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Abstract

The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA)

is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model

that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient

amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a

large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep

generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can

handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied

to multi-objective optimization design, with the optimization completed in 13-15 seconds.
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Abstract— The optimal design of interior permanent magnet 

synchronous motors requires a long time because finite element 

analysis (FEA) is performed repeatedly. To solve this problem, 

many researchers have used artificial intelligence to construct a 

prediction model that can replace FEA. However, because the 

training data are generated by FEA, it takes a very long time to 

obtain a sufficient amount of data, making it impossible to train a 

large-scale prediction model. Here, we propose a method for 

generating a large amount of data from a small number of FEA 

results using machine learning. An automatic design system with 

a deep generative model and a convolutional neural network is 

then constructed. With its sufficient data, the proposed system can 

handle three topologies and three motor parameters in a wide 

range of current vector regions. The proposed system was applied 

to multi-objective optimization design, with the optimization 

completed in 13-15 seconds.  

 
Index Terms—Convolutional neural network, design 

optimization, generative adversarial network, permanent magnet 

motor, semisupervised learning.  

 

I. INTRODUCTION 

NTERIOR permanent magnet synchronous motors 

(IPMSMs) are widely adopted in electric vehicles and 

industrial robots because of their high output, efficiency, and 

reliability [1], [2]. However, a major problem with IPMSMs is 

their long optimization period, which is caused by the high 

degree of freedom in their design and the use of finite element 

analysis (FEA). 

Regarding the high degree of freedom in design, an IPMSM 

rotor can be designed with a large number of geometries due to 

the embedded permanent magnet (PM). Various design 

alternatives thus need to be considered during optimization. 

Sun et al. [3] classified the dimensions of IPMSMs into three 

categories based on a factor analysis and performed 

multi-objective optimization. Islam et al. [4] optimized two 

rotor dimensions at multiple output points of an IPMSM using 

the response surface method. These dimensional optimizations 

were effective for optimizing the shape for a given topology. 

However, it is difficult to deal with multiple topologies because 

 
 

the geometries depend on the initial shape. To solve this 

problem, many studies have proposed rotor design based on 

topology optimization. Ishikawa et al. [5] minimized PM 

volume using multi-material topology optimization for an 

asymmetric IPMSM rotor. Sato et al. [6] applied multi-material 

topology optimization to an IPMSM rotor using a normalized 

Gaussian network. Although these methods produce 

completely new topologies, some topologies cannot be 

manufactured and a very large number of candidate solutions 

must be considered in the optimization due to the huge design 

space. There is thus a need for a method for generating 

manufacturable design alternatives with multiple topologies in 

a small design variable space. 

Regarding electromagnetic modeling, finite element analysis 

(FEA), a numerical modeling method, is generally used to 

calculate the characteristics of an IPMSM. FEA can be used to 

obtain very accurate operating characteristics of IPMSMs, but 

it is time-consuming. Many researchers have thus investigated 

the construction of prediction models using artificial 

intelligence (AI) to reduce analysis time while maintaining the 

accuracy of FEA. Dhulipati et al. [7] used support vector 

regression (SVR) to train a prediction model for a six-phase 

IPMSM. Hao et al. [8] trained a model to learn the relationship 

between the dimensions and torque ripple of an IPMSM using 

radial basis function networks, and used the model for 

optimization. Pan et al. [9] used XGBoost to learn the 

relationship between the torque characteristics and the 

structural parameters of permanent magnet arc motors, and 

used the model for optimization. Barmada et al. [10] used a 

convolutional neural network (CNN) to learn the relationship 

between the shape and torque characteristics of synchronous 

reluctance motors, and used the CNN for optimization. 

Asanuma et al. [11] trained a model to learn the relationship 

between the topology near the rotor surface and the torque 

characteristics of an IPMSM using transfer learning and used 

the model for optimization. These conventional AI-based 

modeling methods achieve high accuracy but take into account 

only specific geometries or one current vector condition, 

making them unsuitable for various applications. Therefore, 

there is a need for a more general modeling technique. 

The small scale of the above AI-based modeling techniques 
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is due to the difficulty in obtaining sufficient data. For example, 

when training a prediction model to replace FEA, the training 

data are generally generated by FEA. Assuming that the FEA 

for generating training data takes 12.4 minutes to analyze the 

speed-torque characteristics of an IPMSM [12], a FEA of 

100,000 datasets would take more than two years. 

This study solves the problem of obtaining sufficient data by 

applying deep learning models to design and modeling. Fig. 1 

shows an overview of the present study. First, for data 

acquisition, we use semi-supervised learning where the training 

data are generated using machine learning. In [12], the authors 

proposed a method for training a prediction model that can 

accurately predict the speed-torque characteristics of 

double-layered IPMSMs from a small number of FEA results 

using machine learning. This prediction model can be used to 

calculate the operating characteristics of various 

double-layered IPMSMs from their rotor shape to generate a 

large dataset in a short time. Thus, by constructing a machine 

learning model that is limited to a certain typical rotor shape 

from a small dataset, and applying the data generation process 

to various shapes, we can quickly obtain sufficient data. 

Using the generated data, an automatic rotor core design 

system based on two deep learning models is constructed. The 

design system consists of a deep generative model to design the 

rotor core and a characteristic prediction model to predict the 

characteristics of the generated rotor design. The deep 

generative model uses a generative adversarial network (GAN) 

and the characteristic prediction model uses a CNN. The two 

trained deep learning models are then used for multi-objective 

optimization design. It is shown that the design time is 

significantly reduced. The contributions of this paper can be 

summarized as follows.  

a) A quick training data generation method for large-scale 

deep learning is proposed. 

b) A deep generative model that integrally represents 

different topologies in the latent space is applied. 

c) A prediction model of FEA that can be applied in a 

wide range of current vector regions is presented. 

d) An automatic design system for IPMSMs that enables 

quick design is proposed. 

The rest of this paper is organized as follows. Section II 

describes the proposed method for quickly generating training 

data. Section III describes deep learning based on the generated 

dataset. Section IV shows the results of torque maximization 

and PM volume minimization using the proposed automatic 

design system. Section V summarizes the results. 

II. OBTAINING TRAINING DATA 

Semi-supervised learning with machine learning is used to 

quickly generate a sufficient amount of data for training the 

deep learning models. In this section, we describe the process 

of generating training data. 

The target of this study is an IPMSM with 8 poles and 48 

slots of distributed winding stators. Fig. 2 shows the rotor 

topologies of 2D-, V-, and Nabla-structure IPMSMs [2], [13]. 

In this study, we generate data based on these three types of 

topology. The magnetic materials are the same as those in [14], 

i.e., the magnet is NMX-S49CH and the iron core is 

10JNEX900. See [2] for detailed information on the stator 

geometry, body size, and other parameters. 

First, the relationship between rotor shape and speed-torque 

characteristics is learned using the method proposed in [12]. 

For the prediction model in [12], the input variables are the 

geometry and current conditions. The geometry is represented 

numerically using dimensional information, such as the PM 

thickness, as parameters. Although the objective is to predict 

the speed-torque characteristics, the prediction models do not 

directly predict the speed-torque characteristics; instead, we set 

three motor parameters (PM flux linkage and d- and q-axis 

inductances) as the prediction targets to improve accuracy and 

calculate the speed-torque characteristics. Table I shows the 

machine learning methods used to predict the characteristics for 

each geometry, where GPR is Gaussian process regression. The 

values in parentheses are the coefficients of determination for 

the test data. For the training data, we used a total of 26,209 

randomly generated shapes (2D: 7,927; V: 8,256; Nabla: 

 
Fig. 1. Overview of this study. 
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10,026), all of which were analyzed under random current 

vector conditions. The software JMAG-Designer 19.1 was used 

for the FEA. The effects of the imbalance in prediction 

accuracy for each topology and each parameter are described in 

Section IV.  

The trained prediction models were then used to generate 

shape and motor parameter pairs for 55,000 shapes for each 

topology, for a total of 165,000 shapes. Because the motor 

parameters change nonlinearly due to the effect of magnetic 

saturation, we predicted the change in motor parameters versus 

the current vector condition for each shape. Because the 

maximum armature current of the IPMSM used in this research 

is 232 A, the characteristic data generated by the prediction are 

the discrete PM flux linkage with an armature current ranging 

from 5 to 235 A in 5-A increments and the discrete d- and 

q-axis current vs. d- and q-axis inductance characteristics with 

d- and q-axis currents ranging from 5 to 235 A in 10-A 

increments (see Fig. 5). Here, the PM flux linkage is assumed to 

be independent of the current phase [12].  

The data augmentation method described above predicted 

the characteristics for 623 current vector conditions for each 

shape, meaning that the FEA results for 102,795,000 conditions 

(165,000 shapes × 623 conditions/shape) were predicted from 

FEA results for only 24,000 conditions. The generation 

(prediction) of 102,795,000 data points was completed in a total 

of 3.6 hours. We were thus able to obtain sufficient data in a 

practical amount of time.   

III. AUTOMATIC DESIGN SYSTEM 

Using the dataset created in Section II, we trained the deep 

learning models for the automatic rotor shape design system. 

The automatic design system consists of two types of deep 

learning model, one for design and the other for characteristic 

prediction. This section describes the training methods and the 

results for these two deep learning models.  

A. Training of Generative Adversarial Network 

The first deep learning model is a deep generative model for 

designing rotor shapes.  

First, we describe the numerical representation of the motor 

shape. There are two types of numerical representation of 

motor shapes, namely that used in [12] (see Section II) that 

specifies the dimensions of the shape, denoted as the 

dimensional representation, and that used in topology 

optimization that specifies the material at each coordinate, 

denoted as the material representation. The dimensional 

representation can represent only one topology depending on 

the reference shape and is unsuitable for a system that handles 

multiple topologies in an integrated manner. For example, the 

geometric parameters used for the 2D, V, and Nabla structures 

are 11-, 6-, and 8-dimensional, respectively, making it difficult 

to handle different topologies with a given dimensional 

representation. Therefore, in the proposed automatic design 

system, the motor shape is represented numerically by the 

material representation. 

Fig. 3 shows the material representation method used in the 

proposed system. An electromagnetic steel sheet, a PM, or air is 

specified for each pole coordinate of the rotor, and the three 

materials are assigned to the RGB (red, green, blue) values of 

the image as one-hot vectors, respectively, to represent the rotor 

shape in the image, as shown in the right image in Fig. 3. 

Because the shape considered in this study is d-axis symmetric 

and there is no magnet or air layer near the shaft, only half of 

the geometry in the circumferential direction and 60% of the 

geometry in the radial direction are converted into images. The 

magnetization direction (angle) of the PM is represented by the 

difference in the brightness of the blue color by inputting the 

normalized value of the angle information dPM, which is 

calculated as follows: 

90
,

180

PM

PMd
 +

=    (1) 

where  90 ,90PM  −    is the angle of the magnetization 

direction of each PM. In the actual image generation process for 

the material representation, the material information at each 

coordinate was extracted and encoded into an image for the 

rotor shape whose dimensions were parametrically generated in 

JMAG-Designer. Note that due to the coordinate 

transformation, the straight part of the rotor shape becomes a 

gentle curve in the image. 

Material representation has the following two problems. 

a) The design space becomes huge. 

b) The design space includes shapes that cannot be 

manufactured. 

For example, if a shape is divided into 256 × 256 parts and 

the material is specified, 3256×256 shapes can be represented, 

some of which cannot be manufactured (i.e., they are noise). 

Therefore, when using material representation, it is necessary 

to extract only the appropriate design space. 

In this study, we use a GAN to solve this problem. A GAN is 

a deep generative model that uses two deep neural networks 

proposed by Goodfellow et al. [15]. In this study, lightweight 

GAN [16] is used to learn the 165,000 shapes generated in 

Section II. The image was a 256 × 256 × 3 tensor and the latent 

variable was a 256-dimensional vector. The specific GAN 

 
  (a) (b) (c) 

Fig. 2. Single-pole conventional rotor shapes. (a) 2D, (b) V, and (c) Nabla. 

 

Electrical steel

Permanent magnet TABLE I 

MACHINE LEARNING METHODS USED FOR DATA GENERATION 

  Parameter 

Topology 
a Ld Lq 

2D 
SVR 

(0.997) 

SVR 

(0.963) 

XGBoost 

(0.998) 

V 
SVR 

(1.000) 

SVR 

(0.979) 

SVR 

(0.999) 

Nabla 
GPR 

(0.869) 

SVR 

(0.725) 

XGBoost 

(0.986) 
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learning objective in this study is to learn three types of rotor 

topology, namely 2D, V, and Nabla structures, and to integrally 

represent them in the latent variable space.  

 Fig. 4 shows an example of a shape generated by lightweight 

GAN. The output images of the GAN clearly show the three 

types of rotor shape. All of these images were sampled from the 

same latent variable space, indicating that the use of GAN 

allows us to handle a wide variety of shapes in a unified manner. 

In addition, the huge design space can be reduced to 256 

dimensions of the latent variable space and undesignable 

shapes can be eliminated, which overcomes the two problems 

of material representation. 

B. Training of Convolutional Neural Network 

If we can evaluate the operating characteristics of the shape 

designed by the GAN trained in Section III-A, it will be 

possible to perform a unified optimization design of various 

shapes by searching the latent variable space of the generative 

model. A CNN is used instead of the machine learning method 

used for data generation in Section II for the following reasons: 

a) The change from a dimensional representation to a 

material representation (image) requires the extraction of 

shape features by a convolutional layer of the CNN for 

highly accurate characteristic prediction. 

b) Conventional SVR and GPR cannot handle big data due to 

computational cost. 

Fig. 5 shows the architecture of the CNN used in this study. 

The regression CNN is built based on ResNet-18 [17]. It is a 

multi-task learning architecture that simultaneously predicts 

three motor parameters for a single shape. Because each motor 

parameter is nonlinear with respect to the current vector, the 

characteristic data generated in Section II were approximated 

by polynomial equations using the least-squares method. The 

coefficients of the approximation equation were used as the 

prediction target. The approximation equations are shown 

below. 
2 3

0 1 2 3 ,a a a a

a a a aw w I w I w I
    = + + +   (2) 

2 2

0 1 2 3 4 5

3 2 2 3

6 7 8 9 ,

d d d d d d

d d d d

L L L L L L

d d q d d q q

L L L L

d d q d q q

L w w i w i w i w i i w i

w i w i i w i i w i

= + + + + +

+ + + +
  (3) 

2 2

0 1 2 3 4 5

3 2 2 3

6 7 8 9

4 3 2 2 3 4

10 11 12 13 14 ,

q q q q q q

q q q q

q q q q q

L L L L L L

q d q d d q q

L L L L

d d q d q q

L L L L L

d d q d q d q q

L w w i w i w i w i i w i

w i w i i w i i w i

w i w i i w i i w i i w i

= + + + + +

+ + + +

+ + + + +

  (4) 

where Ia is the armature current, id and iq are the d- and q-axis 

currents, respectively, and w


 is the coefficient. The order of 

the polynomial approximation was determined by calculating 

the coefficient of determination for the data predicted by each 

approximation equation, so that all coefficients of 

determination for 10 randomly sampled shapes were higher 

than 0.9995. As shown in Fig. 5, the number of output nodes in 

fully connected layers was determined according to the number 

of coefficients in (2)-(4). 

From the normalized dataset of 165,000 shapes 

(combinations of shapes and approximation equation 

coefficients), 120,000 were used as training data, 30,000 were 

used as validation data, and 15,000 were used as test data for 

training. Adam was used for optimization, the weight decay 

was 0.0001, and the mini-batch size was 16. The loss function 

CNNL  is defined as follows. 

 ( )ˆ , ,param param param

CNN

param

k MSE=  w wL   (5) 

where paramk  is the coefficient for balancing losses, MSE is a 

function that returns the mean squared error, param
w  is the true 

value of the weight vector for each parameter, and ˆ param
w  is the 

CNN prediction of param
w . In this study, we set the coefficient 

( ) ( ), , 3,2,1qa d
LL

k k k


= . 

Fig. 6 shows the prediction accuracy of the trained multi-task 

 
Fig. 4. Example of results generated by lightweight GAN. 

 
Fig. 5. Architecture of multi-task CNN.  
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Fig. 3. Material representation of rotor shape. 
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CNN on the test data. Note that this prediction accuracy is not 

for the FEA results, but for the data generated by machine 

learning. A comparison of the prediction results indicates that 

the accuracy was high except for the PM flux linkage and d-axis 

inductance in the Nabla structure. The prediction accuracy of 

these two characteristics by machine learning in the data 

generation stage shown in Table I is also low, which may be 

due to the prediction error generated during data generation. 

Because errors are included in the generated data (the target of 

prediction), the low prediction accuracy does not imply that the 

prediction accuracy for the FEA characteristics is also low. The 

prediction accuracy for FEA is discussed in Section IV. 

IV. OPTIMIZATION DESIGN 

The combination of the deep generative model and the 

characteristic prediction model in Section III results in the 

architecture shown in Fig. 7. This section demonstrates the 

usefulness of the system by performing a multi-objective 

optimization design in the latent variable space of the 

generative model. 

A. Problem 

In this study, the design goals are to minimize the volume of 

the PMs and maximize the maximum torque under the torque 

constraint. The problem setup is as follows: 

 

( )

1 2

( ) ( )
: 1,2,...,

min ,

. . ,

Max

predPM

Max

init init

i

i i

pred req

TV

V T

i p

w w

s t g T T =

−
  (6) 

 where VPM is the volume of a PM for each candidate solution 

and Tpred is the predicted maximum torque for each candidate 

solution. These parameters are normalized by the initial values 

initV  and Max

initT , respectively. The volume of the PM was defined 

as a percentage of the image area. w1 and w2 are weight 

coefficients. (w1, w2) = (1, 1) in this setup. The constraint 

condition gi is a torque constraint for p required operating 

points ( ) ( ) ( )

1
,

p
i i

req req
i

N T
=

 , which is multiplied by a coefficient  = 

1.03 to consider the prediction error. The torque prediction 

results are given as the results of maximum output control at the 

required speed as follows:  

 (  ( )
( )

( )

( )

0, , 0,90

( )

max , ,

 , ,

a am

i

pred CNN a
I I

i

CNN a req

T T I

s.t. N I N






 
=


  (7) 

where Iam is the maximum armature current, and TCNN and NCNN 

are the torque and limit speed predicted by the CNN, 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Prediction results for test data, where r2 is the coefficient of determination. Results for (a) PM flux linkage, (b) d-axis inductance, (c) and q-axis inductance. 

 

 
Fig. 7. Overall design system. 

 

…

Latent variable N

T

Motor characteristicsRotor shape

Generator CNN



 6 

respectively. The solution for maximum power control was 

obtained by a brute-force search.  

NSGA-II [18] was used as the optimization algorithm, and 

the framework pymoo was used for the implementation [19]. 

The population size was set to 100 and the number of offspring 

was set to 10. Latin hypercube sampling was used for sampling 

the initial population, the tournament method was used for 

selection, simulated binary crossover was used for crossover, 

and polynomial mutation was used for mutation. The 

termination condition was set to 100 generations.  

B. Optimization Results 

To verify the robustness of the proposed system, this study 

performed optimization under three conditions. Table II shows 

the settings for the three conditions and Figs. 8 and 9 show the 

characteristics of all the populations generated in the 

optimization process under each condition. The maximum 

armature voltage was set to 507 V. 

In Condition 1, the maximum armature current was set to 

232 A, and the optimization was performed at two required 

operating points, (3,000 min-1, 197 Nm) and (11,000 min-1, 40 

Nm), which were determined based on the reference motor in 

[2]. The solution population transitioned to satisfy the 

constraints; all the individuals in the final population satisfied 

the constraints. The Nabla structure most easily produced the 

maximum torque. Almost all of the Pareto solutions are the 

Nabla structure under severe torque requirements.  

In Condition 2, the maximum armature current was fixed at 

232 A and the torque constraint was relaxed from that in 

Condition 1. Optimization was performed at two required 

operating points, (3,000 min-1, 170 Nm) and (11,000 min-1, 40 

Nm). In Condition 2, many candidate solutions for all three 

topologies satisfy the relaxed torque constraint. The V structure 

reduced the volume of PMs the most while maintaining high 

torque. The 2D structure, which was designed for high 

efficiency [2], does not appear in the Pareto solution for 

Condition 2.   

In Condition 3, the armature current limit was reduced from 

232 to 104 A and the two required operating points were set to 

(1000 min-1, 100 Nm) and (9000 min-1, 30 Nm). In this 

condition, the maximum torque requirement was reduced, but 

the current limit was also reduced, resulting in a tighter torque 

requirement. In addition, as in Condition 1, many Nabla 

structures were selected to easily obtain the torque. Thus, the 

optimization design of the proposed system can be performed 

under various current limits.  

To verify the validity of the optimized design, FEA needs to 

be performed. To perform FEA, it is necessary to decode the 

image data for the material representation into computer-aided 

design (CAD) data. The image generated by the GAN is 

basically one of the three learned topologies, so it is only 

necessary to extract the dimensional information (e.g., PM 

thickness) from the image. The dimension information is 

obtained using rule-based image recognition. Fig. 10 shows an 

example of the decoding method for extracting the dimensional 

information for the first-layer PM of the 2D structure. First, the 

shape image is converted from RGB to HSV (hue, saturation, 

value). Only blue cells are extracted from the hue information 

and converted to binary images of PM locations (value of 1); 

other cells are set to 0. Then, we detect the region formed by 

adjacent non-zero pixels (PM region) as an object and calculate 

its contour and center of gravity. Based on the center of gravity 

of the object, the object closest to the rotor surface is 

determined to be the first-layer PM, and the coordinates of its 

 
(a) (b) (c) 

Fig. 8. Characteristics of all populations and the last population for optimization design under (a) Condition 1, (b) Condition 2, (c) and Condition 3. 

 
(a) (b) (c) 

Fig. 9. Characteristics of all populations with topology information for optimization design under (a) Condition 1, (b) Condition 2, and (c) Condition 3. 

 
TABLE II 

OPTIMIZATION CONDITIONS 

Condition 

No. 
Required operating points 

Maximum 

armature current Iam 

Condition 1 
(3,000 min-1, 197 Nm) 

(11,000 min-1, 40 Nm) 
232 A 

Condition 2 
(1,000 min-1, 170 Nm) 

(11,000 min-1, 40 Nm) 
232 A 

Condition 3 
(1,000 min-1, 100 Nm) 

(9,000 min-1, 30 Nm) 
104 A 
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edge are obtained. By converting these coordinates to polar 

coordinates, the position of the PM and its associated 

dimensions can be calculated. By carrying out the above 

process for the appropriate object in the image, it is possible to 

decode the shape image into CAD data. In the actual decoding 

process, we further encode the decoded CAD data and calculate 

the reconstruction error rate (the percentage of pixel 

information that does not match). If the reconstruction error 

rate is over 1%, we re-dimension the CAD data until the rate 

becomes less than 1%. 

Using the decoding method described above, FEA was 

conducted by selecting three candidate solutions for each 

condition from the Pareto solutions. Fig. 11 shows the 

prediction results produced by the system and the FEA results 

for the speed-torque characteristics of the selected candidate 

solutions, where solutions A-I correspond to the solutions in 

Fig. 8 and the blue points represent the required operating 

points for each condition. 

The shapes (images) of the Pareto solutions are all clear and 

designable, confirming the effectiveness of the trained GAN. A 

comparison of the FEA results with the CNN prediction results 

indicates that the prediction accuracy of the speed-torque 

characteristics is very high for all candidate solutions. The FEA 

results for all Pareto solutions satisfy the required operating 

point, which means that the prediction error is less than 3%. 

Considering these results, we can conclude that the poor 

prediction accuracy for the Nabla structure mentioned in 

Section II was improved by the CNN. In other words, the CNN 

recognized and eliminated as noise the insensitive error and 

standard error generated in the process of data generation by 

SVR and GPR, respectively. This shows that the proposed data 

generation method can tolerate a certain degree of inaccuracy in 

a machine learning method. 

Finally, we discuss the optimization time. Fig. 12 shows a 

histogram of the design time for 100 optimization designs 

under each condition. For the calculations, a computer with an 

Intel CoreTM i7-9700K CPU, 32.0 GB of RAM, and an 

NVIDIA GeForce RTX 2070 SUPER (8 GB) GPU was used. 

The proposed system can design a shape that satisfies the 

requirements in 13-15 seconds, effectively reducing the 

optimization time compared to that for the conventional 

optimization calculation for the same scale (several days to 

several weeks). 

V. CONCLUSION 

This paper proposed a deep learning technique for optimizing 

IPMSM rotors. The results can be summarized as follows. 

a) We proposed a method for quickly generating a large 

amount of FEA data for training large-scale deep learning 

models using machine learning specific to each topology. 

This method generated 102,795,000 training data from 

26,209 FEA results. 

b) The proposed generative model can be used to design 

rotor geometries for three IPMSMs with high precision 

and can represent different topologies in a unified 

256-dimensional latent variable space. 

c) We proposed a prediction model that can quickly and 

accurately predict motor parameters in a wide range of 

current vectors with various geometries. 

d) We proposed an automatic rotor design system for 

IPMSMs using two deep learning models. The proposed 

system can be used for various required operating points 

and current ranges. The time required for optimal design 

was only 13-15 seconds. 

The dataset generated in Section II is available at IEEE 

DataPort [20] and the Python implementation of the deep 

learning models is available at GitHub [21]. 
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Fig. 11. Prediction by proposed method and FEA results for speed-torque characteristics of Pareto solutions, where blue points are required operating points. (a)-(i) 

Solutions A-I defined in Fig. 8.. 
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Fig. 12. Optimization time for (a) Condition 1, (b) Condition 2, and (c) Condition 3 (std: standard deviation). 
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