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Abstract

Heart failure (HF) is considered a global pandemic because of increasing prevalence, high mortality rate, frequent hospitalization

and associated economic burden. This study explores a noninvasive method that may help in managing HF patients by

predicting HF readmission. Methods: Seismocardiogram (SCG) signal is the low frequency chest vibration produced by the

mechanical activity of heart. SCG signal was acquired from 101 patients with HF including in those readmitted to the hospital

during the study period. Features were extracted from SCG signals. Several conventional machine learning (ML) models were

developed using selected SCG and heart rate variability features. Furthermore, SCG signals were transformed into images using

a time-frequency distribution method. Images were used to train a deep learning model. The models were able to predict

the readmission status of the HF patients. Results: ML algorithms achieved higher accuracy than the deep learning model

in classifying the readmitted and non-readmitted HF patients. K-nearest neighbor (KNN) achieved the highest classification

accuracy (89.4% accuracy, 87.8% sensitivity, and 90.1% specificity). The study results suggest that SCG signal may be useful

for readmission prediction of HF patients. Significance: Use of SCG signal may help the management of HF patients and

improve their quality of life.
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Abstract— Objective: Heart failure (HF) is considered a global 

pandemic because of increasing prevalence, high mortality rate, 

frequent hospitalization and associated economic burden. This 

study explores a noninvasive method that may help in managing 

HF patients by predicting HF readmission. Methods: 

Seismocardiogram (SCG) signal is the low frequency chest 

vibration produced by the mechanical activity of heart. SCG 

signal was acquired from 101 patients with HF including in those 

readmitted to the hospital during the study period. Features were 

extracted from SCG signals. Several conventional machine 

learning (ML) models were developed using selected SCG and 

heart rate variability features. Furthermore, SCG signals were 

transformed into images using a time-frequency distribution 

method. Images were used to train a deep learning model. The 

models were able to predict the readmission status of the HF 

patients. Results: ML algorithms achieved higher accuracy than 

the deep learning model in classifying the readmitted and non-

readmitted HF patients. K-nearest neighbor (KNN) achieved the 

highest classification accuracy (89.4% accuracy, 87.8% 

sensitivity, and 90.1% specificity). The study results suggest that 

SCG signal may be useful for readmission prediction of HF 

patients. Significance: Use of SCG signal may help the 

management of HF patients and improve their quality of life. 

 

 
Index Terms—Biomedical signal processing, Biomedical 

acoustics, Congestive heart failure, Machine learning, Feature 

extraction, Convolutional neural networks.  
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I. INTRODUCTION 

Heart failure (HF) is a chronic progressive medical condition 

marked by the diminished capacity of the heart to effectively 

pump blood. HF is a major global health concern and 

considered a pandemic with an estimated 64 million cases 

worldwide [1] and 6 million in the United States [2]. This is 

projected to rise to 8.5 million in 2030 in the US [3]. This 

increasing prevalence mainly accounts for the aging populations 

who are at greater risk of developing HF. Advances in medical 

diagnosis and treatment have improved survival rates 

prolonging life in individuals with HF [1]. Nevertheless, the 

mortality rate related to HF is still excessively high. A meta-

analysis by Jones et al. in 2018 showed that the 1 and 5-year 

survival rate of HF is 86.5% and 56.7%, respectively [4]. 

According to a more recent study by Bozkurt et al., 28% of 

263,525 patients died during the first year of first HF 

hospitalization [3]. Apart from this, the economic burden 

related to HF is also staggering [5]. The total cost for HF was 

estimated at $43.6 billion in the US, which is projected to 

increase to $70 billion by 2030 [6], [7]. The main driver of HF 

healthcare cost is hospitalization [8] as HF is associated with a 

very high number of hospital readmission rate. After discharge, 

about 25% and 50% of HF patients are readmitted within the 30 

days and 6 months period, respectively [2], [9]. With the 

increase of HF prevalence, the readmission rate and associated 

cost are likely to be increased in the coming years.  Therefore, 

early readmission prediction may allow interventions that may 

reverse patient deterioration and avoid readmission.  

 HF can be classified based on left ventricular ejection 

fraction (LVEF). LVEF is the fraction of blood pumped out of 

heart’s left ventricle (LV) during systole. It provides a 

measurement of LV systolic function which is responsible for 

ejecting oxygenated blood from the heart to the rest of the 

body. Normal range of LVEF is 50-70% [10]. Classification of 

HF regarding LVEF is illustrated in Table I. 

 
TABLE I 

CLASSIFICATION OF HF ACCORDING TO LVEF 

 

Heart Failure Readmission Prediction Using 

Seismocardiogram Signal 

Rajkumar Dhar, Md Rakib Hossen, Peshala T. Gamage, Richard H. Sandler, Nirav Y. Raval, Robert J. 

Mentz, Hansen A. Mansy 

HF class LVEF 

HFrEF ≤ 40% 

HFmrEF 41-49% 

HFpEF ≥50% 
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Here, HFrEF is HF with reduced ejection fraction, HFmrEF is HF with mildly 
reduced ejection fraction, and HFpEF is HF with preserved ejection fraction 

[6]. LVEF stands for left ventricular ejection fraction. 

 

HFrEF comprises approximately 50% of total HF cases [11]. 

Patients with HFrEF have a higher mortality rate than HFpEF 

[12], [13]. Although all-cause readmission is higher in HFpEF, 

HF readmission is higher in HFrEF [14]. In addition, the cost of 

readmission is higher in HFrEF patients [15]. Regardless of the 

HF class, the high readmission rate is avoidable with preventive 

measures [16]. In [17], it was demonstrated that a post-

discharge transitional care program can greatly reduce the HF 

readmission rate and the associated cost. Taking this into 

account, continuous efforts have been made to build an early 

and reliable HF readmission prediction model that may help the 

clinicians to make timely targeted interventions to prevent 

readmissions. 

Electronic health records (EHR) and wearable sensors are 

the main data sources that have been used to predict HF 

readmission. EHR includes patient demographics, medications, 

vital signs, medical history, laboratory data etc. With wearable 

devices measures including intrathoracic impedance, 

electrocardiogram (ECG), and seismocardiogram (SCG) can be 

acquired and used as predictors of HF readmission. The 

predictive accuracy values of these studies are widely varied. In 

[18], authors used EHR data and achieved 83.19% accuracy in 

1068 patients. In another study, sensitivity, and specificity of 

48% and 70% are achieved respectively using medical data of 

10757 HF patients [19]. A review article by Liu et al. showed 

that B-type natriuretic peptide (BNP) and N-terminal pro-brain 

natriuretic peptide (NT- proBNP) are the most used predictors 

from the EHR data [20]. 

Other authors used sensor data to predict HF readmission. 

Intrathoracic impedance-based models obtained variable 

predictive accuracy ranging from 21-76% suggesting the 

uncertainty in predicting HF readmission [21], [22], [23], [24]. 

In [23], ECG, skin impedance, temperature etc. were acquired 

from 100 patients at home with a multisensory patch for 3 

months. High prediction accuracy was achieved 

(sensitivity=86%, specificity=87.5%) using the sensor data, 

although the study required baseline data for analysis. Boehmer 

et al. used defibrillators implanted in patients to acquire data to 

predict hospitalization [25]. Invasive accelerometer-acquired 

heart sounds (similar to SCG), heart rate, intrathoracic 

impedance, respiration rate and tidal volume data were 

collected from the implanted device which were able to alert 

clinicians before HF hospitalization (sensitivity=70%). In 

another SCG-based study Lin et al.  identified HF patients by 

calculating LVEF from SCG and ECG signals [26]. In the study 

40 subjects were enrolled (25 HF and 15 healthy). Ratio of pre-

ejection period and left ventricular ejection time was calculated 

from SCG and ECG signals which was found inversely 

proportional to LVEF (correlation coefficient 0.73). A 

threshold ratio of 0.33 distinguished HF from healthy 

participants with 96% accuracy (sensitivity 98% and specificity 

94%). Inan et al. used SCG signal to distinguish between 

compensated and decompensated HF patients [27]. The patients 

needed to perform the 6-minute walk test (6MWT) in this study. 

Similarity between SCG signals before and after the test was 

used as a metric to differentiate the two groups. Higher 

similarity was found in decompensated patients suggesting their 

reduced cardiovascular reserve. Although the above studies had 

several limitations such as requiring baseline data, demanding 

patients to perform 6MWT or using invasive measurements, 

these studies demonstrated the merit of SCG signal in 

predicting HF readmission. The current study investigates the 

feasibility of using SCG and ML for HF readmission prediction 

when baseline measurements are not available. 

 

II. MATERIALS AND METHOD 

A. Data Acquisition: 

 

The dataset used in this study was collected at AdventHealth 

Orlando after IRB approval by the University of Central 

Florida (protocol number: BIO-16-12783, the date of 

approval: March 6, 2023). HF patients were recruited after 

their discharge from the hospital. Overall, 101 patients were 

included in this study. Data were acquired in single or multiple 

sessions per patient. After data quality inspection, 24 

recording sessions were excluded due to poor quality of the 

acquired signal(s). This resulted in the exclusion of 20 patients 

from the study. Data analysis was performed in the remaining 

81 patients (19 females, 75 HFrEF and 6 HFpEF) who had 

total 142 sessions. After the initial discharge, 22 patients (who 

attended 41 recording sessions) were readmitted to the 

hospital during the window of data acquisition (six month). 

The protocol included 3 minutes of data acquisition in each 

session when patients were sitting on a 45-degree inclined 

exam table with their legs extended. The following three 

signals were acquired from the patients:  

i. Siesmocardiography (SCG): Acquired using a tri-axial 

accelerometer (Model: 356A32, PCB Piezotronics, Depew, 

NY) placed on the chest surface at the 4th intercostal space 

near the left lower sternal border. Signal was amplified 

using a signal conditioner (Model: 482C, PCB 

Piezotronics, Depew, NY) with a gain of 100. The x, y and 

z components of the accelerometer are pointed toward 

lateral (left to right), caudocranial (head to toe) and dorsal-

ventral (normal to chest surface) directions, respectively. 

This study includes the analysis of z-axis of the 

accelerometer.   

ii. Electrocardiography (ECG): Acquired by IX-B3G bio-

potential recorder (iWorx Systems, Inc., Dover, NH).  

iii. Galvanic skin response (GSR): Provides an estimate of 

lung volume [28]. Acquired by IX-B3G bio-potential 

recorder.  

All the signals were acquired at a sampling rate of 10 kHz.  

 

 

 

 

 

 

 

 

 

 

 Fig. 1. Schematic of experiment setup. 
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B.   Data Analysis: 

Overview: The workflow diagram of data analysis is shown 

in Fig. 2. The process started with filtering raw signals (band 

pass = 0.5 to 100 Hz), followed by the segmentation of SCG 

and ECG signals[29]. After that SCG beats were clustered 

using unsupervised clustering method (k-medoid clustering) 

[30]. The clustering was correlated to the respiration phases 

which were obtained from GSR signal. This clustering provides a 

medoid SCG beat for each cluster.  Clustering features (described 

below) were extracted using the relationship between the medoid 

SCG beats and rest of the SCG beats. Other time- and frequency-

domain features were extracted from the cluster “representative” 

beats (described below). Conventional machine learning models 

were trained and tested using selected SCG features along with 

few heart rate variability (HRV) features. This concludes the first 

approach of analysis that utilizes conventional ML.  

In the second approach, few SCG beats (3-5) that were 

closest (in terms of waveform shape) to the medoid beats were 

transformed into images using a time-frequency distribution 

method (polynomial chirplet transform or PCT). The images 

were fed to a CNN model for training and testing.   

 

1) Preprocessing: 

After visually checking the signal quality, noisy portions of 

the data were discarded. This noise mainly came from patient 

movements. The Rest of the data (usually 100 to 140 seconds) 

was considered for analyzing.  The raw ECG, SCG and GSR 

signals were down sampled to 1kHz. After that, ECG and 

SCG signals were forward-backward filtered using a 4th order 

Chebyshev type 2 bandpass filter with cutoff frequencies of 

0.5 and 100 Hz. GSR signal was detrended and a flow rate 

signal was calculated by differentiating the GSR signal. 

 

2) Segmentation and normalization: 

The R-peaks of the ECG signal was detected using Pan 

Tomkins algorithm (Tompkins, 1985). SCG and ECG beats 

were chosen to start 0.1 second before ECG R-wave and end 

0.1 second before the next R-wave. After segmentation, each 

SCG beat was normalized by its peak-to-peak amplitude. 

3) Unsupervised clustering (k-medoid clustering): 

Studies on SCG signals [30], [31], [32] reported that SCG 

signal has morphological variability. The clusters of similar 

SCG beats were found to correlate with the respiration phases. 

It was suggested that clustering SCG beats into two clusters 

optimally lowers the variability and make the feature 

extraction more accurate [30]. To group the SCG beats with 

close morphological features, k-medoid clustering method was 

used. The unsupervised clustering method requires two initial 

beats. Efficient clustering depends on good initialization. In 

the current study, the SCG beats are initially divided into two 

groups based on either lung volume (high and low) or flow 

rate (high and low). SCG beats are considered to be more 

similar when the distance between them is smaller. Dynamic 

time warping (DTW) and cross correlation methods are the 

two methods chosen to measure the distance (i.e. 

morphological dissimilarity) between the SCG beats. After 

dividing the beats into two groups based on lung volume and 

flow rate, center beats were chosen from each group which 

had the minimum sum of distances with its neighboring beats 

in the same group. These two center beats are chosen as the 

initial beats for the k-medoid method which is named as initial 

medoids. 

 

After obtaining the initial medoids the clustering process 

began. The algorithm continued to update the cluster medoids 

by calculating the sum of distances and then update the 

Medoid Signal 2 

Few SCG beats 

from cluster 2 

closest to medoid 

signal 2 

Data 

Acquisition  

k-medoid 
clustering 

Cluster 

Representative 1 

Cluster 

Representative 2 

Calculate 
Features 

Combine 

(46) 

ML Classifier 

Medoid Signal 1 Few SCG beats 

from cluster 1 

closest to medoid 

signal 1 

PCT 

CNN 

Filtering 
(0.5-100 Hz) Segmentation 

Variability before 
clustering feature 

Clustering 
features  

Averaging 15% 
SCG beats closest 

to the medoids 

Combined Features 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐹𝑆1 + 𝐹𝑆2

2
 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
ȁ𝐹𝑆1 − 𝐹𝑆2ȁ

min⁡(𝐹𝑆1, 𝐹𝑆2)
 

Feature Selection 

Medoid Signal 2 Medoid Signal 1 

Feature Set (FS1) 

 

HRV 

Features 

Approach 

2 

 

Approach 

1 

Feature Set 2 (FS2) 

GSR 

Fig. 2. Flow diagram of data analysis. 
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clusters by grouping the beats that have morphological 

similarities measured by DTW distance. The algorithm 

stopped when there was no change in the assignment of the 

SCG beats to the clusters in two consecutive iterations. As 

there were two bases of grouping (lung volume and flow rate) 

and two distance measuring methods (DTW and cross 

correlation), all the four combinations of getting the initial 

medoids were performed. The combination that produced the 

most optimum clustering of SCG beats was selected. 

Clustering quality was also checked by plotting the clustered 

beats in a lung volume-flow rate space (Fig. 3). A decision 

boundary was drawn to visualize the separation of the beats 

into two clusters.  

After getting the cluster medoids, 15% SCG beats that are 

closest (measured by DTW distance) to the medoid signal in a 

cluster were averaged to create a SCG beat that is a 

representative of that cluster. Features were extracted from 

both cluster medoids and cluster representatives. 

4) Feature Extraction and Selection: 

In total, 63 SCG features were extracted. These include 

clustering, time- and frequency-domain features. In addition, 8 

HRV features were added to complete the feature set. Random 

forest (RF) algorithm was employed for feature selection. RF 

is a popular and powerful algorithm which falls under 

embedded feature selection method. This embedded method 

combines the benefits of other two feature selection methods 

(filter and wrapper) by  allowing interaction with the classifier 

(like wrapper method) and being computationally lighter at the 

same time producing better classification results [33], [34]. 11 

features were selected (7 SCG and 4 HRV features). A list of 

selected features is given in Table II. 

 

5) Image construction using time-frequency conversion: 

For deep learning approach (approach 2 in Fig. 2) PCT (a 

time frequency distribution) of the SCG signals was calculated 

and resulted in images. Depending on the length of session 

data, 3-5 SCG beats closest (as measured by DWT) to the 

medoid signals were processed by PCT. This resulted in 2D 

images with time and frequency information in horizontal and 

vertical axis, respectively (Fig. 4(b)). The PCT coefficient 

values were presented using ‘Parula’ colormap.  PCT is found 

to be more suited than other TFD methods for SCG and heart 

sound related studies [35], [36].  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6) Conventional ML algorithms: 

Three different ML algorithms were employed to evaluate 

the efficacy of the feature set in predicting HF readmission. 

These methods are k-nearest neighbor (KNN), multilayer 

perceptron neural network (MLP-NN) and extreme gradient 

boosting (XGBoost). The hyperparameters were tuned to 

maximize the model performance. Since there was imbalance 

in the number of observations between the two classes, the 

decision threshold governing the conversion of the prediction 

probability to a class label was shifted from the default value 

of 0.5 and tuned to 0.7 to maximize sensitivity. The leave-one-

subject-out cross validation approach was used for testing to 

avoid subject bias. 

 

7) Convolutional Neural Network: 

For image classification, the Residual-networks (ResNet-

34) model was used. ResNets are being widely used in image 

classification after introduced by He et al. [37]. Several 

ResNet-based time-frequency image classification tasks have 

been studied previously [20], [38], [39].   

In this study, a 34-layer CNN network, ResNet-34 was used. 

Images were resized to 224 by 224 pixels with nearest 

neighbor interpolation to match the input requirement of 

ResNet-34. Adam optimizer with learning rate 0.000008 was 

chosen. Cross-entropy loss metric was used for performance 

measurement. The number of epochs was 30 with a batch size 

of 8. 

 

Fig. 4. (a) SCG medoid beat of a representative subject (subject 3, session 
3), and (b) the corresponding time-frequency distribution coefficient 
heatmap as calculated by PCT. 

(a) (b) 

Fig. 3. k-medoid clustering of SCG beats of a representative recording 

session (Subject 25, 3rd session) in lung volume-flowrate space. Blue circles 
and red triangles are the beats of the two clusters. A decision boundary 

(dashed line) is plotted to show the clear separation between the two clusters. 
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TABLE II 

SELECTED FEATURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Selected SCG (1-7) and HRV (8-11) features are provided with short descriptions. The features (4-7) are obtained by averaging the features from the two 

cluster representative waveforms (for each recording session). 

 

 

Keeping in mind that training a CNN model takes 

considerable amount of time, 38 patients (21 readmitted) with 

90 sessions were trained and tested in leave-one-subject-out 

manner. Due to the low number of readmitted patients, almost 

all of them (21 out of 22) were included in the subset of 38 

patients to facilitate the learning. The number of observations 

for both classes (readmitted and non-readmitted) was balanced 

in this subset by random undersampling the majority class 

(non-readmitted patients). The remining 43 patients (1 

readmitted) with 52 sessions were only used for testing. These 

patients were tested using a model trained by the data from all 

the sessions of the 38 patients. The performance metrics were 

determined encompassing all the 81 patients. This also mimics 

a real-life application of the developed deep learning model 

where the model is trained using the available HF patient data 

and the trained model predicts the readmission of the future 

HF patients. 

III. RESULTS 

Three metrics were used to show the results (Equation 1-3). 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ⁡
𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡(𝑇𝑃)

𝑇𝑟𝑢𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡(𝑇𝑁)+𝐹𝑎𝑙𝑠𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝐹𝑁)
     (1) 

     

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = ⁡
𝑇𝑟𝑢𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁡(𝑇𝑁)

𝑇𝑟𝑢𝑒⁡𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒⁡(𝑇𝑁)+𝐹𝑎𝑙𝑠𝑒⁡𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(𝐹𝑁)
⁡    (2) 

     

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁⁡
             (3) 

 

Feature 

Index 

Feature Name Description 

1 Intra-session waveform variability 

before clustering (WVbc). 

The dissimilarity among the SCG beats within a session. Dissimilarity was 

calculated using dynamic time warping (dtw) distance. 

WV𝑏𝑐 =
1

𝑛
∑

𝑑𝑡𝑤(𝐶, 𝑋𝑖)

𝑙𝑖

𝑛

𝑖=1

 

C: medoid beat before clustering, 𝑋𝑖: ith SCG beat, 𝑙𝑖: warping path length, n= 

number of SCG events in a session. 

2 Inter-cluster waveform variability 

(WVinter) 

Average dissimilarity between the medoid of a cluster and SCG beats of the other 

cluster. 

 

WVinter=
1

𝑛1+𝑛2
[∑

𝑑𝑡𝑤(𝐶1,𝑋𝑖2)

𝑙𝑖

𝑛1
𝑖=1 +∑

𝑑𝑡𝑤(𝐶2,𝑋𝑖1)

𝑙𝑖

𝑛2
𝑖=1 ] 

 

n1, n2: number of events in Cluster 1 and 2, 

C1, C2: SCG medoid of cluster 1 and 2, 

𝑋𝑖1, 𝑋𝑖2: ith SCG event of cluster 1 and 2 

3 Intra-cluster waveform variability 

(WVintra) 

Average dissimilarity between the medoid and SCG beats of the same cluster. 

WVintra=
1

𝑛1+𝑛2
[∑

𝑑𝑡𝑤(𝐶1,𝑋𝑖1)

𝑙𝑖

𝑛1
𝑖=1 +∑

𝑑𝑡𝑤(𝐶2,𝑋𝑖2)

𝑙𝑖

𝑛2
𝑖=1 ] 

4 Average RMS amplitude of 

instantaneous frequency (Fins) 

Instantaneous frequency (Fins) was calculated as the frequency first moment of the 

time-frequency distribution (PCT), normalized by the integral of PCT at that time 

instant. 

Fins=
∫ 𝑓∗𝑃𝐶𝑇(𝑡,𝑓)𝑑𝑓
50
0.5

∫ 𝑃𝐶𝑇(𝑡,𝑓)𝑑𝑓
50
0.5

 

Then, the RMS of Fins was calculated over the duration of the beats under 

consideration. 

5 Average turning point ratio (TPR) 
𝑇𝑃𝑅 =

𝑁((𝑥𝑖 − 𝑥𝑖−1) ∗ (𝑥𝑖 − 𝑥𝑖+1)) > 0

𝑙𝑒𝑛𝑔𝑡ℎ⁡𝑜𝑓⁡𝑡ℎ𝑒⁡𝑠𝑖𝑔𝑛𝑎𝑙
 

Quantification of the randomness in a time-series signal. 

6 Average sample entropy (SmEn) SmEn = −ln
𝑐𝑜𝑢𝑛𝑡𝑚+1(𝑠𝑖𝑚𝑖𝑙𝑎𝑟)

𝑐𝑜𝑢𝑛𝑡𝑚(𝑠𝑖𝑚𝑖𝑙𝑎𝑟)
;  here denominator and numerator are the number of 

matched template pairs of length m and m+1 in the waveform, respectively [40]. 

7 Average Higuchi dimension (DH) Measures the irregularity in a time-series signal [41]. 

8 Low frequency power (LFP) Spectral power of heart rate (HR) in .04-.15 Hz frequency band. 

9 High frequency power (HFP) Spectral power of HR in .15-.4 Hz frequency band. 

10 Total Power (TP) Total spectral power of HR in 0-0.4 Hz frequency band. 

11 pNN50 Proportion of successive RR intervals that differ by more than 50 ms. 

SCG 
Features 

HRV 
Features 
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The obtained results are presented in Table III. 

 
TABLE III 

MODEL PERFORMANCE 

 

 

These results suggest that conventional ML algorithms 

performed better than deep neural network model with higher 

sensitivity. Specially, KNN outperformed other models with 

close to 90% accuracy. 

IV. DISCUSSION 

A non-invasive approach of predicting HF readmission was 

proposed and tested in this study. The linear acceleration in 

dorsal-ventral direction was analyzed and used to classify HF 

patients (admitted vs. non-readmitted). Data analysis was 

performed in two different approaches: (a) conventional 

machine learning and (b) deep learning. In the first approach 

features were first extracted from SCG beats and heart rate 

variability. Feature selection was performed followed by using 

three different ML algorithms. For the second approach, time-

frequency distribution (PCT) was applied to convert the time-

domain signal into a 2D image with time and frequency 

information. The images were resized and fed into a CNN 

network (ResNet-34) for classification. 

Results showed that handcrafted features provided better 

accuracy than the CNN method. One reason for this can be the 

inclusion of heart rate variability features in the feature set 

which wasn’t provided to CNN model. Given the higher 

performance of conventional ML models (with the SCG and 

HRV features), a discussion of these features that correlate 

those with HF conditions may be useful. The focus here will 

be given to SCG clustering features and HRV features. 

The first three features in Table II are the SCG clustering 

features. The first feature is intra-session waveform variability 

calculated before clustering. This feature represents the 

dissimilarity among SCG beats during a session. Inter- and 

intra-cluster variability features were also obtained after 

clustering. These features present the average dissimilarity of 

SCG beats between and within the clusters, respectively. 

Overall, these clustering features indicate the beat-to-beat 

waveform variability. The distributions of the clustering 

feature values in non-readmitted and readmitted patient groups 

are shown in Fig. 5. For comparison, feature values of a group 

of 14 healthy subjects are also shown. Data was acquired from 

the healthy subjects using the same protocol. 

 

Heart failure is associated with chronic 

sympathetic/parasympathetic imbalance resulting in increased 

sympathetic and decreased parasympathetic drive [42], [43], 

[44], [45]. This also decreases peripheral acetylcholine (ACh) 

secretion [46]. ACh is the main neurotransmitter of the 

parasympathetic nervous system [47]. Binding inhibition of 

ACh to receptors in heart has several effects such as 

increasing heart rate and heart contraction force, etc. [48], 

[49]. In fact, increasing ACh might be a logical HF treatment 

[46], [50] since it may reverse the effect of decreased ACh 

with HF.   

Heart failure is associated with chronic 

sympathetic/parasympathetic imbalance resulting in increased 

sympathetic and decreased parasympathetic drive [42], [43], 

[44], [45]. This also decreases peripheral acetylcholine (ACh) 

secretion [46]. ACh is the main neurotransmitter of the 

parasympathetic nervous system [47].  

Model Sensitivity Specificity Accuracy 

KNN 0.878 0.901 0.894 

MLP-NN 0.878 0.812 0.831 

XGBoost 0.854 0.802 0.817 

ResNet-34 0.805 0.811 0.810 

(1) (2) (3) 

(a) (b) (c) 

W
av

ef
o

rm
 V

ar
ia

b
il

it
y
 

Fig. 5. shows the feature values of (1) healthy, (2) non-readmitted and, (3) readmitted groups in boxplot for (a) intra-session waveform variability before 
clustering, (b) inter-cluster variability and (c) intra-cluster variability features. All the feature values are highest in readmitted patient group and lowest in the 
healthy group. The differences between each pair of the groups are statistically significant as depicted by p-values (two-sample t-test) at the top of each image. 
Here, the numbers beside ‘p’ indicate the numbers of the groups being compared (1-Healthy, 2-non-readmitted groups, 3-readmitted). 
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Binding inhibition of ACh to receptors in heart has several 

effects such as increasing heart rate and heart contraction 

force, etc. [48], [49]. In fact, increasing ACh might be a 

logical HF treatment [46], [50] since it may reverse the effect 

of decreased ACh with HF.   

The trend of increased beat-to-beat SCG waveform 

variability with worsened heart failure (see Fig. 5) may be 

explained by the decreased acetylcholine (ACh) release in HF. 

In an animal study Ahammer et al. reported that decreased 

ACh increased beat-to-beat contraction strength variability of 

murine atrial preparation [51]. In that study hearts were 

removed, and the atria were dissected from the ventricles. 

Variability analysis of contraction strengths was performed 

under control and ACh treated conditions. Variability of 

contraction strength was significantly higher in control tissue 

(which had lower ACh). This suggests that decreased ACh in 

HF may play a role in increasing the beat-to-beat variability of 

cardiac contraction. Increased cardiac contraction variability 

(associated with decreased ACh secretion) is believed to be a 

major contributor to SCG signal variability [52], [53]. The 

lowest variability found in healthy group (Fig. 5) further 

strengthens this argument. 

Another important factor to be considered here is the trend 

in HRV features. Fig. 6 shows the boxplots of selected HRV 

features for the 3 groups of subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is evident from Fig. 6 that, compared to healthy subjects, 

HRV features decline in non-readmitted HF patients, then 

declines further in readmitted HF patients. This can also be 

due to cardiovascular autonomic imbalance as HRV is 

increased by parasympathetic nervous activation and 

decreased by sympathetic nervous system activation [54]. 

The following are some of the important takeaways from 

this research: 

1. SCG can be used as a clinical tool in efficient 

management of HF patients. The current study 

demonstrates the potential use of SCG signal in HF 

readmission prediction.  

2. In this study, the accuracies of conventional ML 

algorithms were higher than deep neural network (DNN) 

model. Other than adding the HRV features, an extensive 

dataset would benefit DNN model. Future analysis 

should include SCG signal in two other directions 

(lateral and caudocranial axes). Additionally, inclusion 

of 3-axis gyroscope sensor in the protocol would cover 

more complete cardiac movement by incorporating 

angular velocity of the heart. This can elicit more useful 

features related to HF readmission.  

3. The advantage of using handcrafted features is the 

interpretability of the features. Extracting features based 

on physiological knowledge can make the results more 

meaningful and reveal underlying characteristics of the 

data. On the other hand, use of DNN model eliminated 

the need of manual feature engineering at the cost of 

interpretability. The future work of this study would be 

to focus on understanding the DNN model results by 

incorporating explainable AI techniques.  

4. More patient data is required to confirm the current 

study results and apply in clinical settings. 

5. The possibility that noncardiac comorbidities such as 

chronic kidney disease, diabetes, dementia etc. could be 

the cause of an HF readmission is one study limitation. 

SCG is limited to predict the readmissions associated 

with cardiac conditions.  

 

V. CONCLUSION 

This study describes a non-invasive technique to predict HF 

readmission. SCG, ECG, and GSR signals were acquired from 

non-readmitted and readmitted HF patients as well as normal 

subjects. After preprocessing and feature extraction, 

conventional ML algorithms and deep learning model were 

applied to classify the two patient groups. Results showed that 

KNN model achieved highest classification accuracy of about 

90%. This suggests that SCG signal has potential utility for 

monitoring patients with cardiac disease. Early HF 

readmission prediction may potentially help the clinicians to 

identify the patients who need special care and treatment and 

make rapid targeted interventions to avoid readmission. This 

will ensure better management of HF patients and reduce the 

mortality rate. More patient populations with different cardiac 

conditions may be added for clinical application of SCG signal 

in future. 
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