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Closed-Loop Deep Brain Stimulation with
Reinforcement Learning and Neural Simulation

Chia-Hung Cho, Pin-Jui Huang, Meng-Chao Chen, Chii-Wann Lin*

Abstract— Objective: Deep Brain Stimulation (DBS) is
effective for movement disorders, particularly Parkinson’s
disease (PD). However, a closed-loop DBS system using
reinforcement learning (RL) for automatic parameter tun-
ing, offering enhanced energy efficiency and the effect of
thalamus restoration, is yet to be developed for clinical and
commercial applications. Methods: In this research, we in-
stantiate a basal ganglia-thalamic (BGT) model and design
it as an interactive environment suitable for RL models.
Four finely tuned RL agents based on different frameworks,
namely Soft Actor-Critic (SAC), Twin Delayed Deep Deter-
ministic Policy Gradient (TD3), Proximal Policy Optimiza-
tion (PPO), and Advantage Actor-Critic (A2C), are estab-
lished for further comparison. Results: Within the imple-
mented RL architectures, the optimized TD3 demonstrates
a significant 67% reduction in average power dissipation
when compared to the open-loop system while preserving
the normal response of the simulated BGT circuitry. As a
result, our method mitigates thalamic error responses un-
der pathological conditions and prevents overstimulation.
Significance: In summary, this study introduces a novel
approach to implementing an adaptive parameter-tuning
closed-loop DBS system. Leveraging the advantages of
TD3, our proposed approach holds significant promise
for advancing the integration of RL applications into DBS
systems, ultimately optimizing therapeutic effects in future
clinical trials.

Index Terms— basal ganglia-thalamic (BGT) network,
closed-loop deep brain stimulation (cl-DBS), Parkinson’s
disease (PD), reinforcement learning (RL).

I. INTRODUCTION

PARKINSON’S disease (PD) is a chronic neurodegenera-
tive disease that impacts the central nervous system. It

ranks as the second most prevalent neurodegenerative dis-
ease, primarily targeting the motor neuron system, following
Alzheimer’s disease [1]. Globally, there are over 10 million
individuals living with PD [2]. Parkinson’s Disease (PD) is
characterized by the degeneration of dopaminergic neurons in
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the substantia nigra pars compacta (SNc) [3]. The reduction
in dopamine levels due to the degeneration results in primary
motor symptoms, such as tremors, limb rigidity, bradykinesia,
and postural instability [4]. Non-postural symptoms include
mood changes, depression, and other emotional alterations, as
well as challenges related to swallowing, chewing, speaking,
and urinary and skin problems. Levodopa/L-dopa medications
are effective in the early stages, but their efficacy diminishes
as the disease progresses, leading to motor complications. At
this critical juncture, deep brain stimulation (DBS) becomes a
promising advanced treatment option. High-frequency (≥100
Hz) DBS has proven effective in regulating the activities of
stimulated downstream nuclei [5].

DBS can be broadly classified into two categories: open-
loop (ol-DBS) and closed-loop (cl-DBS). The significant dis-
tinction lies in the parameter tuning approach. In the open-
loop system, commonly used in clinical practice, physicians
manually adjust parameters. In contrast, cl-DBS utilizes dis-
criminative biomarkers, enabling automatic parameter regula-
tion through tailored algorithms. While the open-loop system
is characterized by a simpler architecture and lower resource
requirements, it has drawbacks such as increased time and
power consumption, subject dependency, and a reduced battery
lifespan [6]. Among these concerns, overstimulation of deep
brain regions presents serious concerns, leading to adverse ef-
fects like dystonia, dyskinesia, freezing of gait, or pathological
laughter [7].

Incorporating machine learning into closed-loop design
enables the automatic extraction of patterns and features
in brain signals for decision-making, eliminating the need
for manually crafted predefined signal processing rules. This
approach is beneficial for various aspects, including computer-
aided diagnosis/detection (CAD) for DBS candidate selection,
optimization of cl-DBS algorithms, surgical targeting, etc
[8], [9]. Our primary focus lies in optimizing the cl-DBS
algorithm, addressing the crucial post-surgical challenge of
DBS device programming for therapy [10].

As a subfield of machine learning, reinforcement learning
(RL) holds considerable strength in dealing with dataset-
free and dynamic decision problems, which sub-consequently
preserves all costs in signal acquisition. It enables an agent to
learn how to perceive and interpret an interactive environment
and take suitable action to maximize reward through trial and
error. Such a process is akin to biological learning systems.
Despite significant research and applications in fields such as
robotics, gaming, and autonomous driving, the utilization of
RL in the medical domain has yet to be thoroughly explored.

Our study aims to develop a cl-DBS algorithm for PD using
RL to enhance DBS parameter adjustment, as depicted in
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Fig. 1. The overall architecture of this study. The solid blue lines
represent what we will implement in this work, whereas the dashed
green lines represent a practical direction for the future. Both present
the closed-loop characteristics.

Figure 1. Initially, we construct an interactive Basal Ganglia-
Thalamic (BGT) network environment based on the Rubin-
Terman model [11]–[13], simulating brain dynamics in both
healthy and pathological states. Subsequently, representative
biomarker signals are identified for feature extraction, enabling
the training of an adaptive agent to tune parameters through in-
teraction with the environment. A comparative analysis is con-
ducted among four mainstream RL training frameworks—Soft
Actor-Critic (SAC), Twin Delayed Deep Deterministic Policy
Gradient (TD3), Proximal Policy Optimization (PPO), and
Advantage Actor-Critic (A2C)—to observe distinctive charac-
teristics and potential in the context of DBS parameter adjust-
ment. Results demonstrate the effectiveness and superiority of
our TD3-based method in terms of power efficiency and error
response.

II. RL-BASED CL-DBS RELATED WORKS

This section outlines recent research utilizing reinforcement
learning techniques for PD treatment via DBS.

Lu et al. [14] established a basal ganglia network from
So et al.’s work [13] as the RL exploration environment.
Additionally, they integrated a Cerebellar Model Articulation
Controller (CMAC) neural network into the actor-critic RL
framework, offering benefits in nonlinear function approxima-
tion. The findings indicate that the RL-based DBS method
consumes 63.3% of the energy compared to open-loop DBS,
demonstrating the capacity to restore distorted relay reliability
in the thalamus.

Krylov et al. [15] effectively applied RL-based suppres-
sion to regular, chaotic, and bursting collective oscillations
modeled using Bonhoeffer–van der Pol oscillators and the
Hindmarsh–Rose neuronal model. They employed Proximal
Policy Optimization (PPO) to train RL agents, enabling them
to learn optimal policies for suppressing synchronous neuronal
activity.

Gao et al. [16] introduced a Markov decision process
(MDP) model to capture the dynamics of neuron activities in
the Basal-Ganglia network. Employing convolutional neural
networks (CNNs) within the actor-critic architecture, they
extracted features from the time series input. Their results
showcased the alleviation of PD symptoms with an average
stimulation frequency of 45 Hz, indicated by a decrease in the
error index and spectral density within the beta band.

Agarwal et al. [17] introduced an RL algorithm, leveraging
TD3, to suppress synchronization in neuronal activity during
episodes of neurological disorders with reduced power con-
sumption. The proposed framework undergoes a comparative
analysis against other RL algorithms, specifically the A2C, the
Actor-critic with Kronecker-featured trust region (ACKTR),
and the Proximal Policy Optimization (PPO). This evaluation
is conducted on an ensemble of oscillators, including the
Bonhoeffer-van der Pol and Hindmarsh-Rose models.

Acknowledging the inherent limitations of neurobehavioral
simulations in fully capturing real brain pathology, we offer
a conductance-based (Hodgkin-Hoxley) environment for com-
parative analysis of different RL frameworks, encompassing
both on-policy and off-policy gradient methods [18]. Fur-
thermore, most studies have overlooked the potential coex-
istence of pathological and healthy states which may result
in a scenario where the RL agent exclusively identifies the
disease state, leading to overstimulation. Additionally, feature
extraction methods relying on machine learning methods lack
explicit guidance on their application to extracellular electro-
physiological signals, such as electroencephalograms (EEGs)
and local field potentials (LFPs). We prioritize the utilization
of well-established and validated features (refer to Section III-
C). This ensures that these features retain their effectiveness
when applied to real-world signals.

Fig. 2. Illustration of the simulated regions (purple box) and the related
currents. Purple ovals are the four neuron types in the basal ganglia-
thalamus (BGT) network, containing 10 neurons in each nucleus. Exci-
tatory inputs are represented by black arrows, including 1⃝ input from
the sensorimotor cortex (ISM ), 2⃝ constant bias current, Iapp(STN),
to STN, 3⃝ constant bias current, Iapp(GPe), from Stiatum to GPe,
4⃝ constant bias current, Iapp(GPi), from Stiatum to GPi, 5⃝ synaptic

current from STN to GPe (ISTN→GPe), and 6⃝ synaptic current from
STN to GPi (ISTN→GPi). Inhibitory inputs are indicated by gray
arrows, namely 7⃝ synaptic current from GPi to TH (IGPi→TH ), 8⃝
synaptic current from GPe to STN (ISTN ), 9⃝ synaptic current from
GPe to GPi (IGPe→GPi), and 10⃝ synaptic current from GPe to itself
(IGPe→GPe). Refer to Equation (1)–(3).
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III. METHODS

A. BGT Network Model Simulation
Firstly, we establish the ”BGT Network,” illustrated in

Figure 1, focusing on key neural nuclei within the basal
ganglia (BG). The subthalamic nucleus (STN), external globus
pallidus (GPe), internal globus pallidus (GPi), and thalamus
(TH) relay neurons are crucial components in our simula-
tion. Employing conductance-based models, we simulate these
four nuclei, interconnected through inhibitory and excitatory
synapses (refer to Figure 2.) Each nucleus comprises 10
neurons to balance fidelity and computational efficiency. The
parameters and equations of this biophysics model are origi-
nated from the work by So et al. [13] and are implemented in
Python. For a comprehensive understanding of equations and
parameters, please consult the supplementary material. The
BGT network simulation encompasses both normal/healthy
and PD/pathological conditions.

The membrane potential (va) of each neuron obeys Kirch-
hoff’s current balance law, where the subscript a denotes the
sub-region, and is presented mainly in differential form as
follows:

Cm
dvSTN

dt
=− IL − INa − IK − IT − ICa − IAHP

− IGPe→STN + Iapp(STN) + IDBS , (1)

Cm
dvGPe/i

dt
=− IL − INa − IK − IT − ICa − IAHP

− ISTN→GPe/i − IGPe→GPe/i + Iapp(GPe/i), (2)

Cm
dvTH

dt
=− IL − INa − IK − IT − IGPi→TH + ISM . (3)

In the neuronal models, the term Cmdv/dt represents the
capacitive current responsible for charging the membrane
capacitance Cm in STN, GPi, GPe, and TH-type neurons. The
currents IL, INa, IK , IT , ICa, IAHP correspond to leak,
sodium, potassium, low-threshold calcium, high-threshold cal-
cium, and voltage-independent “afterhyperpolarization” potas-
sium intrinsic ion channel currents. These intrinsic currents
are characterized by gating variables that dictate the activa-
tion/opening and inactivation/blocking of the channels. Exter-
nal currents, including IDBS , ISM , Iα→β , and Iapp (depicted
in Figure 2), influence subsequent elements in the model.

We place the IDBS term in (1) since assuming the DBS
electrode is placed in the STN region and delivered stimulation
waveforms. Due to safety concerns, IDBS is a symmet-
ric, charge-balanced biphasic pulse, where anodic stimulation
comes first and follows the cathodic stimulation with no in-
terphase delay (cf. figure 3). Maintaining a “charge-balanced”
condition helps prevent undesirable faradic reactions at the
electrode-tissue interface over time, which can pose a risk to
brain tissue. The pulse width is fixed at 60 µs in consideration
of the observed phenomenon that the overall therapeutic win-
dow diminishes with an increase in pulse width [19]. Addition-
ally, maintaining a fixed pulse width helps minimize charge
injection and reduce power consumption [20]. The trained RL
agent will determine additional stimulation parameters, such
as frequency and amplitude.

TH neurons do not exist intrinsically firing properties in
the absence of sensorimotor inputs, ISM . ISM is modeled as a
series of anodal, monophasic current pulses with an amplitude

Fig. 3. Illustration of the biphasic, charge-balanced, symmetric DBS
pulses we applied throughout our simulation work.

of 3.5µA/cm2 and a pulse duration of 5ms. The instantaneous
frequencies of this pulse conform to a gamma distribution with
an average rate of 14 Hz and a variation of 0.2 to emulate the
irregular nature of incoming signals from the cortex. As a
role of a relay station, TH cells should respond faithfully, and
promptly to the periodic input with a single action potential
(AP) [13]. This signal will subsequently be transmitted to the
brainstem and spinal cord to facilitate the execution of actions.
In essence, relay error exhibits a high correlation with motor
symptoms, as indicated in [21]. It functions as a quantitative
metric for assessing PD severity in our study. We quantify the
degree of response error using the Error Index (EI), which is
formalized as:

EI =
Nerror

NSM
. (4)

According to the equation, EI is defined as the number of error
transmissions (Nerror) over the total number of sensorimotor
inputs (NSM ). It depends upon the average of all (10) TH
channels/neurons. Higher EI indicates higher PD severity and
lower relay reliability (RR) of TH neurons.

Currents in the form of Iα→β stand for synaptic inhibitory
or excitatory current from presynaptic nucleus α (α ∈ {STN,
GPe, GPi}) to postsynaptic nucleus β (β ∈ {GPe, GPi, TH}).
Each STN neuron receives inhibitory input from two GPe neu-
rons. Additionally, each GPe or GPi neuron receives excitatory
input from two STN neurons and inhibitory input from two
other GPe neurons. The effect of the overall BG network and
external DBS is propagated to TH through GPi, i.e., IGPi→TH ,
providing us to evaluate the efficacy of stimulation through the
quantified EI.

Iapp denotes the constant external applied/bias currents in
STN, GPe, and GPi nuclei, which is the main difference
between the healthy and PD states in simulation. In the
literature [11]–[13], they decreased the amount of Iapp in the
PD state for the outcome of fitting physiological signals, and
so does our work. Based on the PD etiology, reducing the Iapp
level elucidates the effect of insufficient dopamine secretion
by SNc since currents from other brain regions or striatum are
correspondingly lessened.

B. Biomarker Selection

In the BGT network, we call for a discriminative sig-
nal as the environmental output. Given the varied per-
formance of TH in different states, we hypothesize that
the IGPi→TH synaptic currents carry distinct signal rep-
resentations. IGPi→TH is comprised of: IGPi→TH =
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Fig. 4. Thalamus voltage traces, synaptic input signals from GPi to
TH (SGPi), and scalogram within the beta band in three conditions:
(a) normal/healthy (EI=0.0), (b) PD without DBS (EI=0.5), and (c) PD
with DBS conditions(EI=0.0). ISM inputs are highlighted in red pulse.
+: represents a “bursting” error response (generating more than one
AP); *: represents a “missing” error response (TH neuron signal does
not constitute an AP). Scalograms are calculated through continuous
wavelet transform with the default Morse wavelet. There is a bright band
(high magnitude/power) between 10–20 Hz in (b) PD condition, which
is the so-called beta band oscillation. The oscillation is obscure in (a)
healthy conditions and is eliminated with biphasic DBS in (c).

gGPi→TH [vTH − EGPi→TH ]
∑

SGPi, where gGPi→TH is
the maximal synaptic conductance, SGPi denotes the synaptic
variable from the presynaptic structure GPi, and EGPi→TH is
the reversal potential across synapses. Among these compo-
nents, we refer to the synaptic variable-based control strategy
proposed by Gorzelic et al. [22], setting SGPi as a biomarker
signal. We can further examine the correlation between the
SGPi signals and TH membrane potentials in three different
states through figure 4. In figure 4 (b), substantial synchronous
in GPi nuclei is sufficient to affect thalamic activity through
large periodic oscillations/fluctuations in the SGPi signal,
which results in a higher EI compared to (a) and (c). The
applied DBS can stabilize the SGPi signal, restore faithful
relay reliability, and reduce the error response of TH neurons
to ISM .

C. Problem Formulation

We customized the OpenAI Gym [23] source, devising a
tailored interface that encompasses appropriate action space,
state space, reward function, total episode length, and step
length. As an initial condition, the environment randomly
assigns a state from healthy and PD when an episode starts,

aiding in replicating the irregular occurrence of PD.
1) Step Length: The step length significantly influences the

time resolution of the action and state space, presenting a
trade-off. A shorter step length provides higher resolution in
the control action space and more dynamic DBS waveforms.
However, this comes at the cost of potentially diminishing
the meaningfulness of state signals to the RL agent and
limiting the observation of long-term features. In our study,
we selected a 100-millisecond (ms) step length, guaranteeing
the occurrence of at least one ISM input pulse at 14 Hz.

2) Action: Action space is composed of the DBS frequency
and amplitude value in a total dimension of 2. These values
serve as the output of the RL agent and the next state
input to the BGT environment. Several studies evaluated the
effects of variation in the DBS parameters and suggested
suitable ranges ( [19], [20], [24], [25]). Borrowing from those
works, both frequency and amplitude are continuous variables
within the range of 100∼185 Hz and 0∼5000 µA/cm2, while
the pulse width remains fixed at 60 µs. Initially, we will
set the action space to range from -1 to 1, aligning with
the common practice in many RL algorithms that utilize a
Gaussian distribution (initially centered at 0 with a standard
deviation of 1) for continuous actions. Subsequently, the value
will be denormalized back to the desired range within the BGT
environment.

3) State: The state space comprises the feature extraction
value extracted from the biomarker signal SGPi (as detailed in
section III-B ) in a total dimension of 6. Contrary to the action
space, it serves as the input of the RL model and the output of
the BGT environment. We adopt the following extracellular-
based feature extraction techniques.

• Signal standard deviation.
• Hjorth Parameters: Hjorth Parameters, comprising ac-

tivity, mobility, and complexity, offer efficient statis-
tical characterization of time-domain signals. Initially
developed for EEG analysis due to low computational
complexity [26], they have proven effective in enhancing
PD diagnosis with an accuracy of up to 89.3% [27].

• Beta Band Power: Increasing evidence indicates a correla-
tion between beta-frequency band (12–30 Hz) oscillation
powers in the LFPs recorded in the STN of Parkinson’s
Disease (PD) patients and motor impairments such as
bradykinesia/rigidity [28]. PD patients exhibit elevated
beta power spectra in both STN and GPi neurons, but
these can be suppressed by adequate stimulation am-
plitude or medication. Figure 4illustrates the substantial
difference in the scalograms of SGPi under distinct
conditions.

• Sample Entropy (SampEn): SampEn has proven effective
in evaluating the complexity of physiological time-series
signals and diagnosing disease states [29]. Its advantages
over approximate entropy (ApEn), such as data length
independence and ease of implementation, make it a
preferable choice. A lower entropy value indicates a
higher degree of self-similarity in the dataset, reflecting
lower complexity and irregularity, which is often ob-
served in PD cases. In the context of subthalamic nucleus-
local field potential (STN-LFP) signals, neuronal entropy
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exhibited a progressive increase with the rise of DBS
amplitude, coinciding with the suppression of beta band
oscillation—a characteristic that can be interpreted as an
inverse indicator [30].

In figure 5, scaled values of the above feature extraction meth-
ods are depicted for both synaptic signal, SGPi from the BGT
environment and the EEG dataset from [31] across PD and
control (healthy) states. The observed consistency in trends
between PD and healthy states suggests promising potential
for their application in subsequent agent deployments.

4) Episode Termination Prerequisites: It is inherently logical
to conclude an episode when the state is deemed to be
“sufficiently optimal,” as defined by the following criteria:

• Current EI is zero ( no error response in current state).
• The average EI is below 0.1.
• The average beta band power is suppressed below a

threshold value (Tβ).
Satisfying the above demands will lead to an episode termi-
nation.

5) Reward: Crafting rewards based on reliability compo-
nents (EI) can be a beneficial approach, considering that
reducing thalamus EI is one of the primary objectives in
this task. We define the improvement degree of EI before
(EIt−1) and after (EIt) the action (IDBS(t)) as the first
reward component:

r1 = EIt−1 − EIt. (5)

r1 could be referred to as a revised score if EIt dropped and
a penalty term if EIt increased. Next, we structure the energy
expenditure penalty using the root mean square of IDBS(t),
where the frequency and amplitude components are actions
output from the RL model, as:

r2 = −IRMS

IRMS =

√
1

T

∫ T

0

I2DBS(t)dt,
(6)

where T denotes the duration of the IDBS stimulation on STN
neurons. To expedite the model’s adherence to the termination
condition without intentionally prolonging the episode, we
introduce a “current state penalty” based on the current EI:

r3 = −EIt (7)

Finally, a compensation value for switching off the DBS in
healthy states to encourage the model to conserve energy,

r4 =

{
1, if r1 ∩ r2 ∩ r3 = 0
0, otherwise. (8)

Jointly, the shaped reward function is: R(t) = λ1r1 + λ2r2 +
λ3r3 + λ4r4, where λ are weighting coefficients, in our case,
with λ1 = 250, λ2 = 0.01, λ3 = 15, λ4 = 10. The weighting
coefficients can be tuned based on the importance of each
component.

D. RL Actor-Critic Frameworks Implementation
In this study, we evaluate the BGT environment using the

Soft Actor-Critic (SAC [32]), Twin Delayed Deep Determinis-
tic Policy Gradient (TD3 [33]), Proximal Policy Optimization

Fig. 5. Preliminary observations on the effect of feature extraction
in synaptic signals and EEG signals. In subfigure(b), we select the
channels situated above the primary motor cortex (C3, FC3, CP3, C5,
FC4, C4, C6, CP4) from the Iowa dataset in [31] for verification. Note
that normalization is required for further use of these features.

(PPO [34]), and Advantage Actor-Critic (A2C [35]) frame-
works. All models share the same critic and actor architecture,
implemented using PyTorch [36].

SAC is an off-policy actor-critic algorithm that incorporates
an entropy regularization term for exploration encouragement.
Its objective function combines expected return and policy
distribution entropy, preventing excessive determinism for im-
proved exploration. The learnable temperature parameter (α),
updated through gradient descent, controls entropy regulariza-
tion strength. Critic and target critic networks guide policy
optimization, with soft updates ensuring gradual adaptation.
The actor network employs a Gaussian policy parameterized
by the mean and standard deviation for stochasticity.

TD3 addresses issues in deep deterministic policy gradient
(DDPG [37]) by reducing the overestimation bias with twin
critic networks, delayed updates of the actor, and action
noise regularization. It is an off-policy algorithm, similar to
SAC, and it leverages the advantages of a replay buffer.
This approach enhances data efficiency, diminishes correla-
tions between consecutive samples, facilitates efficient batch
learning, and enables the algorithm to revisit and learn from
past experiences. The critic networks are updated to minimize
the temporal difference (TD) between the predicted Q-values
and the target values, in both TD3 and SAC.

PPO is an on-policy algorithm, meaning it learns from the
data collected by the current policy. The rollout buffer stores
on-policy experiences sampled from the most recent policy
to ensure that the learning process remains focused on the
current policy. It involves replacing the intricate constrained
optimization step in the Trust Region Policy Optimization
(TRPO [38]) with a simpler surrogate objective function that
incorporates advantage, a clipping mechanism, and the entropy
of the policy.

A2C is an on-policy algorithm that integrates policy and
value learning, ensuring simplicity and stability in training
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with synchronous updates. It directly optimizes the policy
using the advantage function with the value function baseline,
represented as the difference between the estimated value
function and the value of the current state. Notably, A2C does
not explicitly enforce a trust region constraint, allowing for
potentially larger policy updates.

IV. RESULTS

Figure 6 and Figure 7 illustrate the control strategies per-
formed by agents trained using the SAC, TD3, PPO, and A2C
RL frameworks in the PD and healthy state. Stimulation is
activated after 1000 milliseconds (ms). Each subplot includes
the biomarker signal (SGPi), action signal (IDBS), thalamus
action potentials in response to sensorimotor input (ISM ), and
the scalogram of the SGPi signal in the beta frequency band.
The corresponding reduced percentage compared to ol-DBS
and average EI for each framework are summarized in Table
I.

In the PD state, the agents are anticipated to administer opti-
mal stimulation based on signal features, effectively mitigating
the existing pathology without undue energy expenditure. Fig-
ure 6 reveals that both SAC and TD3 agents manifest actions
with low variability, contributing to significant corrections
in thalamic relay reliability (both with EI values of 0) and
the suppression of oscillations in the beta frequency band.
Notably, TD3 exhibits superior energy efficiency compared
to SAC. However, under the parameter control of on-policy
PPO and A2C agents, the resulting actions exhibit heightened
variability, and the adjustments in parameters lead to less
effective suppression in the PD state. Due to the limited
suppression effect on the beta band oscillation, a distinct bright
band continues to appear in the scalogram after 1000 ms.
Quantitatively, the EI values are notably higher, reaching 0.15
and 0.23, respectively, as shown in Table I.

In the healthy state, guided by the reward design, the
agents are expected to minimize or deactivate stimulation to
conserve energy without inducing side effects. SAC maintains
a stable output with small amplitudes, and the application
of stimulation does not result in side effects or an increase
in EI. Remarkably, under the control of the TD3 agent, it
effectively modulates the amplitude to zero, indicating the
cessation of stimulation. This control strategy demonstrates
an optimal strategy. PPO and A2C strategies typically show
higher variability. Although they exhibit stability in mild
oscillations in the healthy state, a slightly increased power
in the beta frequency band is observed on the scalogram
compared to the former two strategies. Their energy efficiency
is slightly lower, with values of 78% and 77%, respectively,
subsequent to TD3.

In Table I, the bottom two rows present average EI values
for the scenarios without DBS intervention and under ol-
DBS for comparison. Especially in the ol-DBS scenario,
the elevation of EI in the healthy state highlights potential
concerns related to overstimulation and its associated side
effects, while the restorative effect is constrained in the PD
state.

In summary, off-policy approaches exhibit better stability
in generating actions for this task and demonstrate superior

TABLE I
EVALUATION METRICS FOR ALL TRAINED RL AGENTS, OPEN-LOOP DBS

(OL-DBS), AND WITHOUT DBS IN PD AND HEALTHY CONDITIONS.

PD state Healthy state

Reduced
Percentage Avg. EI Reduced

Percentage Avg. EI

Off-policy
SAC 58% 0.0 72% 0.0

TD3 67% 0.0 100% 0.0

On-policy
PPO 65% 0.15 78% 0.0

A2C 62% 0.23 77% 0.01

ol-DBS - 0.043 - 0.27

Without DBS - 0.5 - 0.01

*In ol-DBS regime, ´IDBS(t) is with frequency of 130 Hz and amplitude
of 2500 µA/cm2. The reduced percentage is calculated by:
1 − ( ˆIRMS/ ´IRMS) × 100%, where ˆIRMS is for root mean square of
target IDBS(t), while ´IRMS is for the corresponding value in ol-DBS.

restoration capability compared to on-policy agents. However,
SAC tends to employ a more greedy strategy, resulting in
relatively higher energy expenditure. Among the off-policy
frameworks, PPO slightly outperforms A2C quantitatively,
with its control strategy resembling SAC in the healthy state.
TD3 stands out in both scenarios across all frameworks: in
the PD state, it effectively restores thalamic relay reliability,
suppresses beta frequency oscillations, and maintains efficient
energy usage; in the healthy condition, it conserves energy by
deactivating stimulation, preventing side effects.

V. DISCUSSION

All RL-based cl-DBS algorithms encounter the challenge of
establishing an effective interaction environment. We focused
on the core dynamic changes of action potentials at the bottom
layer of nerve cells in the BGT network. This simulation
allows us to capture information between cell synapses, treat-
ing them as biomarker signals and extracting features for
use as inputs in the RL framework. In contrast to other
related literatures, we employ random mechanisms to simulate
scenarios where pathological and normal states intermittently
emerge in the design of the environment. Additionally, a BGT-
Gym framework is provided, allowing for modifications to
action and state spaces, reward design, etc. The chosen feature
extraction methods, validated in extracellular electrophysiolog-
ical signals (as seen in literature [26]–[30], etc.), imply their
feasibility for future deployment. Considering additional brain
nuclei in the pathological network may reveal more numerical
features with potential for RL training, including gamma
and theta band oscillations [39]. Utilizing a personalized and
electrophysiologically-based neural simulation model, such as
the one in [40], facilitates more effective customization of
parameter adjustments to individual differences.

We fine-tuned parameters in four RL architectures, evaluat-
ing for energy efficiency and error correction. Due to shared
dynamics between PD and healthy states in our environment,
off-policy algorithms efficiently reuse data and generalize
across states. Experience replay allows for more stable policy
updates and can be beneficial when dealing with diverse sce-
narios. In TD3, the implementation of exploration strategies,
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Fig. 6. Control strategy in the PD state by (a) SAC, (b) TD3, (c) PPO, and (d) A2C RL agents. Stimulation is activated after 1000 milliseconds. Each
subplot includes the biomarker signal (SGPi), action signal (IDBS), thalamus action potentials, sensorimotor input (ISM ), and the scalogram of
the SGPi signal in the beta frequency band, from top to bottom.

Fig. 7. Control strategy in the healthy state by (a) SAC, (b) TD3, (c) PPO, and (d) A2C RL agents. Stimulation is activated after 1000 milliseconds.
Each subplot includes the biomarker signal (SGPi), action signal (IDBS), thalamus action potentials, sensorimotor input (ISM ), and the scalogram
of the SGPi signal in the beta frequency band, from top to bottom.



8

such as noise injection in the action space, also proves to be
effective in handling various initial states.

VI. CONCLUSION

This study presents a significant advancement in the ap-
plication of cl-DBS for PD. By instantiating a basal ganglia-
thalamic (BGT) model and designing it as an interactive RL-
friendly environment, we established four finely tuned RL
agents (SAC, TD3, PPO, A2C) for comprehensive comparison.

The major findings highlight the remarkable efficacy of the
optimized TD3 architecture, which demonstrated a substantial
67% reduction in average power dissipation compared to
the open-loop system. Notably, this reduction was achieved
while preserving the normal response of the BGT network,
showcasing the potential for improved energy efficiency in cl-
DBS. TD3 effectively mitigated thalamic error responses under
pathological conditions and exhibited optimal performance to
achieve complete power savings under healthy conditions.
These results underscore the significance of our adaptive
parameter tuning for optimizing therapeutic effects.

The integration of RL algorithms into DBS controllers
represents a promising avenue for advancing neuromodulation
therapies. These controllers offer dynamic and adaptable pa-
rameter tuning, enhancing the precision and efficacy of stim-
ulation. The envisioned future development and deployment
of such controllers hold the potential to revolutionize DBS
treatments, offering personalized and optimized interventions
tailored to individual patient needs.
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