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Facilitating URLLC vis-à-vis UAV-enabled relaying
for MEC Systems in 6G Networks

Ali Ranjha, Diala Naboulsi, Member, IEEE, Mohamed El Emary, and Francois Gagnon, Senior Member, IEEE

Abstract—The futuristic sixth-generation (6G) networks
will empower ultra-reliable and low latency communications
(URLLC), enabling a wide array of mission-critical applications
such as mobile edge computing (MEC) systems, which are largely
unsupported by fixed communication infrastructure. To remedy
this issue, unmanned aerial vehicle (UAV) has recently come
to the limelight to facilitate MEC for internet of things (IoT)
devices as they provide desirable line-of-sight (LoS) communi-
cations compared to fixed terrestrial networks, thanks to their
added flexibility and three-dimensional (3D) positioning. In this
paper, we consider UAV-enabled relaying for MEC systems for
uplink transmissions in 6G networks, and we aim to optimize
mission completion time subject to the constraints of resource
allocation, including UAV transmit power, UAV CPU frequency,
decoding error rate, blocklength, communication bandwidth, and
task partitioning as well as 3D UAV positioning. Moreover, to
solve the non-convex optimization problem, we propose three
different algorithms, including successive convex approximations
(SCA), altered genetic algorithm (AGA) and smart exhaustive
search (SES). Thereafter, based on time-complexity, execution
time, and convergence analysis, we select AGA to solve the
given optimization problem. Simulation results demonstrate that
the proposed algorithm can successfully minimize the mission
completion time, perform power allocation at the UAV side to
mitigate information leakage and eavesdropping as well as map a
3D UAV positioning, yielding better results compared to the fixed
benchmark sub-methods. Lastly, subject to 3D UAV positioning,
AGA can also effectively reduce the decoding error rate for
supporting URLLC services.

Index Terms—URLLC, UAV-enabled relaying, MEC systems,
6G networks.

I. INTRODUCTION

WITH the emergence of internet-of-things (IoT) and the
demand for new service types in the present fifth-

generation (5G) and futuristic sixth-generation (6G) networks
security and reliability have become the two main concerns
for these networks. To this end, in [1], the authors studied
security of data in 6G IoT networks by leveraging an ant
colony optimization (ACO) approach. As such, the authors
utilized the prelarge concept to reduce multiple database scans
in the evaluation process and maintained Pareto solutions to
improve the optimized results. In the recent years, the mobile
operators have witnessed a paradigm shift from centralized
to edge computing. Consequently, there are traditional fixed
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edge computing systems at the base stations (BSs) and alter-
natively there are mobile edge computing (MEC) systems. In
this context, in [2], the authors proposed the framework of
digital twinning (DT)-empowered internet of vehicles (IoV)
and studied a multi-user offloading system to edge computing,
where quality-of-service (QoS) is analyzed through response
time of services. In this regard, the authors leveraged a service
offloading (SOL) method coupled with deep reinforcement
learning for the proposed DT-empowered IoV. Among these
two types of edge computing systems, MEC has emerged as a
suitable candidate aiming to bring computation capabilities at
the networks’ edge with two distinctive properties of having
proximity to the ground users as well as geographically
flexible deployment [3]. Thus, MEC has added degree of
freedom and can maintain high QoS for the end users.

A. Background

In this context, the 6G networks are intended to support
ultra-reliable and low-latency communications (URLLC) ser-
vices. Moreover, the short blocklength URLLC packets have
dual preconditions of ultra-high reliability and low-latency,
which are closely correlated with each other. This QoS require-
ment of ultra-high reliability can be 10−7 or less depending on
the mission-critical application-type. Consequently, URLLC
systems utilize a short blocklength equation accounting for
non-negligible decoding error rate and channel variability,
which is fundamentally a penalized version of Shannon’s
capacity. These days UAVs have become well-known due
to their versatility and low cost helping them to find their
applications and foothold in various domains of public, civil,
and military interests [4]–[9]. It is worth mentioning that for
fixed communication infrastructure BSs are placed based on
the statistical flow of the cellular traffic. As such these ter-
restrial networks fail to accommodate a rapid communication
traffic increase that can occur in areas that have been struck
by natural disasters or during seasonal sporting events or
music festivals. To address these problems, UAVs can establish
the desirable line-of-sight (LoS) communications to provide
higher signal-to-noise ratios (SNRs) owing to their adjustable
three-dimensional (3D) positioning, which is a clear advantage
over fixed terrestrial networks [10]–[12].

B. Related Works

Recently, the research on UAV-enabled communications,
where UAV acts as a flying BS or an aerial relay has gained
a significant traction as mentioned in [13]–[17]. In [13],
the authors made use of a practical scenario for taking the
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TABLE I: Summary of symbols and descriptions

Symbols Descriptions
hk IoT-UAV channel
d2k Distance existing between each IoT device k and the UAV
gk Rician fading
hr UAV-AP channel
d2r Distance existing between the UAV and the remote AP
Pk Transmit power for task offloading

R
(0)
k Data rate for sending IoT device k tasks

R
(2)
k Data rate for sending IoT device k sub-task from the UAV to the remote AP

T Mission completion time
Fmax Maximum CPU frequency
Lk Task size
B Total bandwidth
Sk Computational CPU cycles per bit for each task

τ
(0)
k Offloading time for IoT device k

τ
(1)
k Execution time at UAV for IoT device k sub-task

τ
(2)
k Execution time at the remote AP for IoT device k sub-task

q Horizontal UAV co-ordinates
h Vertical UAV co-ordinate or height
ϵ Algorithmic precision

measurements of the propagation channels on a rotary wing
UAV. In this regard, the authors derive outage probability as
well as root mean square (RMS) delay spread. Then, the
authors demonstrated that proper antenna positioning mini-
mizes, whereas high-speed rotating propellers and airframe
increase blockage: thus, hampering the communication links.
Comparably, the authors in [14] considered dual connectivity
in uplink non-orthogonal multiple access (NOMA) for a
UAV-assisted terrestrial network. Here, the authors sought to
optimize the weighted sum rate through joint optimization of
3D UAV positioning and transmit power allocation. To achieve
this objective, the authors proposed a deep deterministic policy
gradient algorithm that functions in an offline and an online
mode. In this regard, during the offline mode, the algorithm
learns a sub-optimal power allocation strategy, whereas in the
online mode, it aims to obtain the sub-optimal UAV trajectory
policy. In [15], the authors proposed a hybrid physical layer
switching policy as well as channel state information (CSI)
free UAV selection strategy for analysing the outage proba-
bility. In this regard, using their analytical results, the authors
showed an end-to-end (E2E) improvement in communication
links between BSs and user equipment (UE). Likewise, in [16],
the authors studied UAV-assisted vehicular communication
system with an aim to maximize the energy efficiency (EE)
via optimizing the UAV trajectory. To achieve this goal,
the authors transformed the original problem into series of
sub-problems and used horizon optimization method. Corre-
spondingly, in [17], the authors examined a novel cooperative
jamming strategy for dual UAV-assisted communications to

fend off against eavesdroppers. In this regard, the authors
suggested a UAV framework, where one UAV transmits useful
confidential information to the ground user and the other UAV
generates artificial noise to baffle the eavesdropper to secure
the transmitted information. Nonetheless, these works [13]–
[19], do not consider UAV-enabled MEC systems nor their
support for URLLC services.

On one hand, we have a set of works [20]–[24], in technical
literature that consider UAV-enabled MEC systems. In [20],
the authors studied multi-input single-output (MIS) based
UAV-assisted MEC network aiming to minimize the system
energy consumption by jointly optimizing CPU frequency,
beamforming, transmit power, UAV trajectory and computa-
tion tasks. In this regard, the authors also derived the closed-
form mathematical expressions for obtaining the optimal trans-
mit power of the UE as well as the CPU frequency at the
UAV side. Similarly, in [21], the authors considered multi-
UAV-enabled MEC system and sought to optimize resource
allocation, power control as well as user association. To
achieve this objective, the authors proposed multi-agent rein-
forcement learning (MARL) as well as multi-agent federated
reinforcement learning (MAFRL), which leveraged Gaussian
differentials to guarantee privacy for all UE. Comparably, in
[22], the authors proposed a UAV-enabled MEC system, where
UAV is programmed for data collection from multiple indus-
trial internet-of-things (IoT) devices. Moreover, the authors
aimed to mitigate the risk of forest fire by optimizing the
maximum response time. To address this issue, the authors
proposed a learning-based cooperative particle swarm opti-
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mization (LCPSO) for performing resource allocation at the
UAV end. Likewise, in [23], the authors studied the problem of
maximization of computation-efficiency in UAV-enabled MEC
system. In this regard, the authors aimed to maximize the
offloaded data as well as minimize the energy consumption at
the UAV side. To achieve this goal, the authors performed re-
source allocation including task scheduling, power control, and
bandwidth distribution as well as designed optimal 3D UAV
trajectory. Correspondingly, in [24], the authors considered the
dual-problems of completion time and energy consumption
in the UAV-enabled MEC systems with ground IoT devices.
To meet this objective, the authors jointly optimized resource
allocation including computation task offloading, energy as
well as task constraints and UAV trajectory. It is worth
mentioning here that it is a well-known fact that UAVs have
limited on-board computational capabilities, thus, a logical
conclusion is that it is more optimal to offload a part of the
computation task to powerful MEC system present on the
ground and execute the remainder of the task at the UAV side.
However, these works [20]–[24], do not consider UAV-enabled
relaying for MEC systems and only execute the computation
tasks at the UAV side which is not ideal.

On the other hand, we have handful of works [25]–[30],
that consider facilitating URLLC in UAV-enabled communi-
cations. In [25], the authors studied URLLC services for cell
free massive multi-input multi-output (MIMO) network where
UAVs are supporting the traditional terrestrial network. In this
regard, the authors leveraged both partial zero-forcing (PZF) as
well as maximum ratio combining (MRC) to perform power
control in uplink and downlink communications. Moreover,
the authors sought to optimize sum URLLC rate by utilizing
successive convex approximations (SCA)-based algorithm. It
is worth mentioning that SCA is an iterative optimization
technique used to solve non-convex optimization problems.
It is particularly effective for problems where the objective
function or constraints are non-linear and non-convex. The
basic idea behind SCA is to transform a non-convex problem
into a series of simpler convex subproblems that can be
efficiently solved. Correspondingly, in [26], the authors studied
UAV-enabled URLLC services in context of physical layer
security. Furthermore, the authors considered air-to-ground
(A2G) wireless channel to derive the closed form mathematical
expressions for the secrecy outage probability (SOP) as well
as the connection outage probability (COP). Likewise, in
[27], the authors considered a framework to study URLLC
and enhanced mobile broadband (eMBB) services for UAV-
enabled relaying system in a terrestrial network. To achieve
this objective, the authors formulated a joint multiplexing
optimization problem subject to the constraints of bandwidth
and transmit power allocation as well as user association with
an aim to boost network capacity and minimize transmission
power. It is noteworthy that power allocation is a well-known
technique for enhancing physical layer security. By optimizing
the UAV transmit power contributes to physical layer security
by mitigating the risk of information leakage and enhancing
the confidentiality of the transmitted data. As such, power allo-
cation results in differences in signal strength, which makes it
harder for eavesdroppers to reliably detect and capture all the

data packets. In this case, eavesdroppers need to adapt their
receivers to handle wide range of power levels, potentially
requiring more advanced and flexible receiver systems [31],
[32]. As evidenced by previous discussion, UAVs are integral
to enabling both URLLC services as well as MEC systems due
to their portability and flexible deployment. As such, UAV-
enabled MEC systems with URLLC capabilities are crucial
because they find their applications in disaster management,
industrial automation, healthcare support, public safety, and
precision agriculture. These applications involve real-time
communication for emergency responders, ultra-responsive
control, remote healthcare services, enhanced security, and op-
timized farming practices [33]–[36]. Nevertheless, these works
[25]–[30], do not integrate MEC systems in the framework
to facilitate URLLC in UAV-enabled communications, which
tends to provide limited insights.

C. Contributions

Despite the vast majority of technical literature relating
to UAV-assisted terrestrial networks, an optimization based
framework accounting for facilitating URLLC vis-à-vis UAV-
enabled relaying for MEC systems in 6G networks is not
present. Thus, the novelty as well as the main contributions
of this paper are outlined as follows

• We formulate the minimization problem of mission com-
pletion time for the joint UAV-enabled relaying and MEC
systems in uplink transmissions under short blocklength
regime.

• We aim to optimize the resource allocation including the
UAV transmit power, UAV CPU frequency, communica-
tion bandwidth, blocklength, task partitioning, decoding
error rate as well as the 3D UAV positioning.

• We propose three different algorithms including SCA,
altered genetic algorithm (AGA), and smart exhaustive
search (SES). Afterwards, we selected AGA as the
algorithm of our choice thanks to its low-complexity,
convergence as well as execution time, which also yields
superior performance than other fixed benchmark sub-
methods.

• Finally, we show power allocation at the UAV side
for different computation tasks to mitigate information
leakage and eavesdropping as well as we also demonstrate
that 3D UAV positioning is essential for minimization of
the decoding error rate to facilitate URLLC services.

D. Organization

We organized the rest of the paper as follows. In Section
II, we show the system model and problem formulation.
Thereafter, in Section III, we break the original problem into
three sub-problems and discuss the SCA-based method. In
Section IV, we propose three different algorithms to tackle the
original problem. Then, in Section V, we present the simulation
results and discussions. Lastly, in Section VI, we conclude the
paper and Table I, contains the symbols and their respective
descriptions used throughout this paper.
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Fig. 1: Illustration of UAV-enabled relaying and MEC systems for URLLC.

II. SYSTEM MODEL AND PROBLEM FORMULATION

During uplink transmissions, we simultaneously consider
the UAV-enabled relaying and MEC systems, where a rotary-
wing UAV1 is launched to support the execution of the crucial
URLLC computation tasks of multiple ground IoT devices,
which needs to be transmitted with ultra-high reliability. More-
over, UAV executes a part of the tasks and has an added func-
tionality to act as an aerial relay device to transmit a segment
of received tasks from ground IoT devices to a remote access
point (AP) for execution as illustrated in Fig. 1. Furthermore,
we consider the UAV, IoT devices, and AP are all placed in the
3D Cartesian coordinate system and the coordinates of each
IoT device k is depicted as wk = [xk, yk, 0]

T (meters), where
T is the transposition operation. Moreover, the coordinates of
remote AP is represented as wap = [xap, yap, 0]

T (meters), as
well as the 3D UAV coordinates are given by u = [xu, yu, zu]

T

(meters). For the sake of simplicity, we can further divide
and represent UAV’s horizontal coordinates as q = [xu, yu]

T

(meters) and UAV’s vertical coordinates as h = zu (meters),
respectively. Additionally, UAV, each IoT device, and AP are
equipped with single omni-directional antenna respectively.
For the sake of generality, we denote the set of IoT devices
by K = {1, 2, ...,K}, where each IoT device has a crucial
URLLC task denoted as Ik = {Lk, Sk, Ok}. Here, Lk repre-
sents the task size (bits), Sk represents the requisite central
processing unit (CPU) computational cycles per bit for each
task, and Ok represents the computational results size (bits).
It is to be noted that Ok ≪ Lk, thus, it is negligible and
it is ignored. Thereafter, we make the assumption that the
UAV relay leverages the co-called time-division-duplex (TDD)

1The rotary wing UAV in our system model serves as a dynamic relay
and mobile edge computing device, providing hovering capabilities and agile
maneuverability. Compared to fixed wing UAVs, the rotary wing UAV’s
vertical take-off and landing (VTOL) capabilities and precise positioning make
it the preferred choice for efficient task offloading and resource optimization
in our system.

technique and due to presence of buildings and obstacles
between IoT devices and the remote AP the communication
links between them are completely blocked. Consequently,
each IoT device k task is bound to undergo three phases of
transmission and execution including:

• During the first phase, each IoT device k offloads its
computation task to the UAV. Simultaneously, the UAV
receives and saves the task in its buffer. Here, τ (0)k

represents the time to offload the task from each IoT
device k to the UAV.

• Meanwhile, during the second phase, which includes
execution at the UAV side, the offloaded received task
is further partitioned into two sub-tasks in accordance to
the partition variable denoted by ak, where 0 ≤ ak ≤ 1.
In this regard, the first sub-task size is denoted by akLk

is computed at the UAV, whereas the second sub-task
size given by (1 − ak) Lk is relayed to the remote AP.
Now, τ (1)k denotes the time required at the UAV side
for performing computation for each IoT device k sub-
task, whereas τ (2)k depicts the time required for relaying
the sub-task from the UAV side to the remote AP. It is
noteworthy that by processing a portion of the tasks at the
UAV and distributing the remainder to the ground MEC
server via AP, the computation cost at the UAV side is
reduced.

• Finally, during the third and final phase, the task execu-
tion takes place at the remote AP, where the AP receives
the relayed sub-task from the UAV side and finishes its
computation. Here, τ (3)k depicts the time required for
computation at the AP for each IoT device k relayed
sub-task.

Moreover, to evade interference, each IoT device k is allocated
a bandwidth denoted as bk using orthogonal division multiple
access (OFDMA) scheme for the purpose of task offloading
and execution during the mission. Furthermore, for practical
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implementation, we denote the channel existing between IoT
device k and the UAV by hk, which is mathematically
represented by

hk =
√
β0d

−α
k gk, (1)

where d2k = h2 + ∥q−wk∥2 represents the distance existing
between each IoT device k and the UAV, β0 is the channel
power gain at the reference distance 1 m, α denotes the path
loss exponent, and gk depicts the small-scale fading random
complex variable, such that E[|gk|2] = 1. In this context,
the small-scale gk fading is modeled as Rician fading [37],
represented by

gk =

√
ρk

ρk + 1
g +

√
1

ρk + 1
g̃, (2)

where g denotes the LoS channel component with |g| = 1, g̃ is
a circularly symmetric complex Gaussian variable with a zero-
mean unit-variance denoting the random scattered component,
and ρk represents the Rician factor. Now, the channel existing
between the UAV and the remote AP channel model is
mathematically represented as

hr =

√
β0d

−α
r gr,

gr =

√
ρkr

ρkr + 1
g +

√
1

ρkr + 1
g̃,

(3)

where d2r = h2 + ∥q − wap∥2 again denotes the distance
between the UAV and remote AP, and gr is the Rician fading.
Similarly, g, g̃, and ρkr represent the aforesaid Rician fading
coefficients for the corresponding channel between the UAV
and the ground AP. Now, for short blocklengths [38], the data
rate2 R

(0)
k (bits per channel use) from each IoT device k to

UAV can be mathematically represented by

R
(0)
k = bk log2(1 + γ0k)−

bkQ
−1(εk)

ln 2

√
V (γ0k)

Mk
,

V (γ0k) = 1− (1 + γ0k)
−2
,

γ0k =
Pk|hk|2

bkN0
.

(4)

where Pk represents the transmit power for task offloading
of each IoT device k over sub-channel bk, N0 denotes the
power spectrum density of noise, V (γ0k) represents channel
dispersion, γ0k denotes the SNR between each IoT device k
and the UAV, Mk denotes the blocklength allocated to each
channel of IoT device k, and Q−1(εk) represents the inverse
Gaussian Q-function of decoding error rate εk. Similarly, as
before, for short blocklengths, the data rate R

(2)
k (bits per

channel use) required for sending each sub-task of IoT device

2Shannon’s rate from the kth IoT device to the UAV is given by R
(0)
k =

bk log2(1 + γ0k). However, for short blocklengths, an additional term is
included as a penalty to address the limitations of finite blocklengths for
URLLC systems. This modified rate is expressed as R

(0)
k = bk log2(1 +

γ0k)− bkQ
−1(εk)
ln 2

√
V (γ0k)

Mk
, and it accounts for channel dispersion and the

variability of the channel. As the blocklength approaches infinity, this penalty
term disappears, simplifying it back to Shannon’s rate.

k from the UAV side to the remote AP can be mathematically
written as

R
(2)
k = bk log2(1 + γ2k)−

bkQ
−1(εk)

ln 2

√
V (γ2k)

Mk
,

V (γ2k) = 1− (1 + γ2k)
−2
,

γ2k =
pk|hr|2

bkN0
.

(5)

where pk, V (γ2k), and γ2k represent transmit power, channel
dispersion and SNR between the UAV and the remote AP
for sending each IoT device k sub-task from the UAV side.
Additionally, the UAV transmit power must be limited such
that it does not exceed maximum power denoted by Pmax

(Watts). Therefore, we have a constraint on the UAV trasmit
power given as

C1 =

K∑
k=1

Pk ≤ Pmax, (6)

For the sake of simplicity, using [37], we approximate the
substitute terms of |hk|2 and |hr|2 to abstain from deriv-
ing their so-called cumulative distribution functions (CDFs),
which are mathematically challenging. Therefore, we can
perform mathematical expansions for both γ0k and γ2k as
follows

γ0k =
β0Pkvk

bkN0(h2 + ∥q−wk∥2)α/2
,

γ2k =
β0pkv

(2)
k

bkN0(h2 + ∥q−wap∥2)α/2
.

(7)

where vk and v(2)k are fading power functions given as

vk = K1 +
K2

1 + e−J1+J2uk
,

uk =
h√

h2 + ∥q−wk∥2
,

v
(2)
k = K1 +

K2

1 + e−J1+J2u2
,

u
(2)
k =

h√
h2 + ∥q−wap∥2

.

(8)

where uk and u(2)k are the corresponding sines of the elevation
angles. Moreover, the physical constants K1, K2 are real num-
bers from the interval [0, 1] and K1+K2 = 1, while constants
J1, J2 are arbitrary real numbers. Since, the channel dispersion
functions given by V (γ0k) and V (γ2k) are dependent on their
respective SNRs. Hence, we can also rewrite them as

V (γ0k) = 1−
(
1 +

β0Pkvk
bkN0(h2 + ∥q−wk∥2)

α
2

)−2

,

V (γ2k) = 1−

(
1 +

β0pkv
(2)
k

bkN0(h2 + ∥q−wap∥2)
α
2

)−2

.

(9)

Furthermore, the computations of new tasks are initiated
iff, the former tasks are sent and executed at the UAV as
well as the remote AP sides. Thus, the UAV is capable of
performing parallel computations by distributing the optimal
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CPU frequency for each IoT device k sub-task. Resultantly,
we have the following constraint

C2 =

K∑
k=0

fk ≤ Fmax. (10)

where fk denotes the required CPU frequency for computation
at the UAV side for each IoT device k sub-task, and Fmax

represents the maximum value of the CPU frequency at any
time [39], [40]. It is to noted that the location of AP is fixed,
such that it have multiple powerful MEC servers at its disposal
[41]. To guarantee that each task of size Lk is completely
offloaded, the offloading time τ (0)k must satisfy the following
constraint

C3 = τ
(0)
k R

(0)
k ≥ Lk,∀k. (11)

Similarly, for τ (1)k and τ (2)k , we have the following constraints

C4 = τ
(1)
k fk ≥ akLkSk,∀k, (12)

C5 = τ
(2)
k R

(2)
k ≥ (1− ak)Lk,∀k. (13)

Thereafter, we define mission completion time denoted by T
as the maximum time required for offloading and executing
tasks of all IoT devices k, such that we have

T ≥ max
∀k

{τ (0)k + τ
(1)
k , τ

(0)
k + τ

(2)
k } (14)

Thus, mission completion time minimization problem ζ0 =

{bk, pk, fk,ak, εk, τ (0)k , τ
(1)
k , τ

(2)
k ,q,h}, for the UAV-enabled

relaying for MEC systems is formulated as

P0 : min
ζ0

T, (15a)

s.t. C1 − C5, (15b)

T ≥ τ
(0)
k + τ

(1)
k ,∀k, (15c)

T ≥ τ
(0)
k + τ

(2)
k ,∀k, (15d)

0 ≤ ak ≤ 1,∀k, (15e)
0 ≤ bk ≤ B, ∀k, (15f)
K∑

k=1

bk ≤ B, ∀k, (15g)

εk ≤ εmax, Mk ≤Mmax ∀k, (15h)
Hmin ≤ h ≤ Hmax. (15i)

where B (Hz) represents the total allocated bandwidth, εmax

is the maximum decoding error of the ground IoT device,
referring to the maximum amount of error that can be tolerated
in the data packets before communication is considered unreli-
able. Finally, the last constraint given by eq. (15i), depicts that
altitude of UAV is bound within a certain subspace denoted
by [Hmin, Hmax].

III. SCA-BASED METHOD

It is to be noted that the problem P0 is non-convex in
nature from the non-convexity of C3, C4, and C5. To deal with
the non-convexity issue, we will employ successive convex
approximations (SCA). As such, the SCA-based method will
break the main problem into three sub-problems. Moreover,

these sub-problems denoted by ζ1, ζ2, ζ3 are the optimization
of different variables represented as

ζ1 = {bk, pk, fk,ak, εk, τ (0)k , τ
(1)
k , τ

(2)
k },

ζ2 = {εk, τ (0)k , τ
(2)
k ,q},

ζ3 = {εk, τ (0)k , τ
(2)
k ,h}.

(16)

It is to be noted that the SCA-based method will solve these
three sub-problems in an iterative manner to yield sub-optimal
results.

A. Sub-problem of Resource Allocation

We obtain the first sub-problem by fixing q and H , both
of which represent the 3D UAV positioning. Therefore, the
optimization problem ζ1 is formulated as

P1 : min
ζ1

T, (17a)

s.t. C1 − C5, (17b)
(15c)− (15h). (17c)

Now, the constraint C3 could be transformed to a convex one
by using slack variable s(0)k > 0. Thus, by using first order
Taylor series expansion, we have

(τ
(0)j
k + s

(0)j
k )2 + 2(τ

(0)j
k + s

(0)j
k )(τ

(0)
k + s

(0)
k −

− τ
(0)j
k − s

(0)j
k )− (τ

(0)
k − s

(0)
k )2 ≥ 4Lk, (18)

s
(0)
k ≤ bk log2(1 + γ0k)−

bkQ
−1(εk)

ln(2)

√
V (γ0k)

Mk
, (19)

According to [42], the right hand side of eq. (19) is convex
and it is a decreasing function w.r.t. γ0k, such that we have

1

γ0k
≤ g−1

(
Q−1(εk)√

Mk

)
, (20)

Now, by rearranging eq. (20) in terms of x, we have

g(x) =
(x+ 1) ln ( 1x + 1)

√
2x+ 1

. (21)

For the sake of mathematical analysis, we assume Mk equal
to 200 symbols and a decoding error rate εk is less then 10−7.
According to the reference values of γ0k function, we can set
Q−1(εk) as approximately 4.25. Therefore, we have following
criteria for concavity of the eq. (18) and eq. (19) w.r.t. γ, given
as

γk ≥ γ∗ =
1

g−1( 4.25√
200

)
≈ 1

g−1(0.3)
≈ 1/6.05 ≈ 0.16 (22)

However, this criteria is not sufficient for our problem. There-
fore, in order to calculate and estimate convexity criteria more
precisely, we approximate the values of Q−1(εk) and V (γ0k),
and we rewrite eq. (19) as

s
(0)
k ≤ bk log2(1 + γ0k)− bkη

√
1− (1 + γ0k)−2,

η =
Q−1(εk)

ln(2)
√
M

≈ 4.25

ln 2
√
200

≈ 0.43.
(23)



7

where η is a constant value as shown above. Thus, for the
sake of simplicity, we rewrite eq. (23), and its first and second
derivatives w.r.t. x as

y(x) = log2(1 + x)− η
√
1− (1 + x)−2,

y′(x) =
1

(x+ 1) ln(2)
− η√

1− (x+ 1)−2(x+ 1)3
,

y′′(x) =
3η√

1− (x+ 1)−2(x+ 1)4
− 1

(x+ 1)2 ln 2

+
η

(1− (x+ 1)−2)3/2(x+ 1)6
.

(24)

Here, the mathematical analysis of this function shows us that
for the value of x < λ∗, function y′′(x) > 0 for the values x >
λ∗ function y′′(x) < 0. In this regard, with the help of binary
search, we can find the value of the λ∗ ≈ 0.38. Moreover, it
is to be noted that the values of transmission rates R(0)

k > 0

and R
(2)
k > 0, otherwise inequalities eq. (11) and eq. (13)

cannot be satisfied. In this regard, the analysis of eq. (24) and
its derivative shows that it has one root equal to zero, and no
more than one positive root. For the value η = 0.43, this root,
is found by either utilizing binary search or Newton method
which comes out to be λ0 ≈ 0.164 < λ∗. Thus, by eliminating
boundary conditions, we have the necessary condition given
by

γ2k =
β0pkv

j
k

bkN0(hj)2 + ∥qj −wk∥2)α/2
≥ λ∗. (25)

Now, constraint C4 can be transformed as

(τ
(1)j
k + f jk)

(2) + 2(τ
(1)j
k + f jk)(τ

(1)
k + fk − τ

(1)j
k − f jk)

− (τ
(1)
k − fk)

2 ≥ 4akLkSk. (26)

Similarly, constraint C5 can be transformed as

(τ
(2)j
k +s

(2)j
k )2+2(τ

(2)j
k +s

(2)j
k )(τ

(2)
k +s

(2)
k −τ (2)jk −s(2)jk )

− (τ
(2)
k − s

(2)
k )2 ≥ 4(ak)Lk. (27)

Thereafter, the condition for slack variable will be

s
(2)
k ≤ bk log2(1 + γ2k)− bkη

√
1− (1 + γ2k)−2, (28)

Again, we can approximate eq. (28) by

s
(2)
k ≤ bk log2(1 +

β0pkv
j
k

bkN0((hj)2 + ∥qj −wap∥2)α/2
)

− bkη

√√√√1−

(
1 +

β0pkv
j
k

bkN0((hj)2 + ∥qj −wap∥2

)−2

. (29)

Hence, P1 optimization problem can be reformulated as

P1.1 : min
ζ1

T,

s.t. C1, C2,
(15h), (18), (19),
(26)− (29),
γ2k ≥ λ∗,∀k.

It is to be noted that P1.1 is a convex optimization problem,
which can leverage convex optimization tools, i.e., CVX.

B. Sub-problem of Horizontal UAV Positioning

We formulate the second sub-problem of UAV positioning3

by fixing {bk, pk, fk,ak, τ (1)k ,h}. Thus, we can rewrite ζ2 as

P2 : min
ζ2

T, (30a)

s.t. C3, C5, (30b)
(15c), (15d), (15h). (30c)

As evidenced before, the constraints C3 and C5 are non-convex
in nature. To remedy this issue, we use the same approach as
in previous sub-problem and we create slack variables denoted
by s(0)k and s(2)k . Therefore, we have

s
(0)
k ≤ bjk log2

(
1 +

β0Pkvk

bjkN0((hj)2 + ∥q−wk∥2)
α
2

)

− bjkη

√√√√1−

(
1 +

β0Pkvk

bjkN0((hj)2 + ∥q−wk∥2)
α
2

)−2

, (31)

s
(2)
k ≤ bjk log2

(
1 +

β0p
j
kvk

bjkN0((hj)2 + ∥qj −wap∥2)
α
2

)

− bjkη

√√√√1−

(
1 +

β0p
j
kvk

bjkN0((hj)2 + ∥q−wap∥2)
α
2

)−2

.

(32)

Now, the given P2 can be transformed to the convex problem
by further transforming eq. (32) and using constants Ak1 =
β0pkK1

bjkN0
, Ak2 = β0PkK2

bjkN0
and introducing tk, xk, yk, zk as new

slack variables. Thereafter, we have

s
(0)
k ≤ bjk log2(1 + tk)− bjkη

√
1− (1 + tk)2, (33a)

tk ≥ λ∗, (33b)

tk ≤
Ak1 +

Ak2

xk

y
α/2
k

, (33c)

xk ≤ 1 + e−zk , (33d)

yk ≤ ∥q−wk∥2 + (hj)2, (33e)
zk ≤ J1 + J2uk. (33f)

Similarly, we deal with the non-convexity of eq. (33c) and
eq. (33f). It is to be noted that the right hand side of eq.
(33c) is convex w.r.t. xk and yk (please refer to Appendix
A). Thus, for any given xk and yk, the right hand side of
eq. (33c) is converted to a lower bound function denoted

3The considered UAV-assisted communication system does not utilize a
snake traversal trajectory but focuses on optimizing 3D UAV positioning. As
such, mapping a snake traversal trajectory is unsuitable for the system as
it leads to inefficient resource allocation and communication performance.
Moreover, the system’s objectives of task offloading and mobile edge com-
puting require a more structured and predictable UAV positioning approach
for optimal performance and reliable communications.
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by ϕlbk (Ak1, Ak2, xk, yk). Therefore, by SCA method, we can
write

tk ≤ ϕlbk (Ak1, Ak2, xk, yk),

ϕlbk (Ak1, Ak2, xk, yk) =
Ak1 +Ak2(x

j
k)

−1

(yjk)
α/2

−
Ak2(xk − xjk)

(xjk)
(2)(yjk)

α/2

−
α(Ak1 +Ak2(x

j
k)

−1)

2(yjk)
α/2+1

(yk − yjk).

(34)

Likewise, to tackle the non-convexity of eq. (33f), since uk is
convex w.r.t. (hj)2 + ∥qj − wk∥2 (please refer to Appendix
B), we obtain lower the bound of uk denoted by ψlb

k (wk,q),
which can be mathematically represented as

ψlb
k (wk,q) =

hj√
(hj)2 + ∥qj −wk∥2

− hj(∥q−wk∥2 − ∥qj −wk∥2)
2((hj)2 + ∥qj −wk∥2)3/2

,

zk ≤ J1 + J2ψ
lb
k (wk,q).

(35)

Therefore, for s(2)k , the constraints given above converted into

s
(2)
k ≤ Bj

k log2(1 + t̂k)−Bj
kηV (t̄k), (36a)

t̄k ≥ λ∗, (36b)

t̄k ≤ ψlb
k (Āk1, Āk2, x̄, ȳ), (36c)

x̄ ≤ 1 + e−z̄, (36d)

ȳ ≤ ∥q−wk∥(2) + (hj)2, (36e)

z̄ ≤ J1 + J2ψ
lb
k (wap,q). (36f)

where Āk1 =
β0p

j
krK1

bjkN0
, and Āk2 =

β0p
j
kK2

bjkN0
.

Resultantly, P2 aiming to optimize ζ2.1 =

{τ (0)k , τ
(2)
k ,q, s

(0)
k , tk, xk, yk, zk, s

(2)
k , t̄k, x̄, ȳ, z̄} can be

reformulated as

P2.1 : min
ζ2.1

T,

s.t. (15c), (15d), (15h),
(19), (27), (34a),
(34b), (34d), (34e),
(35), (36), (37).

Now, P2.1 is reduced to a convex problem and the sub-problem
of horizontal UAV positioning can be efficiently tackled.

C. Sub-problem of Vertical UAV Positioning

Finally, we formulate the third sub-problem by fixing
{bk, pk, fk,ak, τ (1)k ,q}. Therefore, ζ3 can be formulated as

P3 : min
ζ3

T, (37a)

s.t. C3, C5, (37b)
(15c), (15d), (15h), (15i). (37c)

Here, we leverage the SCA method, since uk and u2k are
convex w.r.t. h (please refer to Appendix C), we compute the

lower bound functions, which are represented by ϕlbk and χlb,
given as

ϕlb
k (wk,q) =

hj√
(hj)2 + ∥qj −wk∥2

+
h− hj√

∥qj −wk∥2 + (hj)2

− (h− hj)(hj)2

(∥qj −wk∥2 + (hj)2)3/2
,

(38)

χlb = ϕlb
k (wap,h). (39)

Consequently, P3 seeking to optimize ζ3.1 =

{τ (0)k , τ
(2)
k ,h, s(0)k , tk, xk, yk, zk, s

(2)
k , t̄k, x̄, ȳ, z̄} can be

reformulated as

P3.1 : min
ζ3.1

T,

s.t. C3, C5, (15c),
(15d), (15h),
(16), (27),
(33a)− (33f),
(36a)− (36f),

zk ≤ J1 + J2ϕ
lb
k ,

ẑ ≤ J1 + J2χ
lb.

Therefore, the problem P3.1 is convex, which can be solved
by convex optimization solvers as mentioned before.

IV. PROPOSED ALGORITHMS

A. SCA-based Algorithm

Due to the analysis shown before, we present an effective
algorithm, namely Algorithm 1, where we employ the SCA-
based method to divide our main problem P0 into three smaller
sub-problems namely P1.1, P2.1, and P3.1. As discussed
before, the main problem P0 is non-convex, hence, a global so-
lution is not guaranteed. Nonetheless, we know that objective
function in each sub-problem is not increasing and it has lower
bounds. Therefore, we can perform local optimization for each
of the sub-problems, and the Algorithm 1 is at least guar-
anteed to converge to a locally optimal solution. Firstly, the
algorithm begins by initializing various input parameters such
as K, Lk, Sk for all k, Fmax, B, Pmax, Hmin, Hmax, N0, β0,
α, K1, K2, J1, and J2. Additionally, it sets initial values for
variables including j = 0, εmax = 10−7, and Mmax = 200
symbols. The core idea of the algorithm is to iteratively
solve three sub-problems, denoted as P1.1, P2.1, and P3.1,
within a while loop. In each iteration, the algorithm updates
the values of various parameters and variables based on the
solutions obtained from the previous iteration. As such, the
algorithm aims to minimize the absolute difference between
two consecutive values of T j until it falls below a predefined
precision value ϵ. The first sub-problem, P1.1, is solved by
providing the initial values of qj and hj , which yields optimal
solutions for variables such as bjk, f jk , ajk, τ (0)jk , τ (1)jk , and
τ
(2)j
k . Then, using these results, the algorithm proceeds to

solve P2.1, where it calculates the optimal solutions for τ (0)jk ,
τ
(2)j
k , and qj , while keeping bjk, f jk , ak, τ (1)jk , and hj+1 fixed.

Finally, P3.1 is solved using updated values of bjk, f jk , ajk,
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τ
(1)j
k , and qj+1 to find the optimal solutions denoted by τ (0)jk ,
τ
(2)j
k , and hj . Lastly, this process repeats by incrementing the

value of j until the convergence condition |T j −T j−1| ≤ ϵ is
met.

Algorithm 1: SCA-based Algorithm for solving prob-
lem P0

1 Input K, Lk, Sk, pk, ∀k, Fmax, B, Pmax, Hmin,
Hmax, N0, β0, α, K1, K2, J1, J2,

2 Set j = 0, εmax = 10−7 and Mmax = 200 symbols,
3 Initialize {q(0), h(0)}, and a precision ϵ,
4 while |T j − T j−1| ≤ ϵ do
5 Solve P1.1 with given {qj , hj} and obtain the

optimal solutions of
{bjk, p

j
k, f

j
k ,a

j
k, τ

(0)j
k , τ

(1)j
k , τ

(2)j
k }

6 Solve P2.1 with given {bjk, p
j
k, f

j
k ,ak, τ

(1)j
k ,hj+1}

and obtain the optimal solutions of
{τ (0)jk , τ

(2)j
k ,qj}

7 Solve P3.1 with given {bjk, p
j
k, f

j
k ,a

j
k, τ

(1)j
k ,qj+1}

and obtain the optimal solutions denoted by
{τ (0)jk , τ

(2)j
k ,hj}

8 Set j = j + 1.
9 end

10 Return an optimized solution

B. Altered Genetic Algorithm

Now, we briefly describe all the steps of Altered Genetic
Algorithm (AGA), which uses SCA as a means for improve-
ment in Algorithm 2. The main idea behind the AGA-based
Algorithm involves a series of steps that combine genetic
algorithm principles with SCA inequalities. As such, the
algorithm starts by receiving input parameters such as K,
Lk, Sk for all k, Fmax, B, Pmax, Hmin, Hmax, N0, β0, α,
K1, K2, J1, and J2. It initializes variables including j, εmax,
Mmax, and X , an array initialized with zeros that will store the
optimized solutions. Within a while loop, the algorithm aims
to minimize the absolute difference between two consecutive
values of T j until it falls below a predefined threshold ϵ or
until the maximum number of iterations G is reached. Each
iteration involves several crucial steps, including probabilities
calculation, crossover, mutation, and selection. During the
probabilities calculation step, the algorithm calculates the sum
of values Φj and determines the probabilities of selection
Φj

i for each value. Thereafter, in the crossover step, pairs
for crossover are selected based on their probabilities, and
new points P ′′

1 and P ′′
2 are obtained using random number

generators and mathematical formulas. Then, the mutation
step introduces random changes to the coordinates of selected
points. Subsequently, the selection step populates the array
X with the obtained points and their corresponding values,
removing the points with the smallest values and retaining
only the m points with the lowest values. Additionally, the
algorithm evaluates an iteration criteria to determine whether
to continue or terminate the iteration process. If the maximum
value from X remains unchanged and the distance between the

two most optimal solutions is less than ϵ, the algorithm incre-
ments j by 1; otherwise, it resets j to 0. Overall, the inclusion
of SCA inequalities adds an additional optimization aspect to
the AGA-based algorithm, allowing it to find solutions that
satisfy these inequalities to improve the performance. Lastly,
the algorithm terminates based on convergence criteria and
returns the optimized solution found during the iterations.

Algorithm 2: AGA-based Algorithm for solving P0
1 Input K, Lk, Sk ∀k, Fmax, B, Pmax, Hmin, Hmax,

N0, β0, α, K1, K2, J1, J2.
2 Set j = 0, εmax = 10−7, Mmax = 200 symbols, and

X of M denoted by
(bk, pk, fk,ak, τ

(0)
k , τ

(1)
k , τ

(2)
k ,q,h) values to zeros.

3 Initialize Random m values denoted by Pj
i , inside the

given domain, and the maximum number of iterations
without progress in finding the solution G. For all the
other points, the maximum value denoted by θi, such
that point P̂j

i = Pj + θiei, where ei ∈ (−1, 1), for
the SCA inequalities in P1.1, P2.1, and P3.1, is
found using Newton method and corresponding
maximum values of T j

i is stored.
4 while |T j − T j−1| ≤ ϵ, j < G do
5 Probabilities calculation The sum of values given

by Φj =
m∑
i=0

T j
i is calculated and probabilities of

selection Φj
i = T j

i /Φ
j for each values are

obtained
6 Crossover The pairs for crossover w.r.t. their

probabilities Φj
i are selected. For each such pair

(P ′
1, P

′
2), where P ′

1 is selected in such a way, that
its value of T j

i is greater then those of P ′
2, the

points P ′′
1 and P ′′

2 are obtained by formulae
P ′′
1 = Φ((P ′

1 + P ′
2)/2)) and

P ′′
2 = Φ(P ′

1 − P ′
2/2)), where Φ(x) is random

number generator with normal distribution and
mean x. Thereafter, we select random point P0,
and for points P ′′

1 and P ′′
2 the maximum values

of θ′′1 and θ′′2 are calculated, such that
P̂ ′′
i = P ′′

i θ
′′
i , satisfies the SCA inequalities in

P1.1, P2.1, and P3.1.
7 Mutation With fixed small probability φ, one of

the coordinates of point P ′′
i is changed randomly

and corresponding value of P̂ ′′
i is obtained.

8 Selection Place values of P̂ ′′j
i with their

corresponding values of T j
i into X . Thereafter,

remove the values of X that correspond to the
smallest values of T , in order to leave the m
values with the lowest T values

9 Iteration criteria If maximum value from X was
not changed, and the distance between two most
optimal solutions is less then ϵ, then set
j = j + 1, else set j = 0

10 end
11 return an optimized solution
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C. Smart Exhaustive Search-based Algorithm

Algorithm 3: SES-based Algorithm for solving P0
1 Input K, Lk, Sk, Pk, ∀k, Fmax, B, Pmax, Hmin,

Hmax, N0, β0, α, K1, K2, J1, J2,
2 Set j = 0, εmax = 10−7, Mmax = 200 symbols, set

vector X of M denoted by
(bk, pk, fk,ak, τ

(0)
k , τ

(1)
k , τ

(2)
k ,q,h) equal to zeros,

3 Initialize The number of generated vectors m, the
maximum number of iterations without progress in
finding the solution G, the number of stored
optimums M, and precision ϵ,

4 while |T j − T j−1| ≤ ϵ, |T j
1 − T j

0 | ≤ ϵ, j < G do
5 Generate random point Pj in Q
6 If Pj does not satisfy inequalities in P0, then

repeat previous step
7 Generate random vectors e1, e2, . . . , em
8 Using binary search find maximum value of θi, if

that point P̂j
i = Pj + θiei, where ei ∈ (−1, 1),

satisfies inequalities in P0, then store
corresponding maximums to vector T j

i

9 Put values of P̂j
i and of T j

i into X
10 Remove from X , those values corresponding to the

smallest m values of T j
i

11 If maximum value from X was not changed, then
set j = j + 1, else set j = 0

12 end
13 return an optimized solution

Smart exhaustive search algorithm (SES) uses the random
walk strategy. In this regard, we select some random point P in
the subspace of the variables bk, prk, frk, ak, τ (0)k , τ (1)k , τ (2)k ,
q, h within our domain. In this regard, if this point does not
satisfy our inequalities in P0, then we do not consider it and
then generate another one. Otherwise, we can select random
vector(s), i.e., e1, e2, . . . , em in our space denoted by Q.
Thereafter, we find maximum values of T for each line, that is
built from P in the directions of e1, e2, . . . , em. Furthermore,
we repeat this process until the overall found maximum value
of T stops decreasing for a large number of iterations denoted
by D. It is to be noted that some M optimal values are stored
as vectors of coordinates x1, x2, . . . , xM. Hereafter, each time
we select e1, e2, . . . , em representing random vectors for the
directions from P , where ei ∈ (−1, 1), we select them in
such a way that they are close with some probability to the
coordinates x1, x2, . . . , xM. Then, we update values of found
maximum values x1, x2, . . . , xM. Finally, we can summarize
all the steps of so-called SES in Algorithm 3.

D. Time-Complexity of Proposed Algorithms

In this sub-section, we estimate the effectiveness of the
previously described proposed algorithms in finding the op-
timums in terms of maximum amounts of operations they
require to obtain the given results with given precision ϵ > 0.
Firstly, we note that the effectiveness of the SCA-based
approach is difficult to calculate because of the unclear speed

of convergence to the local optimum at each stage step of
the Algorithm 1 for every sub-problem P1.1, P2.1, and P3.1.
Nonetheless, we can consider estimation given in [43], which
postulates that convex optimization algorithm converges sub-
linearly to the local solution. Thus, total time of the sub-
problems P1.1, P2.1, and P3.1 is denoted by O(− ln (ϵ)2).
Furthermore, we also consider speed of convergence of the
Algorithm 1. In this regard, the present research such as [44],
do not provide sufficient theory on the speed of convergence
for SCA algorithms. However, we know from the the nature of
the method that the convergence speed is linearly dependant
on the number of space dimensions of the given variables,
whose time-complexity is given as O(− ln(ϵ)4). Therefore,
total complexity of the Algorithm 1 after simplification
is denoted by is O(−N ln(ϵ)) or O(N ln(1/ϵ)), where N
represents the number of iterations. Now, it is to be noted
that for the AGA, the complexity of our Algorithm 2 is
O(NSK), where N represents the number of iterations and
S denotes the population size, and K depicts the problem
variables. Thereafter, for SES, the time-complexity is given
by O

(
AB2 × P × F × T 3 ×QH2

)
, where the number of

points tested for both ak and bk is represented by AB,
for pk is denoted by P , for fk is depicted as F , and for
each of q and h is QH. It is to be noted that we choose
AB = P = F = T = QH = 10000 points, which
makes the SES complexity much greater than that of the
proposed Algorithm 1 and Algorithm 2. Finally, we deduce
that AGA can efficiently solve P0, by the virtue of having
lowest complexity.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we set various systems parameters in Table
II. It is to be noticed that the selection of constant parameter
values for our deterministic optimization problem involved a
combination of theoretical knowledge, problem characteristics,
sensitivity analysis, and iterative refinement. By leveraging ex-
isting knowledge, understanding problem properties, evaluat-
ing parameter sensitivity, and iteratively refining values based
on hit and trial method, we achieved optimized parameter
configurations.

TABLE II: System Parameters

Parameters Numerical values
εmax 10−7

Mmax 200 symbols
ϵ 10−5

B 10 MHz
Pmax 30 dBmW
K 8 IoT devices
Fmax 5 GHz
Sk 103 cycles/bit
Lk 30 Mb
β0 −60 dB
N0 −169 dBm
K1 −4.7
K2 8.9
J1 0.01
J2 0.99
α 2.3
Hmin 80 m
Hmax 200 m
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Fig. 3: (a) Completion time versus CPU frequency (b) Completion time versus task size (c) Power allocation versus different
tasks.

A. Execution Time and Convergence Analysis

Firstly, we compare Algorithm 1-3 in terms of execution
time (sec) for achieving required algorithmic precision ϵ,
which shows the level of precision an algorithm can achieve
to generate the desired results. As shown in Fig. 2(a), the
execution time for both SCA-based Algorithm 1 and AGA-
based Algorithm 2 is log-linear and linear, whereas for
SES-based Algorithm 3, it is exponential. Moreover, AGA-
based Algorithm 2 has lowest execution time for achieving
required precision. Thus, in terms of execution time and lowest
time-complexity derived in previous section, Algorithm 2 is
our preferred approach for tackling P0. In this regard, for
Algorithm 2, the values of the numbers of the crossover
pairs is chosen as 10000, and the probability of mutation is
0.6. Now, we show the convergence analysis of Algorithm 2

in Fig. 2(b), in mere ten iterations, Algorithm 2 is able to
minimize the completion time for different short task sizes,
which further establishes its superiority compared with the
other two aforementioned algorithms.

B. Fixed Benchmark Sub-Methods
Next, we design several fixed benchmark sub-methods using

Algorithm 2, which are described as: 1) access point task
computations (APTC), where as the name implies, tasks of the
IoT devices are only computed at the AP side. 2) unmanned
aerial vehicle task computations (UVTC), where the UAV is
assumed to handle and perform all the task computations at its
side. 3) fixed unmanned aerial vehicle altitude (FUVA), where
the UAV’s height is assumed to be fixed at hfix. = 200 m. At
this height, the UAV is able to successfully balance the sub-
task relaying and offloading to the AP side. 4) uniform CPU
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Fig. 4: (a) 2D positioning of all devices (b) 2D UAV positioning using different fixed benchmark sub-methods
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Fig. 5: (a) 3D UAV positioning using different fixed benchmark sub-methods (b) 3D UAV positioning for decoding error rate.

frequency allocation (UCFA), where the resource allocation
including CPU frequency of UAV is uniformly distributed; 5)
uniform computational task assignment (UCTA), where the
same number of tasks are calculated at both the UAV side as
well as the AP side. 6) fixed unmanned aerial vehicle location
(FUVL), where the UAV location is assumed to be fixed at
the abscissa and ordinate of u = [200, 200, 200] m.

C. Resource Allocation

Now, we evaluate the resource allocation including the
UAV transmit power, UAV CPU frequency, communication
bandwidth, blocklength, and task partitioning using our pro-
posed AGA-based Algorithm 2, and its fixed benchmark
sub-methods, which were described previously. Moreover, in
Fig. 3(a), we show the relationship of completion time (sec)
versus CPU frequency (GHz). It is abundantly clear that the
AGA outperforms its fixed counterparts. Here, APTC yields
comparable results to AGA, which emphasizes the significance
of UAV relaying. It is to be noted that both FUVA and FUVL

yield identical results, which remain constant by varying the
value of Fmax. In this regard, during the second phase,
UAV to ground channel quality is adversely affected by UAV
altitude and overall three-dimensional positioning, which stops
the minimization of the completion time. Furthermore, Fig.
3(b) shows that completion time increases almost linearly
as task size Lk tends to increase. In this context, yet again
AGA-based Algorithm 2 yields the best results compared
to other benchmark sub-methods. Since FUVA and FUVL
have fixed positioning they are ineffective in reducing the
completion time. Additionally, APTC depicts the significance
of task relaying to the remote AP, which conclusively show
that if UAV is used to store and execute a sub-task while
relaying the other sub-task to the remote AP, the best results
can be obtained. Hence, it is essential to jointly optimize
resource allocation including UAV transmit power, bandwidth,
as well as task partitioning. Thereafter, Fig. 3(c) shows power
allocation (mW) for different computation tasks at the UAV
side. Moreover, for the power allocation process, the sum of
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power levels of all tasks can only be up to the maximum
UAV transmit power, which is set to 1000 mW or 30 dBm.
As such, power differentiation between different computation
tasks is random, which adds an extra layer of against the
eavesdroppers. Resultantly, intercepting and decoding such
task data packets become more difficult as eavesdroppers need
to constantly adapt their equipment to account for the varying
power levels and potential changes in the power allocation
scheme.

D. UAV Positioning

Now, again we evaluate the different UAV deployment
scenarios and decoding error rate using our proposed AGA-
based Algorithm 2, and its fixed benchmark sub-methods,
which were described previously. In this regard. Fig. 4(a)
shows the positioning of all the devices including UAV, IoT
devices, as well as AP. Moreover, Fig. 4(b) and Fig. 5(a), show
the two-dimensional and three-dimensional positioning of the
UAV using AGA and its sub-methods, as expected the optimal
results are yielded by AGA and then second best results are
yielded by APTC, which indicates that if UAV does not have
storage and computational capabilities, i.e., buffer then it can
simply offload tasks to the AP side and it will provide us with
sub-optimal results for the considered scenario. Alternatively,
for FUVA and FUVL, as described earlier, since the UAV
height and 3D positioning are fixed, respectively, their de-
ployment results are not ideal. Comparably, UCTA and UCFA
produce better results than FUVA and FUVL, indicating that
height and positioning are essential for determining optimal
UAV deployment compared to other parameters like CPU
frequency, which intuitively makes sense. Therefore, for all
the benchmark sub-methods, we can positively deduce that
they produce inferior results for UAV deployment compared
to the AGA-based Algorithm 2. Finally, in Fig. 5(b), we
show the relationship between decoding error error and the
3D positioning of the UAV, when UAV is deployed between
the IoT devices and the AP. In this regard, we show that using
our AGA-based Algorithm 2, subject to the 3D positioning
of the UAV, the decoding error rate can be effectively reduced
as UAV tries to balance the scales between task relaying and
execution at its end.

VI. CONCLUSION

In this paper, we proposed a novel framework to facilitate
URLLC vis-à-vis UAV-enabled relaying in MEC systems for
6g networks in uplink transmissions under short blocklength
regime. Thereafter, we formulated the minimization prob-
lem of mission completion time subject to the constraints
of resource allocation including UAV transmit power, UAV
CPU frequency, communication bandwidth, task partitioning,
decoding error rate and 3D UAV positioning. Afterwards,
we proposed three distinct optimization algorithms and based
on the lower time-complexity, as well as lower execution
and convergence time, we selected AGA as the winning
candidate. In this regard, AGA yielded superior performance
compared to its fixed benchmark sub-methods and we demon-
strated through simulations that it can successfully perform

the resource allocation of the aforementioned constraints and
can map 3D UAV positioning. Lastly, we showed that 3D
UAV positioning is essential to reduce decoding error rate to
meet QoS requirements for URLLC services. In our future
work, we will explore the combination of power allocation
with advanced physical layer security techniques to enhance
data confidentiality and mitigate information leakage risks
in UAV communications. By integrating adaptive modulation
and coding, beamforming, and interference management with
power allocation, we aim to achieve a higher level of security
for transmitted data. These techniques will dynamically adapt
to channel conditions, optimize resource allocation, and ad-
dress potential vulnerabilities, ensuring robust and secure UAV
communication systems in diverse environments. Our research
will contribute to the development of more secure and reliable
communication systems for future UAV applications.
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APPENDIX A
CONVEXITY OF f(xk, yk)

To show the convexity, we first show the right hand side of
eq. (33c), as a mathematical function given by

f(xk, yk) = Ak1 y
−α/2
k +Ak2 x

−1
k y

−α/2
k , (40)

For the sake of simplicity, we substitute the value of α = 2.3,
to simplify the eq. (40) as

f(xk, yk) = Ak1 y
−1.15
k +Ak2 x

−1
k y−1.15

k , (41)

Now, the Hessian matrix of a two-variable function is a 2× 2
square matrix of second-order partial derivatives shown by

H(f(xk, yk)) =


∂2f(xk, yk)

∂x2k

∂2f(xk, yk)

∂xk ∂yk

∂2f(xk, yk)

∂yk ∂xk

∂2f(xk, yk)

∂y2k

, (42)

Afterwards, the general form of Hessian matrix can be given
by

H(f(xk, yk)) =

[
H11 H12

H21 H22

]
, (43)

where Hij represent the corresponding elements of the matrix,
as such i denotes the row index and j denotes the column
index. Moreover, first element and second elements H11 and
H12 can be computed as

H11 =
∂2f(xk, yk)

∂x2k
=

2Ak2

x3ky
1.15
k

,

H12 =
∂2f(xk, yk)

∂xk∂yk
=

1.15Ak2

x2ky
2.15
k

.

(44)
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Thereafter, the third and the last elements denoted by H21 and
H22 are calculated as

H21 =
∂2f(xk, yk)

∂yk∂xk
=

1.15Ak2

x2ky
2.15
k

,

H22 =
∂2f(xk, yk)

∂x2k
=

2.4725

y3.15k

(
Ak1 +

Ak2

xk

)
.

(45)

It is to be noted that H12 = H21, due to symmetric nature
of the Hessian matrix. Here, we put all the computed matrix
elements in eq. (42), and we get

H(f(xk, yk)) =


2Ak2

x3ky
1.15
k

1.15Ak2

x2ky
2.15
k

1.15Ak2

x2ky
2.15
k

2.4725

y3.15k

(
Ak1 +

Ak2

xk

)
, (46)

Furthermore, we compute the first-order and the second-order
principal minors of H(f(xk, yk)), given as

∆1 = H11 =
2Ak2

x3ky
1.15
k

, (47)

∆2 = det

[
H11 H12

H21 H22

]
=

2.4725Ak2

x3ky
4.3
k

(
2Ak1+

1.4651A2
k2

xk

)
,

(48)
Since, ∆1 > 0 and ∆2 > 0, it indicates that all the principal
minors are positive. Thus, according to Sylvester’s criterion,
H(f(xk, yk)) is positive semi-definite and it is convex in
nature [45]–[48].

APPENDIX B
CONVEXITY OF uk((h

j)2 + ∥qj −wk∥2)
Now, we show the convexity of elevation angle uk w.r.t.

distance (hj)2 + ∥qj −wk∥2. As such, the first-order partial
derivative of uk w.r.t. (hj)2 + ∥qj −wk∥2 is given as

∂uk

∂(hj)2 + ∥qj −wk∥2
=
−hj((hj)2 + ∥qj −wk∥2)−1

2
√

∥qj −wk∥2
, (49)

Afterwards, we again compute the second-order partial deriva-
tive of uk w.r.t. (hj)2 + ∥qj −wk∥2, given as

∂2uk

∂((hj)2 + ∥qj −wk∥2)2
=

hj((hj)2 + ∥qj −wk∥2)−2

2
√

∥qj −wk∥2
, (50)

Since,
∂uk

∂(hj)2 + ∥qj −wk∥2
> 0, thus, according to the

second derivative test, the elevation angle uk is convex w.r.t.
(hj)2+∥qj −wk∥2. Finally, the same principle applies to the
convexity of u2k w.r.t. (hj)2 + ∥qj −wk∥2.

APPENDIX C
CONVEXITY OF uk(h)

Again, we perform the convexity analysis of elevation angle
uk w.r.t. the UAV height h. Same as before, the first-order
partial derivative of uk w.r.t. h is given as

∂uk

∂h
=

1√
∥qj −wk∥2

{
1− (hj)2((hj)2 + ∥qj −wk∥2)−1

}
.

(51)

Similarly, once more we calculate the second-order partial
derivative of uk w.r.t. h, given as

∂2uk

∂h2
=

1√
∥qj −wk∥2

+
2hj((hj)2 + ∥qj −wk∥2)−1√

∥qj −wk∥2{
1− (hj)2((hj)2 + ∥qj −wk∥2)−1

}
,

(52)

Since,
∂2uk
∂h2

> 0, therefore, yet again, according to the second
derivative test, the elevation angle uk is convex w.r.t. h. Lastly,
using the same convexity rule u2k is also convex w.r.t. h.
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(ÉTS), since 1991, where he served as the Director,
from 1999 to 2001, and has held the industrial
research chair position, since 2001. He is also the
NSERC-Ultra Electronics Chair in Wireless Emer-
gency and Tactical Communication, the most pres-
tigious industrial chair program in Canada. He also

founded the Communications and Microelectronic Integration Laboratory at
the ETS, and was its first Director. Most recently, he was appointed as
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