k-
center combine to form a cluster.

Each cluster is unique and has samples that only share a
small amount in a joint.

The following stages illustrate how the K-Means method
functions :

• To figure out how many groups, choose K.
• Pick K locations or cluster centers randomly. (It could

not be the supplied data.)
• Allocate every piece of data to its nearest centroid, which

will create precisely the number of clusters that have been
predetermined.

• Determine the variation, then relocate every cluster’s
centroid.

• Reassign every piece of data to an updated centroid of
every cluster by repeating the third section.

• Move to Phase 4 if there is a reassign; otherwise, go over
to Finished.

• A finished design.
Now let us analyze the graphical plots to comprehend the

steps mentioned earlier:
Below points is the explanation of graphs each point repre-

senting each graph formation Figure 2.
• Consider that there are two independent variables, P1 and

P2.
• To identify the data set and divide it into various clusters,

let us use a value of k for clusters or K=2. This implies
that we will divide those data sets into two separate
groups.To create a cluster, k points or the centroid must be
chosen randomly. These coordinates may be taken from
the dataset or in different locations. Since these two do
not appear in the dataset, It was choosing them as the k
points in this instance.

• Currently, we would identify the nearest K-point and
centroid for every data point on the scatter plot. To find
the distance separating two points, we will estimate it
using the math we studied. To create a midpoint between
both, the two centroids shall do such.

• It is evident from the previous picture that locations along
the line to the left were near a K1 center, which is red,
and white spots along the lines to the right are near a red
centroid. For better comprehension, let us color both red
and green.We will repeat the procedure by picking a new
centroid to locate the nearest cluster. Let us determine
those centroids centers of gravity ordered to select their
fresh centroids.

• We would then reallocate every piece of data here to a
new centroid. You can conduct the same procedure for
locating a mean line in this, and your average should look
such as the illustration of 5 one in above figure.There is
one red point on the left end of the line, plus two green
points on the lines. Thus, fresh centroids will be assigned
to such three locations.

• Since reassign has occurred, we once more go to step 4,
locating fresh centroids called K-points.Determining the
exact gravitational centers of a new centroid would allow
us to continue the operation.

• We will construct the average lines once more and
reassign all pieces of data because we have the updated
cluster centers.

• This is established due to the need for more consistent
data points along both sides of the boundary.

• Now that our model is complete, we may exclude the two
remaining groups and the presumptive centroids.

1) Elbow Method: The Elbow Mothod is widely used for
determining the ideal number of clusters. A WCSS-valued idea
is applied in this technique. The term ”total variations inside a
cluster” is abbreviated as ”WCSS” and means Within Cluster
Sum of Squares. This formula listed below is used to determine
the number for WCSS (for 2 clusters):

The WCSS equation is:

WCSS =

k∑
j=1

∑
Pi∈Cj

(distance(Pi, Cj))
2 (1)

From the formula,
In this equation, k represents the number of clusters, Cj

represents the j-th cluster, and Pi represents the i−th point in
the dataset.

The distance function in the equation calculates the distance
between a data point Pi and the centroid of its assigned cluster
Cj. The WCSS metric is important because it measures how
well the data points are clustered together. The lower the
WCSS value, the better the clustering solution.

The goal of the K-means clustering algorithm is to minimize
the WCSS by iteratively adjusting the cluster centroids until
convergence is achieved. The final result of the K-means
algorithm is a set of k cluster centroids that best represent
the data in the dataset.

Its elbows technique is so named because the diagram
depicts a steep bend that resembles an elbow. A graph for



5

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of Clusters

WCSS
Optional Number of Clusters

Fig. 3. Elbow Method Graph Representation

the elbows approach resembles what illustration below Figure
3

C. Minibatch K-Means

Minibatch K-means is a widely used clustering algorithm
that divides a given dataset into K clusters by minimizing
the distances between the data points and their associated
cluster centroid. In contrast to the standard K-means algorithm,
Minibatch K-means processes the data’s small, randomly se-
lected subsets, or Minibatches, to expedite convergence while
maintaining comparable clustering accuracy. It is considered
efficient and scalable for large datasets that exceed the avail-
able memory capacity. The algorithm assigns each data point
to its closest cluster center and updates the centroids iteratively
until convergence is achieved. The number of Minibatches
and the batch size are hyperparameters that can be optimized
to enhance the clustering performance and accuracy of the
resulting partitions.

D. Fuzzy C-Means

Fuzzy C-means is a prominent unsupervised clustering
approach used to group data points into distinct clusters based
on their similarity. Unlike complex clustering methods such as
K-means, Fuzzy C-means assigns each data point a degree of
membership, represented as a fuzzy value, for every cluster.
This allows a data point to be part of multiple clusters at the
same time with different membership degrees. The algorithm
adapts the cluster centers and their fuzzy memberships itera-
tively based on the data point similarity and the level of overlap
among the clusters. The hyperparameter ’fuzziness’ regulates
the degree of blurriness of the memberships, with higher
values leading to more fuzziness and an increased number
of clusters. Fuzzy C-means can be utilized to address various
clustering problems and provide soft classification outcomes
for the data points.

E. Parallel Message Passing Interface

A standard way to communicate throughout many comput-
ers that run concurrent programs all over distributed storage
is indeed the message-passing interface (MPI).

The term ”node” refers to a group of processors, or even
a group of core processors on a single computer, in parallel
Computing. Generally, every node inside a parallel configu-
ration focuses on a distinct aspect of an immense processing
challenge. It thus becomes difficult to coordinate the activities
of every simultaneous network, transfer data across nodes, or
exert control over the entire parallel cluster. The message-
forwarding interface defines a standardized set of commands
for such activities. When a message is sent to an entity, parallel
process, subroutine, function, and thread, it is usually called
”passing a message.” That message is again utilized to begin
a different technique.

Although no formal reference implementation, such as the
International Organization for Standardization or the IEEE
Institute of Electrical and Electronics Engineers, had supported
MPI as a benchmark, it is widely regarded as an industry
norm. It serves as the base for most network systems used by
parallel computing programming. Researchers also produced
several MPI versions.

Fortran, C, C++, Python and Java procedures or libraries
have usable syntax defined by MPI.

1) Features of the Message Passing Interface that are
advantageous:

• Standardization: Previous message queue packages have
been supplanted by MPI, which is now a widely recog-
nized mainstream technology.

• A large group formulated it: Despite MPI is not a
nationalized, a committee of manufacturers, integrators,
and users came up with it.

2) Flexibility: Since MPI has already been developed for
numerous distributed memory designs, users can move their
software to other systems which the MPI standard supports
without changing the source code.

• Efficiency: Usually, functionality is tailored to MPI’s
device, and vendor implementations could be tuned to
take advantage of built-in hardware characteristics.

• Feature set: Maximum performance on parallel process-
ing systems and groups is a crucial feature of MPI.
Furthermore, over 100 specified routines make up the
fundamental MPI-1 architecture.

3) Terminology used by MPI: Key terms and instructions:
A few fundamental MPI ideas or instructions are listed below
Figure 4:

• Comm: This MPI communication classes link several
stages. An enclosed consultation processes an individ-
ual identifier from a communication instruction, which
arranges it into an orderly topology. For instance, MPI
COMM WORLD is a signal for global communication.

• Color: This means that a process is assigned a color, and
all activities with that coloring are housed within the same
communication. MPE Make color array is a color-related
instruction that modifies the offering of the product.

• Key: A key determines the ranking or ordering of a
procedure in communication. The order is established by
the application’s position inside the communication if two
methods are assigned the same key.



6

CPU 0
CPU 1

CPU 0

CPU 0
CPU 1

3

1

2

4

5

0

CPU 0

Node 1

Node 2

Node 3

Node 4

CLUSTERMPI_COMM_WORLD

Process
ID (rank) :

Fig. 4. The rank assigned to every CPU is demonstrated using an MPI COMM process with numerous endpoints distributed across four cluster.

• New comm: Fresh communication can be created using
this instruction.

• Categories of data collected: A description of the kind
of data exchanged among tasks is required for MPI
functions. These variables can be predefined with the help
of MPI INT, MPI CHAR, or MPI DOUBLE.

• Refer: It communicates among two particular operations.
Two popular delaying techniques for juncture messaging
were MPI Send and MPI Recv. Block is the method by
which the transmitting and receiving systems hold off on
transmitting and finishing a communication until a whole
signal has been appropriately transmitted and received.

• Cooperative foundations: All activities in a particular
process must communicate to perform these group tasks.
However, one method is MPI Bcast, which distributes
information from a single node to each process in a
process.

• One-sided: Usually, when this phrase refers to external
communications like MPI Put, MPI Get, or MPI Accu-
mulate. Publishing to storage, receiving to recollection, or
minimizing operations on a single recollection between
activities are specially mentioned.

4) MPI’s Past and Iterations: Around 1991, a tiny research
group from Austria started talking about either a message-
carrying interface. A Center for Studies in Parallel Computing
supported a workshop about message-passing protocols inside
a distributed memory system that occurred in Williamsburg,
Virginia, per year afterward. Therefore To develop the standard
method, a work was formed.

The prototype of MPI-1 was developed in Nov 1992, and
the specification was published in 1993 just at Supercomputing
’93 conference. Around 1994, MPI version 1.0 was published

after receiving more comments and modifications. Since then,
MPI has been open to everyone working in the powerful
computational field, with more than 40 companies currently
involved.

About 115 capabilities are offered under the more dated
MPI 1.3 specification, sometimes known as MPI-1, and more
than 500 features and a high degree of older systems using
MPI-1, a subsequent MPI 2.2 specification, or MPI-2, are
available. Unfortunately, a complete MPI-2 version is not
offered by all MPI implementations. Along with variable
system integration and remote storage functions,MPI-2 in-
troduced novel concurrent I/O. The Nov. introduction of the
MPI-3 specification results in increased speed, multicore or
cluster capabilities, and improved scalability, with availability
and high interoperability. MPI 4.0 was published by The
MPI Forum around 2021. It featured innovative features like
Permanent Communes, segmented networking, and a new
product layout. Now, MPI 5.0 is being created.

F. AWS Sage Maker

1) Overview: Most data analysts use the hosted platform
to develop, train, and publish machine learning algorithms,
and they were regrettably still unable to change resources as
required. To go live quicker and with less expense, AWS
Sage Maker makes it simpler for programmers to design
and retrain models. This essay will review the capabilities,
use applications, and advantages of AWS Sage Maker and
Computer Vision using AWS Sage Maker.

2) AWS: A cloud-based system that offers services that are
ordered over the web is known as Amazon Web Services.
Every public cloud type may be developed, monitored, and



7

Monitor/Collect
data/Evaluate

Deploy to
Production

Amazon Sage
MakerModel

Fetch

Preprocessing

Train Model

Evaluate
Model

Fig. 5. Model of AWS sage maker.

deployed using AWS services, which is where AWS Sage
Maker is useful.

3) About AWS Sage Maker: Amazon manages the machine
learning services offered as Sage Maker. Sage Maker enables
data researchers or programmers to create machine learning
models quickly, train those, and afterward instantly release
them into a virtual machine that is prepared for use in
operation. It usually includes methods for machine learning de-
signed for application in a distributed scenario using extensive
data sets. Sage Maker provides flexible, dispersed education
options that fit existing operations Figure 5.

4) Attributes of Sage Maker: Sage Maker now features
new features that Amazon has developed since its debut
in 2017. Accessibility to functionality is made possible via
AWS Contributory factor Studios, an Integrated Development
Environment that combines all abilities. One of two methods
can be utilized to build a Jupiter notebook:

• Sage Maker Studio’s internet version of the IDE.
• A machine learning server in Amazon Sage Maker that

Amazon EC2 hosts.
5) Utilizing AWS Sage Maker and machine learning:

Let us examine the development, testing, fine-tuning, then
deployment of a model for machine learning utilizing AWS
Sage Maker.

6) Builds:
• There are approximately 15 popular learning algorithm

skills and making included.
• It enables us to select the configuration settings needed

for the notebook instances.
• To start coding, a user may use a notebook example (for

building model training tasks).
• Choose and enhance the necessary methods, such as: K-

Means,Linear Regression and Logic-based Regression.
• AWS Sage Maker’s Jupiter notebook API allows pro-

grammers to alter Supervised Learning servers.

7) Tune and Test:
• All required modules should be made or imported.
• During Amazon model development, establish and con-

trol just a few configuration settings.
• The model is taught and tuned using Sage Maker.
• Sage Maker achieves a set of parameter tuning by com-

bining some algorithm parameters.
• Sage Maker uses Amazon S3 for keeping records as it is

a secure protocol.
• Sage Maker uses extensible ECR to control Container

technology.
• Docker setup, management, and storage are made more

accessible with ECR.
• The developed skills source is preserved in ECR, whereas

the supervised learning is separated and stored in Amazon
S3.

• Next, Sage Maker generates, learns, and stores a given
input cluster in Amazon S3.

8) Implement:
• Upon adjusting, objects could be released to Sage Maker

destinations.
• Just in the end, a forecast is made in real-time.
• To determine whether the strategy has achieved your

company goals, one must evaluate it.
9) Uses of Sage Maker: Many different businesses use

AWS Sage Maker. Machine learning groups use Sage Maker
for the below task:

• Accessing and exchanging codes.
• Accelerate the creation of production-ready AI compo-

nents.
• Enhance data interpretations and build more exact

database schemas iteratively.
• Streamline data both in and out.
• Much information is to be processed.
• Codes for modeling exchange.



8

10) Advantages:
• We are making deep learning easier to use.
• More people will be able to innovate using machine

learning thanks to integrated tools like computer scientists
and also no potential input for analysts.

• Huge data preparation.
• Collect, categorize, and analyze vast quantities of or-

ganized (tabular) and unorganized (photos, videos, and
audio) information via computer vision.

• Accelerate the advancement of computer vision.
• Without improved facilities, learning can be completed in

just a few moments instead of days.
• Using specially designed tools, employees to comply

might rise as much as ten times.
• Enhance the machine training cycle to be more efficient.
• Streamline or unify MLOps practices throughout a com-

pany to design, train, publish, and maintain algorithms at
volume.

11) Modern Developments: Since the initial release of
reinvent 2021, Amazon has added a feature for its Sage
Maker Python SDK that offers abstracts to speed up models’
deployments, plus Model Registry, which makes it easier to
connect virtualized inferences destinations and MLOps pro-
cesses. One can utilize Sage Maker Cloud Hosting Deduction
with high-traffic applications now that Amazon has increased
the provisions requests per endpoints limitation from 50 to
200.

12) Conclusion: AWS charges every sage Maker user for
Computing, memory, or information computer resources used
to create, test, deploy, and log machine learning algorithms or
predictions. The expenditures of S3 were related to maintain-
ing train and prediction data sets.The sage Maker application’s
design is flexible and responsive, enabling the whole lifespan
of machine-learning applications through modeling creation to
model implementation. This implies that the sage Maker can
be used independently for the proposed model, retraining, or
distribution.

III. RELATED WORK

The parallel K-Means technique, according to Mohanavalli,
Jaisakthi and Aravindan, Both a distributed memory system
utilizing MPI programming and a memory version utilizing
OpenMP programming has a parallel K-Means model de-
veloped based. With MPI programming, a hybrid OpenMP
implementation was also tested. To calculate Amdahl’s effect
to evaluate the speedups achieved and the efficiency of the
parallel algorithms were examined. In addition to being 50
percentage faster than MPI, the hybrid technique performed
better under a balanced load [1]. They have demonstrated
that this approach is added to increase the effectiveness of
parallel K-Means. Both the Enslaver/Slave concept and the
parallel processing method are used. The tests revealed that
this technique is more effective and applicable to Yufang
Zhang’s situation[2]. Showed this is suggested to use an
initiation technique for K-Means parallel processing, establish
the first cluster centers, that not only speeds up performance
but also produces consistent results conducted by Swamy,
Raghuwanshi and Gholghate[3].

Boukhdhir, Lachiheb and Gouider’s research focuses on
increasing K-Means’ capacity to deal with large datasets
by speeding up its execution, suggesting a map Reduce-
based approach. In addition we will suggest two additional
algorithms.The first eliminates unnecessary, and the other
dynamically chooses the starting cluster center to stabilize
the outcome.The suggested technique is demonstrated to be
significantly quicker than three different known algorithms
from the literature when implemented just on the Hadoop
framework[4]. Applied Parallel MapReduce-based K-Means
clustering approach because it is a straightforward yet effective
method for parallel programming. These results of experiments
indicate that the suggested algorithm can process massive
datasets on affordable equipment while scaling up and down
effectively research evaluated by Weizhong, Huifang and Qing
[5].

Work targeted is clicked Plus, OpenMP and CUDA just on
CPU and GPU, respectively, are used to improve its modified
version for the K-Means cluster. Various data, including photos
of varying data quantities, are shown, including the findings,
with such a focus on rather big data. Covered are various com-
binations of characteristics and clusters[6]. So, to speed up K-
Means, the study presents two novel methods for transmitting
data. Expanded Vector is the initial method (KMMR-EV). K-
Means over MapReduce utilizing Boundaries File is indeed the
name of the second technique (KMMR-BF). Compared to the
simple MapReduce implementation of K-Means, both methods
achieve speed up had undergone considerable experimental
investigation using actual and artificial data, coupled with an
excess assessment to demonstrate the efficacy between both
methods[7].

One goal of the researcher would be to create a K-
Means method version that can run on a standard PC using
NVIDIA graphics cards or tackle more extensive data sets
using CUDA[8]. It concentrates upon cluster method perfor-
mance problems, and a more sophisticated initial centroids
core approach is used. The topic of a single CPU computer’s
operational limit while dealing with large data sets also is
investigated, and a parallel K-Means technique is investigated.
The analysis shows that such advancements can significantly
increase performance, allowing for the group of many data sets
less precisely and fast analysis shown by Tian, Zhu, Zhang,
and Liu[9].

Using GPU’s cluster, we demonstrate the conception and
execution of an effective parallel K-Means algorithm. They
dynamically use load balancing to evenly spread demand
across the many GPUs inside the cluster to improve the over-
all cross-performance of the parallel K-Means. Additionally,
they utilize software distributed shared memory to facilitate
inter-node cooperation and communication. By keeping load
balance on GPU clusters, the evaluation’s findings demonstrate
the parallelism K-Means’ enhanced results.[10].

The latest update of K-Means separates overall issues into
minor issues handled separately with one or more GPUs’
Broadcast Multiprocessors. They had developed the Graphics
card K-Means (CUDA) authors[11]. It creates a buffer among
collected data that did not alter their clusters over the following
group, which might dramatically lower the burden of large data



9

sets. Its operation time was reduced by up to 70 Percentage
inside the prototype system[12].

On such a CPU-GPU heterogeneous system, they provide
a quick implementation of the spectral clustering technique.
My method uses the multicore CPU’s processing capability
and the GPU’s huge multithreading and SIMD abilities. They
suggest a concurrent technique to generate a sparse refers
to a network expressed in a common sparse codified form;
the data points are given as input in high-dimension space.
Next, using the ARPACK program, the CU SPARSE library’s
backward transceiver k is ordinarily quite large—where the
smallest k eigenvectors were computed by three of the Channel
matrix. Additionally, we use GPU’s to create a rapid par-
allel processing K-Means method, and the solution is much
quicker[13]. A technique known as the enhanced K-Means
method was used to expand that standard K-Means strategy.
Our experimental findings demonstrate that such an expanded
K-Means algorithm may effectively organize the data when
the number of components for each grouping has to be
constrained. This method changes the number of attributes
in every category by utilizing a greedy strategy by faliu and
inkyu[14].

This genetic algorithm is utilized to optimize K-Means
grouping to ensure that the shortcomings of K-Means can
be overcome.K-Means using the GA algorithm suggested
innovative products in this field of research when the outcomes
of conventional K-Means clustering versus genetics K-Means
grouping were contrasted and analyzed[15].

The first is MPI, and the second is shared memory utilizing
OpenMP, or heterogeneous Computing utilizing CUDA-C-
programmed NVIDIA GPUs. The first investigation contrasts
the various strategies, while others have worked at speeding
K-Means grouping. Where effectiveness of K-Means also has
highly dependent on the first means used. We compare many
thermally activated in serial and select the most effective one
to use throughout the method. From modest (300300 pixels)
to huge (11641200 pixels), I test the results on various photos.
Our findings demonstrate that almost all three distributed pro-
gramming paradigms resulted in speedups, with OpenMP used
for small pictures and CUDA-C for bigger pictures yielding
the best results by Janki, Miriam, and ningfang[16].provided
a hybrid algorithm that decides when to employ the triangle
inequality in an improved way. Numerous studies show that
our approach performs better than the Computer or Multicore
Kmeans[17].

The examination of share price pricing data from the prior
yrs., with findings interpreted following intensive training
using an algorithm for machine learning on CUDA, keeping in
mind the time restrictions of trading. With the aid of machine
learning approaches, the program’s performance has been
significantly increased. In this research, a massively parallel
methodology is applied to hasten the generation of findings.
Compared to typical ways of employing a solitary Processor
Core Unit, the execution time is significantly decreased due
to the recent high achievements of CUDA parallel computing
technology (CPU). By accurately anticipating stock prices in
advance, it reduced computation time by a significant margin
and resulted in net profits, which is the end objective of

trade.Just characterized by three groups as projected utilizing
algorithms, traders could choose to maintain the share, sell
it, acquire new equities, or stay impartial. If a user makes
a neutral choice, that indicates he must hold onto any stock
he already has and refrain from purchasing any more. This
suggested approach is appropriate for trading stocks based on
stock price[18].

Its efficiency of a program in a concurrent environment
was enhanced by adding a K-Means clustering algorithm to
an MPI4py module. This report examines the effectiveness of
executing the K-Means method consecutively versus using a
Message Passing Interface (MPI) parallel design for grouping
information in the form of operational costs and processing
time[19]. This study presented a parallelization K-Means
method for sparse, elevated text (PKHT). This suggested
technique provides an 11x shorter runtime by utilizing both
GPUs with MPI by xiaolei, yanking, and yuxin[20].

Maximum performance, flexibility, and portability are all
characteristics of MPI as a message-passing type system. This
led to the motivation for this research to present MKmeans, a
similar K-Means clustering technique with MPI. The approach
allows efficient use of the clustering algorithm inside a parallel
setting. Research using experimental statistics shows that
MKmeans operates well on a variety of large amounts of
data with very few time resources[21]. Researchers investigate
leveraging NVIDIA Graphics Processing Units (GPUs) written
with CUDA C to enhance the speed of K-Means clustering.
Various optimization methods are being used, including using
constant memory for cluster data, shared memory, or picture
data. Its outcomes were assessed on various images, ranging
in size from tiny (256x256 pixels) to large (1024x1024 pixels)
and with 4 to 256 clusters. For four clusters, we observe
that now the serial version is typically 9x slower than the
parallel version. Even as the number of clusters rises to 256,
the speedup jumps to 57x[22].

We suggested a parallel implementation of the conventional
K-Means algorithm to run it on the Hadoop distributed frame-
work. The research findings show that when clustering a vast
volume of data, our suggested K-Means method works better
than conventional K-Means[23]. In terms of overhead expenses
and execution, the overall efficiency of K-Means grouping
the information is examined among parallel and sequential
implementation in the Message Passing Interface Infrastructure
by Ragunthar, Ashok, and Gopinath[24].

The study utilizes NVIDIA’s Compute Unified Device Ar-
chitecture (CUDA) to create the GPU-based Harmony K-
Means Algorithm in content clustering. During this testing,
compared with CPU-based software, the GPU-based appli-
cation could achieve a speedup of increase than Twenty
times[25].An approach suggested in this research is based
upon the modified K-Means algorithm of a Hadoop platform;
initially, a preliminary clustering is obtained using the canopy
algorithm, after which the pinpoint of the exact or cluster num-
bers is also adapted new using the ISODATA algorithm. Lastly,
integrate the MapReduce distributed computation architecture
with the K-Means method to achieve the ideally planned CI-
K-Means technique to improve the convergence point list and
K calculated value by the Canopy method. The experiments



10

show that now the CI-K-Means technique resolves the issues
associated with the Canopy K - means algorithm’s inconsistent
result in a more excellent and also the complexity of choosing
the Centre for the K-Means approach. Its correctness, overall
speedup proportion, and grouping efficiency have already been
vastly enhanced compared to both approaches used before
improvement[26].

They examine two examples of calculating dense similarity
matrices to cluster using vast data sets. By sparsifying a
vector, contrast one technique using the Nyström methodology.
Next, decide to sparsify the matrices while keeping their
closest neighbors, plus we look into their parallelization. On
dispersed computers, we parallelize both memory usage and
computations. We demonstrate the practicality of our parallel
approach by conducting an empirical investigation on two
colossal data sets: a large-scale photo dataset with 2,121,863
examples and a document data set with 193,844 examples[27].

The subsequent work has developed a probabilistic theory
for grouping using a random point scientific process. This
approach perfectly mimics Bayes decision theory regarding
classification: Bayes clustering procedures available with the
least predicted errors provided known underlying processes
and a defined objective function. As a result, clustering
becomes an ongoing method rather than a subjective one.
In this study, we start to comprehend such an algorithm by
presenting the circumstances where the given opportunity used
in traditional K-Means clustering becomes efficient in the
novel Bayes clustering concept[28].

The description of methodological improvements may al-
low for high computation savings in average squared data
clustering. A parallel statistics program P-CLUSTER, which
runs on a desktop system, now includes additional up-
grades.Unsupervised categorization of photos with a familiar
texture was the subject of investigations. A 96 decreasing trend
in the calculation was made for some data sources[29].

The K-Means technique is suggested in this study as a single
special instruction multiple data (SIMD) architecture proces-
sors (GPUs) driven algorithm. Both objects and the reconfig-
uration of k-centroids are assigned to the GPU concurrently
inside this approach to minimize the computationally costly
parts of the entire unit. With the most current development of
GPUs with computational integrated system architectures, they
have built such Graphics K-Means algorithm (CUDA). The
numerical tests showed that the efficiency of GPU-based K-
Means might be up to 40 times quicker than that of CPU-based
K-Means[30]. Furthermore, for this research, we embarked
on an in-depth exploration of many existing studies including
[32], [33], [34], [35], [36], [37], employing a comprehensive
approach that encompassed [research methodologies/tools].

IV. PARALLELIZATION STRATEGIES

The parallel method for data mining uses a parallel architec-
ture. Moreover, for implementation purpose parallel algorithm
is used. A standard parallel clustering procedure includes at
least the three phases listed. The first phase is Partition. What
happens is like during this phase, we will divide the infor-
mation into smaller datasets. The second phase is Computing.

Here we run the clustering method on each processor’s local
dataset. Each processor’s clustering method may be different.

The third phase is Integration. To get the overall result, we
have merged all the information, which are clusters obtained
from each processor. There are two data techniques which are
as follows. Finding reasons for the information set’s highly
changeable components, or locating and explaining outliers,
is the aim in several applications. Other applications aim
to comprehend the variances of the overwhelming bulk of
the given dataset components without any concern for the
extremes. The first type of data mining is primarily used in
science, while the second type is business applications.

In first-class applications, it appears that Computing is
necessary. Because we are still determining how beneficial
sampling from a vast dataset will be in implementations of
the latter type. Thus, parallel Computing has a big future
as a platform for data processing. However, it has yet to be
apparent if this is the direction data mining will take. We can
understand how the technique is already employed by looking
at the applications in which the most extensive data centers
are used for data gathering.

The parallelization of data involves a variety of techniques.
The first method is data parallelism, and the aim is to distribute
the data appropriately and divide it into processors, each of
which computes the given data in parallel. Data parallelisms
are classified into two types: record-based and attribute-based.

The second method is the parallelization of tasks. Each
record’s likelihood of performing a data mining strategy is
the same when redistributed, making equally distributing in-
formation achievable. Data partitioning based on records is
commonly used in real-world parallel data mining applica-
tions. If the characteristic Partition is incorrect, the information
connection breaks, and the processing quality decreases.

The second strategy is Task Parallel. It breaks the entire
solution method into many sub-procedures and sends them to
separate processors. It also includes two ways for achieving
task parallelism. One uses a divide-and-conquer technique,
assigning the work and the subtask to a designated processor.
The other is based on a scheduler, which dynamically assigns
data to available processors.

The execution method involves utilizing many CPUs to
perform the same job and several CPUs to complete a separate
one. The one picked is determined based on the area we are
implementing and the data structure. Regardless of the parallel
method, the load-balancing problem must be addressed. If data
is misallocated, the burden may be unequal.

The third alternative is a hybrid; they need help resolving
the issue. Upon properly splitting the data and spreading it
among each processing unit, jobs are assigned to a designated
processor in this approach, according to the data properties
assigned to each processing unit.

After properly breaking down information and transmitting
data to each processing, tasks are assigned to a designated
processor by the attributes assigned to each processing unit.
The data generated by the chain is combined when each job
executing on each processor is finished. Task and data parallel
techniques are used in this situation, and data interchange
occurs before and after job execution, which is advantageous.



11

Algorithm 1 K-Means Algorithm
1: K is cluster
2: N is data objects
3: clusters[K] cluster centers in array
4: objects[N] data objects in array
5: membership[N] objects memberships in array
6: Set threshold Θ
7: repeat
8: G← 0
9: for a = 0 to N − 1 do

10: for b = 0 to K − 1 do
11: distances← objects[a]− clusters[b]
12: if distances < dmin then
13: dmin ← distances
14: n← b
15: end if
16: end for
17: if membership[a] ̸= n then
18: G← G+ 1
19: membership[a]← n
20: end if
21: newcluster[n]← newcluster[n] + objects[a]
22: newclustersize[n]← newclustersize[n] + 1
23: end for
24: for b = 0 to K − 1 do
25: clusters[b][∗]← newcluster[b][∗]/newclustersize[b]
26: newcluster[b][∗]← 0
27: newclustersize[b]← 0
28: end for
29: until G/N ≤ Θ

In addition to minimizing transmission costs, the job is not
interrupted.

V. METHODOLOGY

This section discusses a study focused on improving the
quality of the information in a country data set using K-Means,
Minibatch K-Means, and Fuzzy C-Means methods. The study
uses parallelization techniques to speed up the execution times
of all methods and obtain more accurate results. With the
help of the elbow method, the optimal number of clusters is
perceived using this method.

The study discusses different techniques for parallelizing:
sequential K-Means, Minibatch K-Means, and fuzzy C-Means,
parallelization using MPI (Message Passing Interface), and
a cloud-based method. These techniques are implemented
from scratch in Python, a popular programming language for
machine learning and data processing. The results of this study
may be helpful for organizations interested in aiding impover-
ished countries, as it provides more accurate information about
the country data set.

A. Sequential Process of K-Means

Calculating centroids and cluster formation is done progres-
sively with sequential K-means. Here is a detailed guide and
breakdown of how K-Means works.

Fig. 6. Flowchart of the of K-Means Algorithm.

The code is a Python implementation of the K-Means
clustering technique. The objective of the method is to divide
a collection of N objects into K clusters according to how
identical they are, where K is the number of clusters Algorithm
1.

The K-Means algorithm uses this code to cluster data. It
initializes the cluster centers and places data objects into
clusters. Then, it refines the cluster centers and data object
membership iteratively until reaching a threshold value that
terminates the algorithm. To manage data, it uses variables to
handle cluster centers, data objects, and membership informa-
tion. Cluster centers are an array of size K, while data objects
and membership data are arrays of size N.

The code computes the distances between objects and each
cluster center during each iteration, assigning objects to the
nearest cluster based on these calculations. If the object is
assigned to a new cluster, a variable counter increments to
reflect changes in its membership data. The new cluster center
updates by summing its data object values and dividing by the
cluster size.

Finally, the algorithm checks if the termination threshold
is met. If not, it updates the cluster centers and repeats the
process.



12

Algorithm 2 Minibatch K-Means
1: Begin
2: Initialize: k, mini-batch size b, iterations k, data collection

X
3: Set: Every s ∈ C with an x drawn at random to X
4: a← 0
5: for j ← 1 to k do
6: M ← b examples picked randomly from X
7: for x ∈M do
8: d[x]← f(C, x)
9: end for

10: for x ∈M do
11: s← d[x]
12: a[s]← a[s] + 1
13: n← 1/a[s]
14: s← (1− n)s+ nx
15: end for
16: end for
17: Stop

B. Minibatch K-Means

Here is an explanation of the code, step by step Algorithm
2:

For each point x in dataset X, a centroid s is initialized
randomly from the set of possible centroids C. The algorithm
then runs for k iterations, each with the following steps.

• A mini-batch M of b examples is randomly sampled from
the dataset X.

• For each example x in the mini-batch M, the distance
between x and each centroid in C is computed using the
function f.

• For each example x in the mini-batch M, the closest
centroid s is identified based on the computed distances,
and the count of examples assigned to that centroid a[s]
is incremented.

• For each example x in the mini-batch M, the position
of the assigned centroid s is updated using a weighted
average of its previous position and the new example x.
The weight given to the previous position is determined
by the number of examples already assigned to that
centroid, i.e., s ← (1-n)s+nx, where n = 1/a[s].

• At the end of k iterations, the final positions of the
centroids are returned.

The main idea behind this code is to iteratively improve
the positions of the centroids by adjusting their position based
on the examples in each mini-batch. By randomly sampling
the examples and updating the centroids incrementally, the
algorithm can scale to large datasets while producing high-
quality clustering results.

C. Fuzzy C-Means

Here is an explanation of the code, step by step Algorithm
3:

• To perform Fuzzy C-Means clustering, we first initialize
the membership matrix, U, by assigning random values
to it or by setting it to a predefined initial value.

Algorithm 3 Fuzzy C-Means Algorithm

1: Initialize U = [uij ] matrix, U (0)

2: At k-step: calculate the center vectors C(k) = [cj ] with
U (K)

3: Ci =

n∑
j=1

um
ijxj

n∑
j=1

um
ij

4: Update U(k), U(k + 1)
5: uij =

1
c∑

k=1

(
∥xi−cj∥
∥xi−ck∥ )

2/(m−1)

6: ∥U (k=1) − U (k)∥ < ϵ then STOP
7: Else
8: Return to Step 2;

• At each iteration, denoted by the k-step, we calculate the
center vectors of the clusters, representing the centroids
of the clusters. The center vectors are calculated using
the membership matrix U from the previous iteration.

• The center vectors are calculated using the membership
matrix U from the previous iteration. Specifically, we
calculate the center vectors, Ci, by taking a weighted av-
erage of the data points, xj, according to their membership
values, uij.

• A higher membership value for a data point implies a
more prominent weight for that data point. Once we have
calculated the center vectors, we update the membership
matrix for the next iteration by recalculating the mem-
bership values, uij, for each data point, xi, based on their
distance from the center vectors, cj.

• The new membership value, uij, depends on the sum of
the distances from the data point xi to all the center
vectors, cj, raised to the power of 2/(m-1), where m is
a fuzziness parameter that controls the level of fuzziness
or overlapping among clusters.

• We then check if the difference between the membership
matrices at the k-step and the (k+1)-step is lower than a
certain threshold, epsilon(e). If the difference is smaller
than epsilon, the algorithm terminates and returns the
final membership matrix and center vectors.

• Otherwise, the algorithm returns to step 2 to recalculate
the center vectors and update the membership matrix for
the next iteration. The algorithm repeats steps 2 to 7 until
convergence, which implies that the difference between
the membership matrices at two consecutive iterations is
less than or equal to epsilon.

D. Parallel Techniques using Message Passing Interface

MPI is one of the best methods for implementing parallel
computing. The apparent reason for that is because of the
standard libraries it has. The motivation is to aim for exactness
and efficacy. With the help of open MPI, we can parallelize
the K-Means, Minibatch K-Means, and Fuzzy C-Means. MPI
is supported in many languages. In this, the datasets were
divided equally among many of the MPI processes, and Using
OpenMP instructions, data labeling for each local data within
the process was carried out.



13

Raw data

Input data
Randomly assigned

Features

Features

Process 1

Process 2

Clustering

Clustering

Process 2

Update Labels

Outputs

WCSS of the
elbow methods

Centroid send and receive

Parallel Clustering using MPI

Process 1

Fig. 7. A description of how to put the divide and combine plan into practice of Parallel clustering techniques using MPI.

Each attribute has its dimension in the result and is created
in the space based on the number of attributes. The result
generated using this methodology will be assimilated with the
basic version of the technology to determine whether the ap-
proach is superior and how much performance measurements,
such as time for completion, are generated. This method was
evaluated on the same dataset, termed ”Country Data Set.”The
information we will validate is based on the testing dataset,
and we broke that complete information into train and test
for training and testing the model. Here we used eighty for
training and twenty for testing, i.e., 80:20.

To implement this, we use Jupiter Notebook. Where the
”divide and combine” scheme for parallel K-Means, Minibatch
K-Means, and Fuzzy C-Means clustering using the Message
Passing Interface (MPI) library, the process can be divided
into several steps. Firstly, the data points should be divided
into smaller subsets that different processes can independently
process. Each process would then compute the centroid of a
subset of data points using all algorithms until it converges to
a stable value. After that, the partial centroids obtained from
each process must be combined to obtain the final cluster
of centroids. This can be achieved using the MPI reduce()
function, which combines the partial centroids to ensure that
all processes receive the same result Figure 7.

Finally, the results should be verified by comparing the
final centroids with the expected values or by measuring the
clustering quality using a performance metric such as the Sum
of Squared Errors (SSE). The divide and combine scheme
in parallel clustering using MPI provides an efficient way to
process large datasets by dividing them into smaller subsets
and processing them in parallel, resulting in faster execution
times and increased scalability.

1) Steps involved in Parallel Techniques using MPI: The
algorithm starts by choosing the number of clusters, k, and
giving each node one of the k cluster centers. It is crucial to
remember that the clusters must be distributed evenly among
the nodes, i.e., k/n, where n is the total number of nodes.

After assigning the cluster centers, each node actively
computes the mean centers of the k/n groups, disseminates the
centers to all nodes using MPI (Message Passing Interface),
receives the cores from other nodes, computes the distance
between each data point and its nearest collection. When

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Select the number of
clusters(k) and assign k

cluster centers to the
nodes

Now each node does the
subsequent

Calculate the mean centers
of (k/n) clusters

MPI will broadcast centers
to all the nodes

Each node will receive
centers from other nodes

Determine the closest
cluster by calculating the

distance
Step 7

Stop Condition: Step 2 will
repeat until convergence

Fig. 8. Flow of Parallel Techniques using MPI.

the cluster assignations stop changing, it actively achieves
convergence. Finally, the process is actively repeated until
reaching convergence.

A crucial element of the clustering algorithms is conver-
gence. It ensures the algorithms terminate once the cluster
assignments have stabilized and no more adjustments are re-
quired. This enhances the clustering process’ effectiveness and
precision. In conclusion, a clustering algorithm is a valuable
tool for grouping data into groups, and convergence is essential
to the algorithm’s precision and effectiveness.

2) MPI methodology consists of several stages:
• We first determine the centroid based on the number of

nodes.
• At this point, the master component sends data chunks

based on centroid to various nodes. These broadcasts are



14

Fig. 9. How K-Means works in Amazon Sage Maker.

made possible by comm = MPI.COMM WORLD. And
communication bias.

• The means of each node is used to calculate centroids,
which are then broadcast to other nodes.

• Data points are dispersed using communication scatter.
This process is repeated until convergence occurs.

E. Amazon Sage Maker

Amazon SageMaker is a cloud-based machine learning
platform that enables developers to build, train, and deploy
machine learning models. It offers a range of tools for data
labeling, training, experimentation, model deployment, and
monitoring. Amazon SageMaker uses a pay-per-use pricing
model, which makes it more cost effective for small-scale
projects and large-scale enterprises.

1) Working of parallel clustering techniques using MPI
in AWS: Parallel clustering techniques using MPI in AWS
SageMaker work by distributing the clustering algorithms
across multiple compute nodes using the Message Passing
Interface (MPI) protocol.

The input data is divided into various subsets. Each subset
is given its own compute node when a training job is started
in SageMaker using the clustering algorithms and MPI. Then,
using MPI, the clustering algorithms are applied parallel to
each subset to process the data across numerous nodes.

During the parallel processing, each computed node calcu-
lates its own local centroids and assigns data points to the
nearest centroid. Then, the intermediate results are merged to
obtain the final clustering solution.

The results are typically stored in an S3 bucket, which
can be accessed by other AWS services or downloaded for
further analysis. Using SageMaker for parallel clustering with
MPI allows for the efficient processing of large datasets and
significantly reduces the time required for clustering tasks.

Overall, parallel clustering using MPI in AWS SageMaker
enables clustering in the context of distributed computing
of big datasets and provides a scalable and efficient way to
process data using multiple compute nodes.

A managed service machine learning (ML) Amazon’s Elas-
tic Compute Cloud (Amazon EC2) notebook example, which
continues to run Jupiter Software, is an Amazon Sage Maker
notebook example. This same notebook example is used to
build and manage Jupiter notebooks for information extraction,
training, and deploying machine learning models.

To begin the analysis, an Exploratory Data Analysis (EDA)
of the chosen datasets will be conducted, followed by the
training and creation of a model using AWS Sagemaker’s
built-in version of clustering. The resulting recommendation
engine can then be deployed using an AWS Sagemaker infer-
ence endpoint and integrated into an application via an API.
These steps were performed within an AWS Sagemaker-hosted
Jupyter Notebook instance running on an ml.t2.xlarge instance.

2) Steps to generate a Sage Maker notebook example:

• Go to https://console.aws.amazon.com/sagemaker/ to ac-
cess an Amazon Sage Maker console.

• Select Notebook cases, then start creating notebook ex-
amples.

• I will provide additional data just on the Generate Note-



15

Step 1 Data Collection

Step 2 Data Preprocessing

Step 3 Data Transformation

Step 4 Implementation of Clustering
Algorithms

Step 5 Pattern Information

Step 6 Comparison of Various
Techniques

Fig. 10. Implementation Process.

book example site (when the ground is not noted, start
leaving the default settings).

• Inside the Notebook example input box, enter an identity
for one’s notebook example. Select item ml.t2.medium
as the Notebook Test case. It is the cheapest example
form supported by notebook cases and is adequate for
this workout. If the ml.t2.medium applies differently and
is not accessible in one existing AWS Environment, select
ml.t3.medium.

• Select a console category to generate the notebook exam-
ple in Console Identification. This console form chooses
the operating system and the Jupiter edition in which
one’s notebook instance is formed—View Amazon Linux
2 vs. Amazon Linux notebook cases for more data on
application framework identification kinds. View Jupiter
version control for more data.

• Add a new position for IAM, then start creating a role.
The above IAM position is granted access to every S3
bucket with the word Sage maker. Such authorizations
are obtained via the Amazon Sage Maker Full Access
strategy, which Sage Maker associates with the position.

• Sage Maker starts an ML compute example in the above
scenario, a notebooks example in a matter of seconds,
and connects a 5 GB Amazon EBS storage capacity to it.
This same netbook instance includes a Jupiter notebook
domain controller that has been preselected, Sage Maker,
AWS SDK library services, and a set of Anaconda library
services.

• Generate a Notebook Example for further data on gener-
ating a Sage Maker netbooks example.

F. Implementation
1) Data Collection: We utilized Python programming lan-

guage and machine learning techniques to implement algo-
rithms on the KAGGLE country dataset, which consists of
nine key factors. From those nine key factors, we use only
four key factors to predict what organizations can use to
determine financial assistance to nations. These nine attributes
include Child Mortality, Exports, Health, Imports, Income,
GDP, Inflation, Life Expectancy, and Total Fertility.

To perform the analysis, we used an Apple M1 processor
with a memory of 16GB. Our primary objective was to
use these algorithms to identify countries that may require
financial aid based on their performance in these four factors.

2) Data Pre-Processing: First, the code sorts the
DataFrame data by the values in the gdpp column in ascending
order using the sort values function and then resets the index
of the sorted DataFrame using the reset index function with
the argument drop=True. This creates a new DataFrame with
the same data as data but with the rows sorted by GDP per
capital in ascending order and a new index.

Then, the code creates a scatter plot using the plot scatter
function with the x values as the index of the sorted DataFrame
and the y values as the gdpp column of the sorted DataFrame.
The plot xlabel, plot ylabel, and plot title functions are used
to add axis labels and a title to the plot, and plot show is used
to display the plot.

Next, the code computes the quartiles of the ’gdpp’ column
using the quantile() function with the argument [0, 0.33, 0.67,
1] to get the lower quartile (0-33), middle quartile (33-67), and
upper quartile (67-100) values. After that, the code defines the
category labels as [’Low’, ’Medium’, ’High’].

Then, the code adds a new column to the DataFrame called
GDP Category using the pd cut function with the arguments
bins=quantiles and labels=categories. This function creates
categories for the gdpp values based on the quantiles computed
earlier and assigns the category label to each gdpp value in
the new GDP Category column.

Finally, the code drops the columns health, life expec, total
fer, and ’child mort from the DataFrame using the drop func-
tion with the arguments columns, inplace=True, and axis=1.
This removes the specified columns from the DataFrame,
without creating a new DataFrame.

In summary, this code performs data cleaning and vi-
sualization tasks on a DataFrame that contains information
about various countries. It sorts the DataFrame by GDP per
capital, creates a scatter plot of the GDP per capital values,
categorizes the GDP per capital values into low, medium, and
high categories based on quartiles, and drops some columns
from the DataFrame that are not needed for further analysis.

3) Data Transformation: Since data transformation entails
transforming raw data into a similar and standardized style, it
is essential to clustering. Data transformation’s primary goal is
to reduce the influence of different scales, ranges, and skew-
ness in the variables because these factors can significantly
affect the results of clustering. Normalization, standardiza-
tion, PCA transformation, and log transformation are a few
examples of the data transformation methods frequently used
in clustering. The best data conversion technique must be



16

chosen depending on the issue domain and the data’s nature.
If the appropriate data transformation methods are applied,
clustering may yield precise and insightful results.

4) Implementation of Clustering Algorithms:
1) Sequential K-Means: The code provided reads a pro-

cessed data file containing information about different
countries. It initializes an empty list called sse to store
the sum of squared errors (SSE) for different values of
k. Then it iterates through the range of k values from
2 to 6. A K-Means object is initialized with the current
value of k, and the algorithm is fitted to the dataset. The
SSE for the fitted model is then appended to the sse list.
The next block of code selects the input column for
the K-Means technique and plots the SSE for different
values of k. The plot shows that the optimal number of
clusters is likely 4, as the SSE begins to level off at that
point.
The code initializes a K-Means object with k=4 and fits
it to the dataset. The appropriate prediction method is
then used to predict the cluster assignments for each
data point. These predicted cluster assignments are then
added as a new column to the DataFrame.Finally, the
code prints out the centroid coordinates for each cluster.
In summary, the K-Means technique clusters similar data
points into k clusters. The code provided reads a file of
processed data, calculates the SSE for different values
of k, and selects the optimal number of clusters based
on the plot. It then predicts cluster assignments for each
data point and adds them to the DataFrame. Finally, it
prints the centroid coordinates for each cluster.

2) Sequential Minibatch K-Means: This code performs
clustering on a dataset using the Mini Batch K-Means
algorithm. The dataset is loaded from a CSV file, and
the columns for clustering are specified. The range of k
values to try is defined, and an empty list is initialized
to store the sum of squared errors (sse).
A loop is then executed over each k value in the defined
range. A Mini Batch K-Means model is initialized with
the current k value and fitted to the dataset in each
iteration. The inertia attribute of the model is then
appended to the sse list. This indicates how well the
data is being clustered, with a lower sum of squared
errors indicating a better fit.
Once the loop completes, the results are plotted as a
line graph with k on the x-axis and the sum of squared
errors on the y-axis. This plot can be used to identify the
optimal number of clusters. This code sets the number
of clusters to 4, and the model is fitted to the dataset
using the prediction method.
The predicted clusters and the original dataset are then
plotted as a scatter plot, with each point colored accord-
ing to its cluster assignment. The cluster centers are also
plotted as red circles. The resulting plot shows how the
data has been partitioned into distinct clusters based on
the specified features.

3) Sequential Fuzzy C-Means: This code performs fuzzy
c-means clustering on a dataset of country data. First,
the data is loaded from a CSV file, and non-numeric

columns are removed. The remaining numeric columns
are then normalized using StandardScaler.
The number of clusters is set to 4, and the fuzzy
exponent parameter (m) and the maximum number of
iterations are also defined. The fuzzy c-means clustering
algorithm is then initialized with the normalized data,
number of clusters, m, and maxiter values.
The algorithm is run, and the predicted cluster member-
ship for each data point is obtained by taking the argmax
of the u matrix. This assigns each data point to a cluster
based on the degree of membership in each cluster.
The predicted clusters are added to the original
dataframe, and the number of countries in each cluster is
printed to the console. This indicates how well the data
has been clustered and can help with further analysis or
decision-making. Fuzzy c-means clustering is functional
when data points can belong to multiple clusters simul-
taneously, allowing for more nuanced clustering than
traditional k-means clustering.

4) Parallel K-Means Minibatch K-Means and Fuzzy C-
Means Using MPI: This code is an implementation of
the K-means clustering algorithm using MPI(Message
Passing Interface) for parallelization. The code is divided
into two parts: the master part (rank 0) and the worker
part (other ranks).
In the master part, the code reads a CSV file containing
data and initializes the number of clusters (num clusters)
and other necessary variables. The data is divided into
chunks, and each chunk is sent to a worker using
MPI’s scatter operation. The initial centroids are also
broadcasted to all workers.
In the worker part, each worker receives its chunk of
data and calculates the distance between each data point
and the centroids. It assigns each data point to the cluster
with the closest centroid. It then counts the number of
samples in each cluster and sends the count to the master
using MPI’s gather operation. The worker also receives
the updated centroids from the master using MPI’s all
reduce operation.
This process of calculating distances, updating clusters,
and centroids is repeated until the centroids no longer
change. The final cluster assignments from all workers
are gathered at the master, and the adjusted Rand score is
calculated to compare the results with the labels obtained
from running KMeans from scikit-learn (kmeans).
Finally, the code visualizes the clusters and centroids
using matplotlib. It also performs some analysis, such
as printing the frequency of clusters for different GDP
categories, replacing cluster labels to match the origi-
nal labels, computing a confusion matrix, and printing
classification metrics.
Overall, this code demonstrates parallelizing the K-
means algorithm using MPI and compares the results
with scikit-learn’s KMeans implementation. It also pro-
vides visualizations and analysis of the clustering results.
We will replace the KMeans function with MiniBatchK-
Means and FuzzyCMeans and run the same code.

5) Parallel K-Means, Minibatch K-Means, and Fuzzy C-



17

Means using MPI in Cloud: As discussed above, we
use the same code to run in AWS SageMaker, which
employs parallel processing with MPI and all algorithms
to cluster data.

5) Pattern Information: In Clustering, data points are
grouped according to how alike they are using pattern infor-
mation. The method finds patterns in the data by repeatedly
assigning each data point to the closest centroid and adjusting
the centroid by averaging all the data points given to it. Up
until the centroids stop moving or the maximum number of
repetitions has been achieved, this procedure is continued.
The ensuing clusters show collections of data points with
comparable patterns or traits. By comparing new data points
to existing clusters, these clusters may be utilized to predict
future data points and understand the underlying patterns
within the data.

6) Comparison of various Techniques: We will compare
all three methods of execution times, including in terms of
execution speed, accuracy, precision, recall, and f1 slope and
support.

G. Setup of Exploration

We tested and implemented all algorithms using Jupyter
Notebook on my computer, and we also utilized Amazon
SageMaker Jupiter Notebook for cloud services. We used
a computer with an Apple M1 processor and 16 GB of
RAM to run our algorithms during testing. To supplement our
methodology, we used a KAGGLE dataset that contained 167
rows and ten columns, totaling 13.2 kb.

We utilized machine learning techniques and various Python
libraries to implement our methodology. Our approach in-
volved thorough data analysis and preprocessing, then imple-
menting and testing various algorithms on the cleansed data.
We then analyzed the results to determine the best approach for
accurately predicting financial aid requirements for different
nations.

VI. RESULT AND CONCLUSION

A. Elbow Method

The Elbow method is a practical approach for determining
the optimal no of clusters in a model. Applying this method
makes it possible to identify the most appropriate number of
distinct clusters for a given dataset Figure 11.

We can create a new model with the optimal number of
clusters identified, which is 4, and then examine the cluster
assignments for each observation. Essentially, we would assign
each data point to one of the 4 clusters established on their
characteristics or similarities. This process can provide valu-
able insights into patterns and relationships within the data,
potentially aiding in making informed decisions or predictions
and the graphs below.

The structure of the clusters is displayed in the graph, and
it includes the following algorithms Fig. 15 16 17 18 19 20
21 22 23

1. Sequential K-Means.
2. Parallel K-Means using MPI.
3. Parallel K-Means using cloud.

Fig. 11. Distortion Score Elbow Curve for Clustering.

4. Sequential Minibatch K-Means.
5. Parallel Minibatch K-Means using MPI.
6. Parallel Minibatch K-Means using Cloud.
7. Sequential Fuzzy C-Means.
8. Parallel Fuzzy C-Means using MPI.
9. Parallel Fuzzy C-Means using Cloud.
The confusion matrix is a tool that helps to summarize the

performance of a model by displaying the number of correct
and incorrect predictions made for each class in the dataset.
It consists of three columns and three rows, corresponding to
the three classes in our data. The true values are represented
on the y-axis while the predicted values are represented on the
x-axis. Using the values obtained from the confusion matrix,
precision, recall and F1 scores can be calculated for the model.
The confusion matrices for three different clustering algo-
rithms; Sequential K-Means Figure 12, Sequential Minibatch
K-Means Figure 13 and Sequential Fuzzy C-Means Figure 14.

Fig. 12. Confusion matrix of Sequential K-Means.

TABLE I
EVALUATION MATRIX OF SEQUENTIAL CLUSTERING

Sequential Accuracy precision recall F1-score
K-Means 0.45 0.68 0.66 0.67

Minibatch K-Means 0.48 0.75 0.72 0.71
Fuzzy C-Means 0.46 0.69 0.65 0.63



18

Fig. 13. Confusion matrix of Sequential Minibatch K-Means.

Fig. 14. Confusion matrix of Sequential Fuzzy C-Means.

The table shows that Minibatch K-Means performs the best
out of the three algorithms in all four metrics. It has higher
sequential accuracy, precision, recall, and F1-score than K-
Means and Fuzzy C-Means. This indicates that Minibatch K-
Means is the most effective algorithm in accurately grouping
the data points into clusters Table I. Also, we presented a
graphical comparison representation of Figure 24.

TABLE II
EVALUATION MATRIX OF PARALLEL CLUSTERING USING MPI

Parallel using MPI Accuracy precision recall F1-score
K-Means 0.47 0.75 0.72 0.71

Minibatch K-Means 0.46 0.69 0.65 0.66
Fuzzy C-Means 0.45 0.67 0.66 0.67

The table shows that when implementing these clustering
algorithms using MPI parallelism, K-Means performs slightly
better than Mini-Batch K-Means and Fuzzy C-Means in
terms of accuracy, precision, recall, and F1-score. It achieves
higher values in most of the metrics, indicating better overall
performance. However, as always, it’s important to consider
the specific dataset and problem context when choosing the
appropriate algorithm and parallelization strategy. Table II.
Also, we presented a graphical comparison representation of
Figure 25.

The table shows that all three algorithms when implemented
on Amazon Sage Maker. K-Means has the highest accuracy,
followed by Fuzzy C-Means and Minibatch K-Means, It
achieves higher values in most of the metrics, indicating better
overall performance Table III. Also we presented graphical

TABLE III
EVALUATION MATRIX OF PARALLEL CLUSTERING USING MPI IN

AMAZON SAGE MAKER

Amazon Sage Maker Accuracy precision recall F1-score
K-Means 0.48 0.74 0.71 0.70

Minibatch K-Means 0.45 0.68 0.66 0.67
Fuzzy C-Means 0.46 0.70 0.69 0.68

comparison representation Figure 26.
Finally, by comparing the performances of three cluster-

ing algorithms K-Means, Fuzzy C-Means, and Minibatch K-
Means we can see that the sequential implementation using
these algorithms outperforms the parallel implementation us-
ing MPI or Amazon Sage Maker. Among the three algorithms,
Minibatch K-Means has shown better results compared to
K-Means and Fuzzy C-Means, having the highest accuracy,
recall, precision, and F1-score values in the sequential imple-
mentation.

The table displays the execution times of three clustering
algorithms: K-Means, Mini-Batch K-Means, and Fuzzy C-
Means, for both sequential and parallel techniques using MPI
and AWS Sage Maker, measured in milliseconds. Significantly,
the parallel implementations using AWS Sage Maker exhibited
greater efficiency when compared to the parallel implemen-
tations using MPI and the sequential implementations for
all three algorithms. Notably, Fuzzy C-Means demonstrated
the shortest execution time for both parallel implementations,
highlighting its potential suitability for clustered data analysis,
and the implementation of Fuzzy C-Means in parallel using
AWS Sage Maker may therefore provide the most effective
means of optimizing algorithm performance and scalability
Table IV.

TABLE IV
COMPARING EXECUTION TIME OF ALL TECHNIQUES

Techniques Exeution Times(ms)
Sequential K-Means 2.853

Parallel K-Means using MPI 1.050
Parallel K-Means using Cloud 0.828
Sequential Minibatch K-Means 2.310

Parallel Minibatch K-Means using MPI 1.215
Parallel Minibatch K-Means using Cloud 0.921

Sequential Fuzzy C-Means 1.285
Parallel Fuzzy C-Means using MPI 0.932

Parallel Fuzzy C-Means using Cloud 0.623

Overall Considering these findings, cloud computing
platforms like AWS Sage Maker have the potential
to offer substantial advantages for data processing in
parallelized clusters. Also, you can see the graphical repre-
sentation of Figure 27

B. Discussion

The independent features are imports, exports, health, and
inflation. Based on these four features, clusters are formed.
We determine the model accuracy using the GDP feature from
the dataset and the clusters. The GDP values are categorized
as low, medium, and high. Based on the GDP category, we
determine whether a country requires financial assistance or



19

Fig. 15. Sequential K-Means Fig. 16. Parallel K-Means using MPI Fig. 17. Parallel K-Means using Cloud

Fig. 18. Sequential Minibatch K-Means Fig. 19. Parallel Minibatch K-Means using MPI Fig. 20. Parallel Minibatch K-Means using
Cloud

Fig. 21. Sequential Fuzzy C-Means Fig. 22. Parallel Fuzzy C-Means using MPI Fig. 23. Parallel Fuzzy C-Means using Cloud

Fig. 24. Comparison of Sequential Clustering
techniques

Fig. 25. Comparison of Parallel Clustering
techniques

Fig. 26. Comparison of Cloud Clustering tech-
niques



20

Fig. 27. Comparison of Execution times in all techniques.

not. If the GDP is categorized as low, it signifies that the
country needs help. For medium GDP, the country may or
may not require assistance, and for high GDP, the country
does not require help.

From Figure 28, the green color indicates help is not
required, the red color indicates help need, and the yellow
might need help and shows the countries in need of assistance
and those that may require assistance. As a result, an NGO or
organizations can quickly analyze data and assist countries.

The utilization of parallel clustering techniques results in
numerous advantages over sequential clustering approaches,
including enhanced efficiency, flexibility, scalability, fault tol-
erance, resource utilization, and real-time capabilities. These
benefits make parallel clustering techniques the preferred
option for dealing with large-scale datasets and time-sensitive
clustering tasks.

The managed and user-friendly environment provided by
Amazon SageMaker is ideal for developing and deploying
machine learning models that include clustering algorithms.
It offers scalability, managed infrastructure, integration with
AWS services, flexibility, monitoring capabilities, and cost-
effectiveness advantages that make it a leading choice over
manual setup and management of parallel clustering tech-
niques that utilize MPI.

C. Conclusion

Machine learning (ML) is a field devoted to understanding
and building methods that let machines leverage data to
enhance the performance and accuracy of different appli-
cations. A subset of machine learning is closely related to
data clustering, which focuses on grouping data samples into
various groups for data prediction, detection, identification,
etc.

Unsupervised ML algorithms are the most effective methods
for data clustering. This work investigates various approaches
and identifies factors influencing the algorithm’s efficiency.
Among them are the effects of the starting cluster on accuracy
and the way the data is parallelized on efficiency. Finding
the best approach based on the available data takes time and
effort. We concentrated on country data and analyzed it using

various parallel approaches and cloud computing. The analysis
is based on four different country factors, and this analysis
will assist various organizations that are prepared to assist the
country.

The results demonstrate that implementing these models
on a cloud platform significantly improves their performance
in terms of execution time. By evaluating accuracy scores
and confusion matrix values, we were able to compare the
effectiveness of the three models. The findings indicated that
when utilizing the sequential process, Minibatch K-Means
achieves better performance compared to K-Means and Fuzzy
C-Means. However, in cases where the parallel process was
used, K-Means produced better results than the other two
models.

D. Future Work

Our future work will concentrate on analyzing data using
MapReduce and Multiprocessing, as well as developing an
application that receives data as input and recommends the
most efficient method for speedy execution. We aim to enhance
the accuracy, precision, recall, and F1-score of our results.
Additionally, we will experiment with different clustering
algorithms for cluster initialization and construct an algorithm
to assess the dataset and determine the most appropriate
parallelization technique.

REFERENCES

[1] S. Mohanavalli, S. Jaisakthi, and C. Aravindan, “Strategies for paralleliz-
ing k means data clustering algorithm,” in Communications in Computer
and Information Science, 2011, pp. 427–430.

[2] Y. Zhang, Z. Xiong, J. Mao, and L. Ou, “The study of parallel k-
means algorithm,” in 2006 6th World Congress on Intelligent Control
and Automation, vol. 2, 2006, pp. 5868–5871.

[3] P. Swamy, M. Raghuwanshi, and A. Gholghate, “An improved approach
for k-means using parallel processing,” in 2015 International Confer-
ence on Computing Communication Control and Automation, 2015, pp.
358–361.

[4] A. Boukhdhir, O. Lachiheb, and M. S. Gouider, “An improved mapreduce
design of kmeans for clustering very large datasets,” in 2015 IEEE/ACS
12th International Conference of Computer Systems and Applications
(AICCSA), 2015, pp. 1–6.

[5] M. Jaatun, G. Zhao, and C. Rong, “Parallel k-means clustering based on
mapreduce,” in Cloud Computing Lecture Notes in Computer Science,
2009, pp. 674–679.

[6] M. Baydoun, M. Dawi, and H. Ghaziri, “Enhanced parallel implemen-
tation of the k-means clustering algorithm,” in 2016 3rd International
Conference on Advances in Computational Tools for Engineering Appli-
cations (ACTEA), 2016, pp. 7–11.

[7] S. A. Ghamdi and G. D. Fatta, “Efficient parallel k-means on
mapreduce using triangle inequality,” in 2017 IEEE 15th Intl Conf
on Dependable, Autonomic and Secure Computing, 15th Intl Conf
on Pervasive Intelligence and Computing, 3rd Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), 2017, pp. 985–992.

[8] S. Zhong, S. Lin, G. Xu, and K. Shi, “The expansibility research
of k-means algorithm under the gpu,” in 2016 7th IEEE International
Conference on Software Engineering and Service Science (ICSESS),
2016, pp. 734–737.

[9] J. Tian, L. Zhu, S. Zhang, and L. Liu, “Improvement and parallelism of
k-means clustering algorithm,” Tsinghua Science and Technology, vol.
10, no. 3, pp. 277–281, 2005.

[10] E. Kijsipongse and S. U-ruekolan, “Dynamic load balancing on gpu
clusters for large-scale k-means clustering,” in 2012 Ninth International
Conference on Computer Science and Software Engineering (JCSSE),
2012, pp. 346–350.



21

Fig. 28. Help needed per country (World).

[11] H. Fakhi, O. Bouattane, M. Youssfi, and O. Hassan, “New optimized gpu
version of the k-means algorithm for large-sized image segmentation,” in
2017 Intelligent Systems and Computer Vision (ISCV), 2017, pp. 1–6.

[12] C. M. Poteras, M. C. Mihaescu, and M. Mocanu, “An optimized version
of the k-means clustering algorithm,” in 2014 Federated Conference on
Computer Science and Information Systems, 2014, pp. 695–699.

[13] Y. Jin and J. F. Jaja, “A high performance implementation of spectral
clustering on cpu-gpu platforms,” in 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), 2016, pp.
825–834.

[14] F. Yi and I. Moon, “Extended k-means algorithm,” in 2013 5th
International Conference on Intelligent Human-Machine Systems and
Cybernetics, vol. 2, 2013, pp. 263–266.

[15] S. Kapil, M. Chawla, and M. D. Ansari, “On k-means data clustering
algorithm with genetic algorithm,” in 2016 Fourth International Confer-
ence on Parallel, Distributed and Grid Computing (PDGC), 2016, pp.
202–206.

[16] J. Bhimani, M. Leeser, and N. Mi, “Accelerating k-means clustering
with parallel implementations and gpu computing,” in 2015 IEEE High
Performance Extreme Computing Conference (HPEC), 2015, pp. 1–6.

[17] J. Wu and B. Hong, “An efficient k-means algorithm on cuda,” in 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, 2011, pp. 1740–1749.

[18] S. Kumari, N. Patil, P. Nankar, and M. Kulkarni, “Cuda parallel comput-
ing framework for stock market prediction using k-means clustering,” in
2020 International Conference on Smart Electronics and Communication
(ICOSEC), 2020, pp. 467–473.

[19] R. Taha, S. Alshakrani, and A. Alqaddoumi, “Implementing parallel
computing to enhance the performance of k-mean algorithm,” in 2021
International Conference on Data Analytics for Business and Industry
(ICDABI), 2021, pp. 140–143.

[20] X. Shan, Y. Shen, and Y. Wang, “A parallel k-means algorithm for
high dimensional text data,” in 2018 IEEE International Conference on
Consumer Electronics-Taiwan (ICCE-TW), 2018, pp. 1–2.

[21] J. Zhang, G. Wu, X. Hu, S. Li, and S. Hao, “A parallel k-means
clustering algorithm with mpi,” in 2011 Fourth International Symposium
on Parallel Architectures, Algorithms and Programming, 2011, pp. 60–64.

[22] S. Karbhari and S. Alawneh, “Gpu-based parallel implementation of
k-means clustering algorithm for image segmentation,” in 2018 IEEE
International Conference on Electro/Information Technology (EIT), 2018,
pp. 0052–0057.

[23] Ansari, Z. Afzal, A. Sardar, and T. H, “Data categorization using hadoop
mapreduce-based parallel k-means clustering,” in Journal of the Institution
of Engineers, 2019, pp. 95–103.

[24] T. Ragunthar, P. A. N. Gopinath, and M. Subhashini, “A strong reinforce-
ment parallel implementation of the k-means algorithm using message
passing interface,” in Materials Today: Proceedings, 2021, pp. 3799–3802.

[25] Z. Gao, E. Li, and Y. Jiang, “A gpu-based harmony k-means algorithm
for document clustering,” in IET International Conference on Information
Science and Control Engineering 2012 (ICISCE 2012), 2012, pp. 1–4.

[26] H. Zhao, “Research on improvement and parallelization of k-means
clustering algorithm,” in 2021 IEEE 3rd International Conference on
Frontiers Technology of Information and Computer (ICFTIC), 2021, pp.
57–61.

[27] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang, “Parallel
spectral clustering in distributed systems,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 3, pp. 568–586, 2011.

[28] L. A. Dalton, “On the optimality of k-means clustering,” in 2013 IEEE
International Workshop on Genomic Signal Processing and Statistics,
2013, pp. 70–71.

[29] D. Judd, P. McKinley, and A. Jain, “Large-scale parallel data clustering,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20,
no. 8, pp. 871–876, 1998.

[30] B. Hong-tao, H. Li-li, O. Dan-tong, L. Zhan-shan, and L. He, “K-
means on commodity gpus with cuda,” in 2009 WRI World Congress
on Computer Science and Information Engineering, vol. 3, 2009, pp.
651–655.

[31] Zıa Ur Rahman, M., Vardhan, B.V., Jenith, L., Rakesh Reddy, V.,
Surekha, S., Srinivasareddy, P. (2022). Adaptive Exon Prediction Using
Maximum Error Normalized Algorithms. In: Mathur, G., Bundele, M.,
Lalwani, M., Paprzycki, M. (eds) Proceedings of 2nd International Con-
ference on Artificial Intelligence: Advances and Applications. Algorithms
for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-
981-16-6332-1 44.

[32] Adeyemo, V., Abdullah, A., JhanJhi, N., Supramaniam, M. & Balogun,
A. Ensemble and deep-learning methods for two-class and multi-attack
anomaly intrusion detection: an empirical study. International Journal Of
Advanced Computer Science And Applications. 10 (2019)

[33] Ghosh, G., Verma, S., Jhanjhi, N., Talib, M. & Others Secure surveil-
lance system using chaotic image encryption technique. IOP Conference
Series: Materials Science And Engineering. 993, 012062 (2020)

[34] Almusaylim, Z., Zaman, N. & Jung, L. Proposing a data privacy aware
protocol for roadside accident video reporting service using 5G in Ve-
hicular Cloud Networks Environment. 2018 4th International Conference
On Computer And Information Sciences (ICCOINS). pp. 1-5 (2018)

[35] Shahid, H., Ashraf, H., Javed, H., Humayun, M., Jhanjhi, N. & AlZain,
M. Energy optimised security against wormhole attack in iot-based
wireless sensor networks. Comput. Mater. Contin. 68, 1967-81 (2021)

[36] Sennan, S., Somula, R., Luhach, A., Deverajan, G., Alnumay, W.,
Jhanjhi, N., Ghosh, U. & Sharma, P. Energy efficient optimal parent
selection based routing protocol for Internet of Things using firefly
optimization algorithm. Transactions On Emerging Telecommunications
Technologies. 32, e4171 (2021)



22

[37] Hussain, S., Ahmed, U., Liaquat, H., Mir, S., Jhanjhi, N. & Humayun,
M. IMIAD: intelligent malware identification for android platform. 2019
International Conference On Computer And Information Sciences (IC-
CIS). pp. 1-6 (2019)

Vishnu Vardhan Baligodugula (Student Member,
IEEE) is a Graduate Research Assistant working
under the supervision of Dr. Fathi Amsaad, an
Assistant Professor of Computer Science and Engi-
neering at Wright State University in Dayton, Ohio,
USA. He received a Master of Science degree in
Computer Science from Wright State University in
Spring 2023. His research interests include Machine
Learning, Parallel Programming, and Distributed
Computing.

Fathi Amsaad (Senior Member, IEEE) is an Assis-
tant Professor of Computer Science and Engineering
at Wright State University, Dayton, Ohio, USA. He
received the Bachelor’s degree in Computer Science
from the University of Benghazi, Libya, in 2002.
He received a dual Master’s degree in Computer
Science/ Computer Engineering from the University
of Bridgeport, CT, USA, in 2011/ 2012. He received
a Ph.D. degree in Engineering with emphases in
Computer Science and Engineering from the Uni-
versity of Toledo, OH, USA, in 2017. His research

interest include AI Hardware Security, Machine Learning and Trusted AI.
Both government and industry fund Dr. Amsaad’s research including NSF,
AFRL, AFOSR, Intel, NSA, and Ohio department of education. He has served
as an Organizer, Program Chair, Technical Program Committee member, Gust
Editor, and on the Reviewer Board for several international conferences and
journals. In addition to his research activities, Dr. Amsaad has established
teaching experience in hardware security, IoT and embedded systems secu-
rity, distributed computing, digital systems, and network administration and
security curriculum.

Vincent Schmidt is a Senior Research Computer
Engineer at the United States Air Force, boasting
a robust 19-year tenure in Dayton, Ohio. He holds
a Doctor of Philosophy (PhD) in Computer Engi-
neering from Wright State University (1996-2002),
complemented by a Master of Science (MS) in
Computer Engineering (1993-1995) and a Bachelor
of Science (BS) in Computer Engineering (1986-
1990) from The Ohio State University. Since joining
in September 2004, he has played a pivotal role in
diverse projects, demonstrating his commitment to

advancing computer engineering. Dr. Schmidt’s academic journey is marked
by excellence. His wealth of experience and academic prowess positions Dr.
Schmidt as a vital contributor to the field of Computer Engineering. His
research interests encompass an array of domains, including data visualization,
emergency management, pattern clustering, social networking, text analysis,
content-based retrieval, data mining, geographic information systems, sensor
fusion, software engineering, and more. Dr. Schmidt’s unwavering dedication,
coupled with his comprehensive background, underscores his significant
impact on the advancement of computer engineering within the United States
Air Force.



23

Noor Zaman Jhanjhi (N.Z Jhanjhi) is currently
working as a Professor in Computer Science (Cy-
bersecurity), Program Director for the Postgraduate
Research Degree Programmes in computer science,
Acting Program Director for Master of Applied
Computing MAC, Director of the Center for Smart
Society (CSS5) at the School of Computer Sci-
ence at Taylor’s University, Malaysia. He has been
nominated as the world’s top 2% research scientist
globally, the top researcher in computer science in
Malaysia by Scopus in terms of publications and

nominated as an Outstanding faculty member by the MDEC Malaysia for
the year 2022. He has highly indexed publications in WoS/ISI/SCI/Scopus,
and his collective research Impact factor is more than 900 plus points.
His Google Scholar H index is 46, and I-10 Index is close to 202, and
his Scopus H index is 36, with more than 550 publications on his credit.
He has several international Patents on his account, including Australian,
German, and Japanese. He edited/authored over 40 research books published
by world-class publishers, including Springer, Taylors and Frances, Willeys,
Intech Open, IGI Global USA, etc. He has excellent experience supervising
and co-supervising postgraduate students, and more than 33 Postgraduate
scholars graduated under his supervision. Prof. Jhanjhi serves as Associate
Editor and Editorial Assistant Board for several reputable journals, such as
PeerJ Computer Science, CMC Computers, Materials & Continua, Computer
Systems Science and Engineering CSSE and Frontier in Communication and
Networks. He received Outstanding Associate Editor for IEEE ACCESS.
Active reviewer for a series of top-tier journals has been awarded globally
as a top 1% reviewer by Publons (Web of Science). He is an external
Ph.D./Master thesis examiner/evaluator for several universities globally and
evaluated 50 plus theses. He has completed more than 40 internationally
funded research grants successfully. He has served as a Keynote/Invited
speaker for more than 60 international conferences and chaired international
conference sessions internationally. He has vast experience in academic
qualifications, including ABET, NCAAA, and NCEAC, for 10 years. His
research areas include Cybersecurity, IoT security, Wireless security, Data
Science, Software Engineering, and UAVs.


