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Abstract

In this manuscript we investigate the implications of adopting a double cyclic prefix in the orthogonal time-
frequency space modulation. Our study first focuses on the analysis of the modulated signal and on the development
of a useful model for the received signal in the presence of a doubly selective fading channel. On the one hand, our
mathematical results allow us to accurately assess the impact of pulse shaping on the structure of the transmitted
waveform and on its power spectral density, and to develop some simple rules for allocating multiple pilot symbols
within each orthogonal time-frequency space symbol. On the other hand, they are exploited to develop a novel
algorithm for pilot-aided channel estimation, whose output provides a detailed representation of the communication
channel; for this reason, it can be used for sensing at the transmit side in integrated sensing and communication
applications, or for channel equalization at the receive side in digital communications. Our numerical results evidence
that our channel estimation & equalization algorithm outperforms the other related techniques available in the
technical literature at the price of a limited increase in computational complexity.

Index Terms

Channel Estimation, Cyclic Prefix, Delay-Doppler, Equalization, Interference, Orthogonal Frequency-Division
Multiplexing, Orthogonal Time-Frequency Space

I. INTRODUCTION

N the near future, sixth-generation (6G) wireless networks are expected to provide high-quality wireless connec-

tivity as well as highly accurate and robust sensing capability. One of the key challenges in 6G network research
is represented by the development of new communication waveforms that are able to support communication and
sensing functionalities in high-mobility environments at very high frequencies. In the last two decades, a multicarrier
modulation format, known orthogonal frequency-division multiplexing (OFDM), has played a fundamental role
in new standards for local area and mobile wireless networks. Recently, substantial efforts have been devoted
to investigating its use for integrated sensing and communication (ISAC) in future wireless networks [1]], [2].
Unluckily, one of the main weaknesses of OFDM-based data communications is represented by the severe inter-
carrier interference (ICI) experienced at the receive (RX) side in the presence of a doubly selective fading channel
characterized by strong Doppler [3]]. From this perspective, a more appealing alternative is represented by a two-
dimensional (2D) modulation technique called orthogonal time-frequency space (OTFS) modulation [4]. In fact, it
has been shown that, since in this case data are modulated in the delay-Doppler (DD) domain rather than in the
conventional time-frequency (TF) domain, the communication channel has approximately the same impact on all
the channel symbols of the same OTFS symbol and its full diversity can be potentially extracted through proper
equalization methods [5].

It is important to mention that Hadani et al., in their seminal manuscript [4]], presented the OTFS modulation
as a 2D generalization of the OFDM format, but did not focus on the problem of adopting, in a similar way as
OFDM, a proper cyclic prefix (CP) to impart a quasi-periodic structure to the transmitted signal; this issue has
been also ignored in their later manuscript [Sf]. Note that the presence of a CP plays a fundamental role in the
generation of OFDM signals and in their detection over frequency selective (i.e., time dispersive) communications
channels, and eliminates interference between consecutive OFDM symbols [|6, Sec. 3.7]. Moreover, since the OTFS
modulation generalizes OFDM by expanding the last format along the frequency dimension, in the light of the
TF duality principle [7]], the use of an additional CP in that dimension in the presence of a frequency dispersive
communication channel appears to be a natural choice.

As far as we know, the use of a CP in the OTFS modulation has been taken into consideration for the first
time in [8], [9] and, later, in [10]. In all these manuscripts, however, the CP is adopted along the time dimension
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only. When this occurs, interference between OTFS symbols (i.e., inter-symbol interference, 1S1) is avoided if the
CP is long enough [11f]; otherwise, this phenomenon has to be taken into account in the received signal model
[12]], [13]]). Another significant contribution related to the CP issue can be found in [10], where a derivation of
the OTFS modulation based on the Zak transform [14] is provided. The use of this transform makes an entire
OTFS frame appear periodic to the communication channel along the Doppler direction and ”quasi-periodic” along
the delay direction. This work effectively encompasses the concept of imparting 2D periodicity to the modulated
signal. However, in our opinion, it does not fully unveil the implications of the use of a CP along the frequency
dimension.

In this manuscript, we focus on the use of a double cyclic prefix (DCP) in the OTFS modulation and on its
implications on pulse shaping and pilot-aided channel estimation. More specifically, the following contributions are
provided:

1) It is shown that the OTFS modulation can be really developed as a 2D extension of the OFDM modulation by
exploiting the duality concept developed by Bello in [7]. This leads to extending OTFS symbols by incorporating
a CP in the time domain (TD) and one in the frequency domain (FD) in a natural fashion; the resulting modulation
format is called OTFS with DCP (OTFS-DCP, briefly) in the following.

2) The impact of the transmit (TX) pulse on the overall structure of the modulated signal is assessed in a rigorous
way. Our analysis is based on representing the complex envelope of an OTFS-DCP signal and its spectrum through
their Fourier series; the adoption of this mathematical tool is made possible by the cyclic structure of the modulated
signal along the time and the frequency dimensions. Note that, in the technical literature, a rectangular TX pulse
is usually selected because of its simplicity and the simplifications it offers in signal modelling (e.g., see [8]], [9],
[13]], [15]-[17]). We show, instead, that the choice of a pulse having a root of a raised cosine (RRC) spectrum
represents a better choice.

3) The power spectral density (PSD) of the OTFS-DCP format is derived and analyzed.

4) The problem of multiple pilot arrangement within a single OTFS symbol is studied and a specific solution is
developed.

5) A low complexity off-grid algorithm, developed for OFDM-based radar sensing [|18]], is applied to pilot-aided
channel estimation in OTFS-DCP-based transmissions. This algorithm is able to generate a detailed representation of
the communication channel by providing estimates of its overall number of paths and, for each path, the associated
delay and Doppler shift. For this reason, its output can be used for sensing (i.e., for target detection and estimation
[16], [17]) at the TX side and for channel equalization at the RX side.

6) A simple channel equalization method relying on the output of the devised channel estimator is developed.
This algorithm is inspired by the equalization method proposed in [17]], where, however, channel state information
(CSI) are provided in an approximate form since only integer delays and Doppler are assumed in its reconstruction.
On the contrary, our method aims at faithfully reconstructing CSI.

The remaining part of this manuscript is organized as follows. Section [[I] is devoted to briefly describing OFDM
and its dual modulation scheme, and to showing how the OTFS-DCP format is related to them. In the analysis of
the OTFS modulation format, we take into consideration not only the baseband model of the transmitted signal,
but also show how channel equalization and detection of channel symbols should be accomplished at the RX side.
Moreover, the impact of pulse shaping on the inner structure of the OTFS-DCP format and its PSD are investigated.
Section [I1I is devoted to pilot-aided channel estimation and to channel equalization. In particular, we first provide
some simple rules for arranging multiple pilots within a single OTFS symbol under the assumption that a pulse with
an RRC spectrum is employed. Then, we show how computationally efficient channel estimation and equalization
algorithms can be developed for the OTFS-DCP modulation. Finally, we compare the devised algorithms with two
related techniques available in the technical literature. Various numerical results are illustrated in Section where
the performance of our channel estimation & equalization algorithms is assessed and compared with that provided
by the other algorithms considered in the previous section. Finally, some conclusions are offered in Section [V]

Notation: Throughout this paper, the following notation is adopted: 1) (-)” denotes vector/matrix transposition;
2) (-)* and (-)¥ denote complex conjugate and complex conjugate transpose (Hermitian operator), respectively; 3)
* denote the linear convolution; 4) the symbols © and x represent the Hadamard and Cartesian product operators,
respectively; 5) Ry[-] indicates the modulo N operator; 6) Ex is the unitary DFT matrix of order X, whose
element (p,q) is exp(—j2mpq/X)/VX; 7) X £ [2,,] defines a matrix X of proper size and x,,,, denotes the
element appearing on its mth row and nth column.
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II. SIGNAL AND SYSTEM MODELS

In this section, we illustrate: 1) the derivation of three distinct digital modulations; 2) the signal models at the RX
side of a communication system employing each of these modulations and operating in the presence of different
types of fading channels. First, we briefly describe how an OFDM signal is generated and derive the corresponding
RX signal model in the presence of a frequency selective fading channel. Then, following the same line of reasoning
and applying the duality concept, we introduce the dual of the OFDM format (briefly, dual OFDM, DOFDM) and
develop the corresponding RX signal model in the presence of a time selective fading channel. Finally, we show
how the signal model of the OTFS-DCP modulation can be derived from most of the previously obtained results
in a natural fashion; moreover, we develop the received signal model for a communication system employing that
modulation format and operating over a doubly selective fading channel.

A. Signal Models in an OFDM-Based Communication System

In this subsection, the derivation of various signal models is sketched for a communication system employing the
OFDM modulation. In our mathematical developments we focus on the transmission of the N-dimensional vector
cn 2 [co,c1,...,en—1]T, representing the message and collecting N channel symbols, each of which belongs to
an M_.ary constellation; this vector represents a single OFDM symbol. To begin, we assume that ¢y undergoes the
one-to-one transformation g : CN — CN; this yields the N-dimensional vector

xy £ [v0, 21, ..., an_1)” = g(ew) (1)

conveying the same information as cy. The last vector is employed to generate the periodic sequence {xj} by
repeating it with period N, so that

Tk = TRy[K]» (2)
for any k ¢ {0,1,..., N —1}. This sequence feeds a pulse amplitude modulator, that produces the baseband periodic

signal
+oo

s(t; cN) = Z xp p(t — kTs), 3)

k=—o00

where p(t) is the modulator impulse response and Ty is the symbol interval. Since the period of s(t;cy) in (3) is
T = NTj, this signal can be represented through its Fourier series as

s(t;en) Z S CN )exp(72m fnt), 4

m=—00

where f,, £ m/T = m/(NTj) is the mth harmonic frequency and

T

is the mth Fourier coefficient. Substituting the right-hand side (RHS) of (3) in that of (5) yields, after some
manipulation,

T
S () & & / s(t; en) exp(—j2m fint)dt )
0

1

S{M)(cy) = ——=— P Xom, 6
m (N = T ©
for any m; here,
Py = P(fn) = P -2 (7
m m) — NTS 9
A +oo
P(P) = FCTp(0) 2 [ plt)exp(~j2n sy ®)
is the Fourier continuous transform (FCT) of p(t) and
1 = l
A Ly Ve
Xm = N ] exp< ]QWNm) )

l

Il
o
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is the mth coefficient of the order N discrete Fourier transform (DFT) of the vector x, in (I). Note that the last
equation can be rewritten in vector form as

)(Né [X(),Xl,...,XN_l]TéDFTN[XN] é.ENXN, (10)

where Ey is the order N DFT matrix. Then, if the transformation g(-) in (1)) is an order N inverse discrete Fourier
transform (IDFT), i.e., if
xy = IDFTy[cy] 2 EX ey, (11)

we have that (see (10))
Xy =E2nEcy =cn. (12)

Similarly as x5, X can be cyclically extended to generate the periodic sequence { X}, having period equal to
N; from (12) it is easily inferred that

Xk = CRy[K] (13)

for any k ¢ {0,1,..., N — 1}. Substituting the RHS of (I3) in that of (6) and, then, the resulting expression in the
RHS of (@) yields

+oo
1 )
s(tien) = INT. Z P CRy[m] €XP(J27 fint). (14)

The last expression can be reformulated by replacing the (single) index m with the couple (n, k), such that m =
n+ kN, with n =0,1,..., N — 1 and k arbitrary integer. This produces

N—-1

1
s(t;en) = Cn On(t), 15
<N)Vwﬂ;%g<> (15)
where
“+o00
gn(t) 2 D" Payrn exp(i27 frykn t). (16)
k=—0oc0

The RHS of is required to represent a multicarrier signal, i.e., to consist of the superposition of N complex
exponentials, characterized by distinct frequencies, having the same amplitude and conveying different channel
symbols. This result is achieved if only a single term and, in particular, the one associated with k = 0, survives in
the sum appearing in the RHS of (16), i.e., if P,y = 0 for any k # 0; this means that p(¢) should be bandlimited
and its spectrum P(f) should ensure that the spectral samples {P,,;;n = 0,1, ..., N — 1} are identical. In [6, Subsec.
3.7] it is shown that a good option for p(t) is represented by a pulse whose spectrum P(f) is the RRCﬂ with
roll-off factor o (e.g., see [6, Subsect. 3.5.4, eq. (3.90)])

\/TS ’f’<f1—oz
P(f) = { /Ty cos(n 2100y < £ < figas (17)
0 ’f’>f1+oz

where fi1o = (1 +«)/(2T%), with 0 < « < 1. However, in this case, the contribution of some of the functions
{gn(t)} appearing in the RHS of needs to be suppressed, since they consist of the superposition of a coupleE]
of complex exponentials, whose frequencies are spaced apart by 1/7s Hz (see [6, Sebsect. 3.7.2, eq. (3.257)]). The
suppression of such functions is obtained by setting N,. = N — 2N, — 1 consecutive elements of cy (and, in
particular, the elements whose index runs from N, to N — N, — 1) to zero; here,

N, 2 V\r(lz_O‘)J’ (18)

'This spectrum is characterized by a flat top; the identical spectral samples {P,,} originate from it.
%If subcarrier suppression was not used, this would result in the presence of a form of self-interference.
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where | -] denotes the floor operator. Then, (13) turns into

N,
1 o
s(t;eny) = c exp(J27 fnt). 19
Note that: 1) in the last equation, ¢ [, = ¢n forn =0,1,..., Ny and c¢p ) = cN4sp forn = —Ng, =No+1, ..., —1;

2) the number of useful subcarriers is equal to N, = 2N, + 1 and increases as the roll-off factor gets closer to
zero at the price of a longer p(¢); 3) the number of suppressed carriers (SCs) is equal to N — N,,; 4) the subcarrier
spacing is equal to 1/(NTy); 5) the pulse p(t) characterized by the spectrum P(f) is truncated to L, symbol
intervals (where L, is an integer parameter) to ensure that the transmission of each OFDM symbol is accomplished
over a finite time interval; 6) since the truncation interval adopted for p(t) is required to capture most of the energy
of this pulse, its duration should increase as « gets smaller.

Let us assume now that the signal s(¢;cy) (19) is sent over a time-invariant frequency selective wireless channel
having impulse response

L-1
h(r) £ hd(r — ), (20)
=0

where h; and 7; represent the complex gain and the delay, respectively, of the [th path, with [ = 0,1,..., L — 1, and
L is the number of multi-path components. The useful component of the baseband signal available at the output
of the RX filter can be written as

r(t; CN) = s(t; cN) x h(t) * g(t), (21)

where g(t) represents the impulse response of the RX filter, which is assumed to be matched)| to p(t) (i.e., g(t) =
p*(—t)), so that G(f) £ FCT[g(t)] = P*(f). Then, under this assumption, substituting the RHS of in that of

(21) produces

N
1 o
r(tien) = —= Y Cnypn) Hrym eXp(27 fut), (22)
\/N n=—N,
where H,, = H(f,) and H(f) = FCT[h(t)]. Note that, if (20) holds, we have that
L—1
H(f) = hyexp(—j2nfn), (23)
1=0

Comparing (22)) with (T9) leads to the conclusion that: 1) 7(¢; cy) retains the same structure as the signal feeding
the channel input; 2) the effect of the communication channel on the nth subcarrier of the transmitted signal is
represented by the complex coefficient Hp,,,. Moreover, given r(¢;cy) in (22), the extraction of the transmitted
message requires: a) uniformly sampling this signal N times in the interval [0, N7s]; b) evaluating an order N
DFT on the resulting sample vector; ¢) compensating for channel distortion on a subcarrier-by-subcarrier basis (i.e.,
equalizing the received signal in the FD); d) accomplishing symbol detection the basis of the equalized samples
(once again, on a subcarrier-by-subcarrier basis). In practice, sampling 7(¢; cy) in at the instant 5 = 77,
yields N

1 n
T N r tﬁ;C = — C n H n] €X (27’(*’0), 24
(ta;en) N 2 Rfn] HRy [ exP (527 5 (24)

n—=
with n =0,1,..., N — 1. The last equation can be easily written in vector form as
ry £ [ro, 71, ..., rN-1) = EN(cy © H), (25)

where H £ [Ho, Hy, ..., H N,l]T. Performing an order N DFT of the N-dimensional vector ry produces the
N-dimensional vector
Ry = EnvE(cy ©H) = cy O H, (26)

3The adoption of this filter follows from the model (3), that represents the complex envelope of an OFDM signal as the output signal of
baseband pulse amplitude modulator.
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whose nth element is

1

for 0 < n < Ny and N — Ny, < n < N — 1 (the remaining Ng. elements of Ry are irrelevant since, being
associated with the SCs, are discarded). Note that the simplicity and the elegance of the model follows from
the orthogonality of the complex exponentials appearing in the RHS of (24). Moreover, from it is easily inferred
that ¢,, can be detected on the basis of R,, after compensating for the complex channel gain H,,. This elegant result
has been obtained under the assumption that the complex envelope of the transmitted signal is expressed by (3)),
since this allows, under certain assumptions, to put it in the multicarrier form expressed by (I9); this, in turn,
leads easily to (22)). Unluckily, all these signals have an infinite duration, so that, seemingly, an unlimited time
interval is required for the transmission of a symbol vector of limited size. In practice, if the temporal supports of
p(t) and h(t) are limited and, in particular, are the intervals [0, L, Ts] and [0, L,T] (where L, and L are integer
parameters), respectively, and if the integer parameter Nc(,;r D), representing the size of the CP, is not smaller tha
(2Lp + Ly), it can be shown that still holds in the interval (0, NT}) provided that (3) is replaced by its time

limited counterpart
N-1

s(tben)= > app(t—kTy). (28)
k=—N&G™
Finally, it is useful to note that the interval devoted to the transmission of the CP can be also considered
as a guard interval for avoiding the inference between consecutive OFDM symbols (i.e., the so called inter-block
interference, IBI). Moreover, if the duration of the CP exceeds its minimum value, the performance of the considered
communication system is not affected by a limited sampling offset. In fact, such an offset, that results in a phase
rotation of all channel symbols, is compensated for through FD equalization.

B. Signal Models in a DOFDM-Based Communication System

In this subsection we focus on the derivation of various signal models for a communication system employing
the DOFDM modulation; our approach parallels that provided for OFDM in the previous subsection and relies on
the use of the duality principle; this means, for instance, that any DFT is replaced by an IDFT (and viceversa) and
that TD signal models are replaced by the corresponding FD counterparts (and viceversa).

In the following, we take into consideration the transmission of a digital message represented by the M-
dimensional vector cy; = [co,c1y-eny cM,ﬂT; we assume that each of its elements are channel symbols belonging
to an Mcary constellation and that M is even. The vector cj; undergoes an order M DFT (see (10)) at the TX
side. This produces the M -dimensional vector

Ym :DFTM[CM] :EMCM, (29)
which is periodically extended to generate the sequence {yj} having period M. In other words, the kth element
of this sequence is expressed by

Yk = YRy [K] (30)
for any k ¢ {0,1,...,M — 1}. This sequence is conveyed by the complex signal sp(¢;cas), characterized by the
periodic spectrum

+0o0
Sp(fiem) = > P (f —kAy), 31)
k=—00

that represents the dual of s(¢;cy) (B); here, P(f) is the FCT of the pulse p(¢) employed in the generation of
the modulated signal (further details about the properties of this pulse are provided below). Since the period of

Sp(f;car) in (BI) is equal to B = MA #» this spectrum can be represented through its Fourier series as

+oo

Sp(fiem) = Y s{P(cy) exp(—j2m fty), (32)

q=—00

“This means that the duration of the CP must not be shorter than the overall memory of the communication channel, provided that channel
filtering also accounts for TX and RX filtering [6, Sec. 3.5.3]. Note that the duration of p(t) plays an important role in determining the
value of Nc(pT D).
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where t, £ q/B = q/(MAy) and

1 [MA2
sy em) = / Sp(f: enr) exp(j2m ftq) df (33)
—MA;/2
is the gth Fourier coefficient of Sp(f;cys). Substituting the RHS of (31)) in that of (33) and exploiting the periodicity
of the sequence {yx} produces, after some manipulation,

FD)(

q (34)

1
cy) = ——pyC ,
M) \/MAqu R lq]

where
pq = p(tq) :p(%> =p<Mqu)- (35)

Then, substituting the RHS of in that of yields

—+o00
1 .
Sp(fiew) = e > Do Chylg exXP(—27 ftg). (36)
q=—00

The last equation can be further simplified following the same approach as that illustrated for (14)); for this reason,
the index ¢ is replaced by the couple (m, k) such that ¢ = m + kM, with m = 0,1,..., M — 1 and k arbitrary
integer. This allows us to rewrite (36) as

1 M-1
Sp(f; = mnGm (f), 37
p(f;cum) \/MAM;)C (f) 37)
where oo
G(f) 2 Y pmskar exp(—j2mtmirnr f). (38)
k=—00

Based on similar considerations as those illustrated for and (16), we require G,,(f) to consist of a single
complex exponential, i.e., that, for any m, only a single term survives in the sum appearing in the RHS of (38).
From (38) it is easily inferred that this result is achieved if p(t) is time-limited and, in particular, if its duration
does not exceed 1/A¢. Note that, when this occurs, Sp(f;cas) consists of the superposition of A/ complex
exponentials that are orthogonal in the frequency range [—B/2, B/2] (i.e., over a single period of this spectrum).
In the following, we assume that: 1) the support of p(t) is contained in the interval [—1/(2A¢),1/(2Af)] and
Dg = \/E for ¢ = —Ng,—Ng +1,...,—1,0,1,..., N3, where N3 is a positive integer depending on the pulse
shape and such that N, = (2N, 5+ 1) < M; 2) Ng. £ M — N, consecutive elements of c;; (and, in particular, the
elements whose index runs from Ng to M — Ng — 1) are set to zero. Under these assumptions becomes

Ng

> CRrym exp (=27 ftim), (39)

1
VMA; —

so that it takes the form described above. This representation of Sp(f;cas) holds in a single period (say, in the
interval Zy £ (—B/2, B/2)) if p(t) is bandlimited (with bandwidth B,). In this case, the sum appearing in the
RHS of can be properly truncated to limit the number of its terms; this leads to the new spectru

Sp(fiem) =

M/2—14+NED

cpo

Yo(fiew)= Y. wP(f—kdy). (40)

k=—(M/2+NE™)

where the integer parameters Nc(g D) and NC(IEP ) denote the size of the CP and that of the cyclic postfix (CPO),

respectively. Similarly as OFDM, the use of a CP and a CPO is needed to guarantee that, over the considered
frequency range, the observed spectrum looks periodic, i.e., that it has a quasi-periodic structure (details about the

Note that a larger value of B, results in a longer prefix and in a longer postfix; i.e., requires increasing the values of Nc(g D) and NC(E(P ).
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selection of Nc(pF D) and NC(EOD) are provided below). Given the spectrum in (#0), the complex envelope yp(t; car)

of the transmitted signal is expressed by its inverse FCT (IFCT), that is
M/2—-1+NEDP)

yp (t; car) 2 TFCT [YD(f;cM)} — p(t) 3y vk exp (j2mkAft). 41)
k=—(M/2+N5™)

This means that the complex envelope of the DOFDM modulation is the superposition of multiple complex
exponentials windowed by p(t¢). Note that this signal model is structurally similar to the model developed
for OFDM, but is characterized by a subcarrier spacing equal to Ay. However, in the case of DOFDM, the set
of channel symbols {cp, [n} is replaced by the set of their DFT coefficients (namely, by the set {yy}), and the
presence of both a CP and a CPO is required; moreover, the role of p(t), acting as a TD window, is also clear.

Let us consider now the transmission of yp(t;cys) in (@) on the dual of a frequency selective channel, i.e., on
a time selective channel. This channel introduces the multiplicative distortion (see [0, eq. (2.134)])

L-1

a(t) = Z a; exp(j2myt) (42)
=0

in the TD; here, a; and v; represent the /th complex gain and the corresponding Doppler shift (with{ = 0,1, ..., L—1),
respectively, and L is the overall number of Doppler shifts characterizing the communication channel. Let also

Bp éZmlax|Vl| (43)
denote the Doppler bandwidth of the communication channel. The spectrum of the channel response zp(¢;cas) to
yp(t;cpr) in @I) can be evaluated as

M/2—14+NED)

cpo

Zp(fiem) = Yp(fienm) « A(f) = > wPaf —kAp), (44)
k=—(M/2+N5"™)

where A(f) denotes the FCT of a(t) (@2) and

Pa(f) = P(f) * A(f) (45)
represents the FCT of the pulse p(¢) distorted by the communication channel, i.e., of the signa]E]
pa(t) £ IFCT[Po(f)] = p(t) a(t). (46)
Note that, if holds, we have that
L—1
Pu(f)=>_aP(f —w). (47)
1=0

At the RX side, matched filtering is executed in the FD; this means that the signal Zp(f;cas), in (44), is applied
to a filter matched to P(f), i.e., to a filter whose impulse response is P*(—f). The filter output is the spectrum

Rp(fiem) = Zp(fiem) * PH(—f). (48)

The spectrum Zp(f;car), in (@4), looks periodic over the interval Z¢ and, consequently, can be represented as (see

(E1Y)

Ng
1
Zp(fiem) = CRa[m] @R [m] * €XP (=727 ftn) (49)
Y m;vﬂ ] X Feae ]
in that interval; here,
am 2 a(ty) = a(m/B) = a(m/(MAy)) (50)

®Note that the bandwidth of p,(t) is equal to B, 4+ Bp. Therefore, it is larger than that of p(t) because of the spectral broadening due
to the Doppler phenomenon.
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for any m. Then, substituting the RHS of (49) in that of (48)) yields

Ng
Rp(fiem) = Z Caitm] Gl exp (=27 ftum) p* (tm) (51)
1/MA
Sampling Rp(f;car) at the frequency fr = kA, with k= —M /2, —M/2+1,...,—1,0,1,..., M/2 — 1, gives
1 &
Rpr 2R 27k 52
Dk p(feiem) = Niv; ZNﬁCRNI[m]aRM[m] exp(—j2m M) (52)

The last equation can be easily written in vector form as
Rpy = [Rpo, Rpa, -y Rov-1]" = Enley © a), (53)

where a £ [ag, a1, ..., aM_l] . Performing an order M IDFT of the vector Rp ps produces the M-dimensional
vector

rpy = EfEnm(cy ©a) = cy O a, (54)
whose mth element is given by )
T"Dm = Mcmam, (33

for 0 < n < Ngand M — Ng < n < M — 1 (the remaining N, elements of rp ) are irrelevant since,
being associated with the suppressed carriers, are discarded). The last result represents the TD counterpart of
the FD formula (27). For this reason, symbol detection can be carried out in a similar way after equalizing the
communication channel; this task, in turn, requires estimating the complex samples {a,,}, i.e., multiple samples of
the multiplicative distortion introduced by the communication channel.

Finally, it is important to point out that:

1) A TD RC pulse could be adopted for p(t). The value of Ng for this pulse depends on the value of the RC
roll-off (similarly to OFDM, a smaller roll-off results in a wider flat top of the pulse and, consequently, in a larger
Np).

2) The values of both the CP N5 and the CPO N5 should not be smaller than [(2B, + Bp)/(2Af)] in
order to ensure the property of spectral cyclicity in the frequency range of interest (—MA /2, MA¢/2).

3) The TD counterpart of is

rp(tienr) = zp(t;enm)p*(t), (56)

where 7p(t;cpr) and zp(t; cpr) represent the IFCT of Rp(f;car) and Zp(f;car), respectively. This means that,
in practice, at the RX side, the received signal rp(t; cpr) undergoes windowing (represented by a multiplication by
p*(t)) and, then, spectral analysis for the evaluation of the samples { Rp(fx;car)}. The last task can be executed
by sampling rp(t;cpr) at a proper rate and accomplishing a DFT on the resulting sample sequence.

C. Signal Models in an OTFS-Based Communication System

In this subsection we first show how the mathematical results illustrated in the previous two subsections can be
exploited to: 1) develop various models for the complex envelope of an OTFS signal incorporating a DCP; 2) derive
the corresponding received signal model in the presence of both an ideal communication channel and a doubly
selective fading channel. Then, we analyze the implications of selecting a specific pulse shape in the OTFS signal
model. Our approach is inspired by the basic principles illustrated for OFDM and its dual, and aims at developing
a digital modulation format whose detection and equalization can be implemented at a reasonable complexity in
the presence of a doubly selective communication channel.
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1) Transmitted signal model: In the following, we take into consideration the transmission of the M x N matrix[]
C £ [emn) (With m = 0,1,...,M —1 and n = 0,1,..., N — 1), collecting M N channel symbols, each of which
belongs to an M_ary constellation; this matrix represents a single OTFS symbol. Let us assume that the matrix C
undergoes a one-to-one transformation g : CM*N — CM>N | geperating the transformed symbol matrix

X 2 [z, = g(C), (57)

having the same size as C. The matrix X is periodically extended along both its dimensions to generate the 2D
periodic sequence
Tl = TRy [k],Rull] (58)

for any value of the couple (k,) not belonging to the set of indices of the elements of X (57). The matrix X is
transmitted by generating a modulated signal that exhibits the property of cyclicity in both the TD and the FD.
As shown in Subsections and cyclicity in the TD over an interval lasting NT; s and in the FD over the
frequency range (—MA¢/2, MA¢/2) can be guaranteed by generating the complex envelope (see (28))

soye 3 (t T c), (59)
I=—NG®
with (see (@I))
M/2—1+N{ED)
FD .
sl( )(t; C) 2 p(t) Z Th exp(j27rk‘Aft); (60)
k=—(M/2+NS")
here, p(t) is a bandlimited pulse (whose temporal support is the interval [0, L, 7|, L, being an integer parameter),
T is the symbol interval, A is a frequency spacing, and the integer parameters NC(E D), Nc(g ) and Nc(goD) have
the same meaning and scope as that illustrated for the corresponding parameters which have been defined in our
description of OFDM and DOFDM, respectively. Note that the DCP insertion entails the transmission of

Nep 2 NIPIM + (N + NIP)(NED) 4 NID)) (61)
additional channel symbols, so that
N,
Ay & ——P 62
P MN + N, (62)

represents the fraction of channel symbols assigned to the TD prefix and to the FD prefix & postfix. Substituting
the RHS of (60) in that of (59) yields the signal model

N—1 M/2=1+NED

s(t; C) = Z Z zpp(t —UT) - exp(j2rkAp (t — UT5)), (63)
I=—NG"™ k=—(M/2+N5"™)

that has the same structure as [4, Sec. II-A, eq. (5)], but, unlike that, includes a double cyclic extension. Note also
that can be easily rewritten as

M/2-14+NED
s(t;C) = Z SIE:TD)(t; C), (64)
k=—(M/2+N5"™)

where N1
sPC) 2 ST applt — ITL) exp(j2rkAf(t — ITV)), (65)
I=—N&™

"The values of the parameters M and N are assumed to be even in the following.
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and that the last signal can be interpreted as a frequency shifted version of an OFDM signal (with a frequency
shift equal to kA¢; see (28)); consequently, s(t; C) can be seen as the superposition of mule (namely,

M + Ng D) + NC(IP;OD)) OFDM signals, characterized by distinct central frequencies. Let us select no ﬁ

Ay =1/Ty, (66)
so that s,(CTD) (t; C) (65) looks periodic, with period
T = NTs, (67)
in the interval [0, T]. Therefore, in that interval, it can be represented through the FS (see () and (3))
“+oo
t
s,(gTD)(t;C) = Z S'S;D)(C) exp(j27rqf>, (68)
gq=—00
where
sy e L (1 e 2mq L )dt 69
kq ( )—f . s, (& )eXP<_J WQT) (69)

is the gth Fourier coefficient. The coefficient S,(S;D) (C) (69) can be evaluated by: 1) replacing the extremes (—]\70(1;F D))
and (N — 1) of the summation in with —oo and +o0, respectivelyﬂ; 2) substituting the RHS of the resulting
formula in that of (89); 3) replacing the index [ with the couple (I, ) such that [ = [+ uN, with [ = 0,1,..., N —1
and u arbitrary integer; 4) exploiting the periodicity, with period N, of the sequence {x;} in the index [ (see
(38)). This yields, after some manipulatio

1 q— kN
s™(c) = ka,qP<T), (70)

where P(f) is the FCT of p(t) and

N—1
1 n
X, 52— Tk p €X (7 |27 — ) 71
kyq \/Nr;) kn €XP| —J 2T 55q (71)

represents the gth element of the order N DFT of the sequence {xy,} evaluated with respect to the index n.

The mathematical results developed until now (and, in particular, the FS representation (68))) allow us to analyze
easily what happens at the RX side when s(¢; C) (63) is transmitted on an ideal communication channel, i.e.,
on a channel that does not introduce distortion and noise (channel delay is also neglected for simplicity). The
study of this scenario, which is described in the following paragraph, allows us to: 1) discover the nature of the
transformation g(-) to be adopted in (57); 2) assess the impact of TX and RX filtering.

2) Received signal model in the presence of an ideal communication channel: Following [19], [20], we assume
that the first stage in the baseband model of the receiver for the modulation format described in the previous
paragraph is a filter bankE], consisting of M distinct matched filters. The frequency response and the impulse
response of the kth filter (matched to p(t) exp(j2rkA t)) are

O (f) = P*(f — kAy) = P*(f — kN/T) (72)

and .
o7 (t) = p*(—t) exp(j2nkt/Ty), (73)
respectively, with k=-M /2, =M /241, ..., M /2—1. Based on the signal decomposition @, the overall response
of this filter to the signal s(¢; C) (63)), can be computed by first evaluating its response to s kTD) (t; C) (63) and then

8This assumption is commonly made in the technical literature (e.g., see [13]]); this corresponds to selecting the subcarrier spacing of
OFDM equal to Ay/N, i.e., N times smaller than that characterizing DOFDM (see our comments above (20) and those following (&T)).

“Note that this does not have any impact on the representation of s,(gTD)(t; C) (63) over the limited interval [0, T'].
9The derivation of the following result is similar to that illustrated for (@) (obtained from (3)); further details can be found in Appendix

"'This choice is optimal in the maximum likelihood sense in this case, but is sub-optimal in the case of a multipath fading channel.
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summing over k. Based on the FS representation (68)) of s,(CTD)(t; C) and (72), the last response can be expressed
as | oo t
.5t C) = \/quzoo Xioa Gy exp(ijqf), (74)
in the intervaﬁ [0, T]; here, y
() ()

S

for any k, k and q. The output of the kth matched filter (with k = —M/2,—M/2+1,...,M/2 —1) is sampled at
the instant t; = Ty, with 2 = 0,1, ..., N — 1. Sampling r, ;(¢; C) at that instant produce

+oo
o1 A 1 . q .
il £ (12 €) = > Xig Grgexp(i2mct). (76)
q=—00
The last expression can be easily rewritten by: 1) replacing the index ¢ with the couple (¢, u), with ¢ = 0,1, ..., N—1
and v arbitrary integer; 2) replacing ¢ with ¢; 3) exploiting the periodicity of the sequence { X, ,} in ¢ (with period
N). This yields

~ 1 A - q
rilk,n] = \/—N 2. Xioq G _p g €XP (]ZWNn), 77
where
. 1 X g+ wtz)N q+uN
Goa 27 Y P( )P ( ) 78
z,q Ts :ZOO T T ( )
for any x. Given (77), the output r[l;:, n| of the kth matched filter at the instant t; = 77, can be evaluated as
rlk, @) = > ik, 7). (79)
k=—oc0

Then, substituting the RHS of in that of the last equation gives, after some manipulations (further details are
provided in Appendix [B)),

M-1N-1
- 1 o o (P 4.
rlk,n| = - ex <— 21 (—k — =n ), 80
[k, 7] m;; p.a 9p.q - EXP\ 7] (M N) (80)
where
= »
X4 S X, ex ('27T—m) 81)
P4 A mz:: m,q XP\J M
is the pth element of the order A/ IDFT of the sequence {X,,,} in the index m and
+oo D
_ A A .
£ 3 Cugexp(j2nLou) 82
Ina u;m ug €xp (27 -u (82)

represents the frequency response, evaluated at the normalized frequency (p/M ), of the digital filter characterized
by the impulse response {@u} (further details can be found in Appendix .

Equation leads to the conclusion that the 2D sequence {r[k, 7]} consists of the superposition of M N distinct
complex exponentials and that the complex gain associated with the couple of indices (p, ¢) is given by the product
between X, , (conveying the transmitted information) and g, , (depending on TX and RX filtering only). Based
on the last results, we can: 1) select properly the transformation g(-); 2) assess the impact of the pulse p(¢) on the

2Despite RX filtering, this interval remains the same as that in which (68) holds, thanks to the fact that the employed matched filters are
assumed not to be causal for simplicity (see (73)).
In the following, the dependence on C is omitted to ease notation.
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structure of the received samples. In the remaining part of this paragraph, we concentrate on the first issue only (a
detailed discussion on the second one can be found in Paragraph [[I-C.4). As far as g(-) is concerned, substituting
the RHS of in that of (81) gives

M—-1N-1
_A

(JQW(M Nq>>’ 83)

that can be interpreted as the coefficient (p, q) of the order (M, N') Symplectic Discrete Fourier Transform (SDFT)
of the M x N complex matrix X [[12], [13]]. Note that (83) can be rewritten in matrix form as

X = SDFTy n[X] 2 B}, X 2y, (84)

where X £ [X,, ] is an M x N complex matrix. This suggests to select an order (M, N) inverse SDFT (ISDFT)
for the transformation g(-) appearing in the RHS of (57), so that

X = ISDFTy, v[C] £ E) CEX. (85)
In fact, (84) implies that B
X=glz,celley=cC (86)
and, consequently, that B
Xp.g = CRulpl,Rlal> (87)
for any p and ¢, and (see (80))
. M-1N- v g
k, (— on(Lk— L5 )
7| j27r(Mk Nn) (88)
p=0 ¢q=0
The last result can be easily rewritten in matrix form as
r(C) =Ey(Co G)EL, (89)

where r(C) £ [r[k,7]] and G £ [g,,] are M x N matrices collecting the received signal samples acquired at the
output of whole filter bank over our observation interval and the complex gains {g,,} (evaluated on the basis of
(82)). Moreover, based on (89), a simple detection method, conceptually similar to those illustrated for OFDM and
DOFDM, can be easily developed. In fact, performing an order (M, N) SDFT on r(C) (89) produces the M x N
complex matrix

Y (C) £ SDFTy n[r(C)]=C 0O G, (90)
whose element (m,n) is .
Y = ——CmnIm,n> 1

with m =0,1,...,M —1 and n = 0,1, ..., N — 1. Then, for any m and n, the channel symbol ¢, , has to be be
detected on the basis of Y[m,n] only, after compensating for the complex gain gy, .
It is important to point out that:
1) Equations and (87) entail that
M-

1 .
Tom = TN Z q Cpog exp(—]Qﬂ'(%m— %n)), 92)

p=0

withm=0,1,.., M —1land n=0,1,..., N — L.
2) The mathematical result expressed by (91 can be seen as a generalization of and (53)), that have been
derived for OFDM and DOFDM, respectively. Note that the absence of any form of ISI affecting Y [m,n] (OI) is
made possible by the use of a DCPE In 