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Abstract

A Distributed Nonlinear Model Predictive Control (DNMPC) approach is proposed to control the simplified decoupled dynamics

of a quadrotor UAV. The performance of DNMPC is compared, in terms of tracking and execution time, to that of standard

control configurations based on centralized MPC and PID control aiming to show the suitability of each configuration in terms

of performance and the practicality of using a particular configuration in real-time applications. The results show the advantage

of using DN-MPC in terms of ease of tuning and computational cost over more centralized feedback control approaches.
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Distributed Nonlinear Model Predictive Control for a
Quadrotor UAV

Bilal Mubdir∗, and Emmanuel Prempain
University of Leicester, University Rd, Leicester, UK

ABSTRACT

A Distributed Nonlinear Model Predictive Con-
trol (DNMPC) approach is proposed to control
the simplified decoupled dynamics of a quadro-
tor UAV. The performance of DNMPC is com-
pared, in terms of tracking and execution time, to
that of standard control configurations based on
centralized MPC and PID control aiming to show
the suitability of each configuration in terms of
performance and the practicality of using a par-
ticular configuration in real-time applications.
The results show the advantage of using DN-
MPC in terms of ease of tuning and computa-
tional cost over more centralized feedback con-
trol approaches.

1 INTRODUCTION

In the last decades, different control techniques have been
used in the aerospace industry. These range from basic clas-
sical control to modern artificial intelligence techniques used
in many other fields. Classical controllers such as Propor-
tional–Integral–Derivative PID [1], one of the best-known
controllers, are successful in stabilizing a wide range of sys-
tems [2]. Aerospace systems such as aircraft or spacecraft,
are nonlinear systems that could benefit from being controlled
by advanced control systems enforcing strict stability and re-
liability requirements.

MPC is an advanced proactive control approach in which
the control law is internally determined according to the fore-
casted response of the dynamic model to be controlled [2].
An open loop optimal control problem (OLOCP) is solved
within a specified duration called Prediction Horizon to pro-
duce an optimal manipulated input trajectory for the optimal
anticipated state trajectory. Out of the determined manipu-
lated input trajectory, only the first control input action is ap-
plied to the system, and the whole process is repeated at every
time sample. Furthermore, one of the major features of MPC
is that it can handle multiple outputs and multiple inputs, or
what is called MIMO systems [3], which makes it perfect for
multivariable feedback control since the 1990s [4].

The testbed for this research is a Quadrotor, which is an
Unmanned Aerial Vehicle (UAV) that features exceptional
manoeuvrability, hovering, vertical take-off and landing ca-
pabilities.

∗Email address(es): bama4@le.ac.uk

MPC is extensively used in the literature as a flight con-
troller for quadrotors. Identifying a suitable dynamic model
for a quadrotor is crucial when it comes to MPC. The liter-
ature gives formulations of MPC for different model types,
such as linear time-invariant, linear time-varying, piecewise
affine, nonlinear, . . . etc. Since the mathematical model is
the centrepiece of MPC, the model type is pivotal in how effi-
ciently the OLOCP will be solved by the optimization solver.
Complex dynamics representations may lead to a computa-
tional burden when solving the OLOCP.

Linear dynamics were considered in designing a linear
model predictive control (LMPC) for the quadrotor in [5], re-
sulting in a good tracking performance and disturbances re-
jection for different trajectories. Alexies et al. [6] used a
switching type MPC in controlling the quadrotor but with a
linearized piecewise affine model around multiple operating
points to track a trajectory with the presence of disturbances.
The authors decoupled the dynamics to form what they call it
“dual control scheme.” A separate MPC was used to control
the translational motion using the translational augmented dy-
namics, and another MPC was used to control the attitude of
the quadrotor. As a matter of fact, the attitude dynamics (an-
gular motion) of the quadrotor is faster in nature compared to
the translational dynamics [6]. Thus, separating the controller
for the translational motion and attitude is possible when the
dynamics are decoupled.

A centralized nonlinear MPC was investigated in [7]
based on a reduced nonlinear dynamic model of a quadro-
tor. It was shown that the use of a reduced nonlinear model
led to a simpler MPC solution, easier to implement produc-
ing similar performance to that of an MPC solution based on
a full order model. Reducing the computational complexity
has been addressed effectively in [8] using machine learning
to learn the control law from well-designed MPC flight data.
However, this approach replaces the MPC with a clone that
is limited by the conditions of the dataset used in the training
stage.

Also, many researchers used the nominal MPC in con-
junction with another technique. The authors in [9] proposed
a two-loop controller in which the outer loop is MPC based to
control the translational motion and a faster inner loop based
on PID to control the attitude of the quadrotor. Although
they have proved in simulation tests the effectiveness of using
MPC to respect the constraints of the actuators and tracking
the trajectory accurately, the disturbance effect was not intro-
duced in their proposal. Hence, robustness concerns could
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arise, and the constraints may be violated if the controller is
not robust enough when the quadrotor is subjected to a dis-
turbance. Moreover, comparative studies were conducted to
quantify the performance and the control effort of the linear
MPC versus PID, PD, and Linear Quadratic Regulator (LQR)
in the [10]. The authors claim that MPC offers better tracking
performance compared to the other techniques. Their study
adopted the centralized LMPC and tested on a smooth trajec-
tory without any sharp manoeuvres. The results are convinc-
ing but when it comes to fast and very sharp manoeuvres, the
results need to be verified.

The configuration of MPC formulation and how it handles
the system dynamics could be varied according to the system
complexity and the performance requirements [11]. In gen-
eral, there are three different MPC configurations or architec-
tures to control the system, namely; Centralized, Decentral-
ized, and Distributed MPC. In centralized MPC, large-scale
systems are controlled using one single MPC that has one op-
timal problem. Although this architecture is the greatest for
performance, it is considered impracticable for large systems
due to its computational requirements [12]. The decentralized
MPC architecture features a separate MPC for each subsys-
tem of the dynamics. Usually, the subsystem dynamics are
decoupled from each other, the mutual interaction is ignored,
as well as, each MPC has its optimal problem [11, 12]. On the
other hand, the distributed model predictive control (DMPC)
structure shown in Figure 1, is introduced when the decentral-
ized configuration is associated with a communication ability
between the individual MPC agents to facilitate exchanging
information between them [12].

dynamics model. In contrast to the use of full nonlinear 
dynamics, which complicated the solution of the OLOCP, 
the authors reduced the nonlinear dynamics toward 
implementing an efficient nonlinear MPC that acts faster 
than the nominal MPC with full model representation 
yielding almost the same performance. Reducing the 
computational complexity has been addressed effectively in 
[9] using machine learning to learn the control law from 
well-designed MPC flight data. However, this approach 
replaces the MPC with a clone that is limited by the 
conditions of the dataset used in the training stage. 

Also, many researchers used the nominal MPC in 
conjunction with another technique. The authors in [10] 
proposed a two-loop controller in which the outer loop is 
MPC based to control the translational motion and a faster 
inner loop based on PID to control the attitude of the 
quadrotor. Although they have proved in simulation tests 
the effectiveness of using MPC to respect the constraints of 
the actuators and tracking the trajectory accurately, the 
disturbance effect was not introduced in their proposal. 
Hence, robustness concerns could arise, and the constraints 
may be violated if the controller is not robust enough when 
the quadrotor is subjected to a disturbance. Moreover, 
comparative studies were conducted to quantify the 
performance and the control effort of the linear MPC versus 
PID, PD, and Linear Quadratic Regulator (LQR) in the [11]. 
The authors claim that MPC offers better tracking 
performance compared to the other techniques. Their study 
adopted the centralized LMPC and tested on a smooth 
trajectory without any sharp manoeuvres. The results are 
convincing but when it comes to fast and very sharp 
manoeuvres, the results need to be verified. 

The configuration of MPC formulation and how it 
handles the system dynamics could be varied according to 
the system complexity and the performance requirements 
[12]. In general, there are three different MPC 
configurations or architectures to control the system, 
namely; Centralized, Decentralized, and Distributed MPC. 
In centralized MPC, large-scale systems are controlled 
using one single MPC that has one optimal problem. 
Although this architecture is the greatest for performance, it 
is considered impracticable for large systems due to its 
computational requirements [13]. The decentralized MPC 
architecture features a separate MPC for each subsystem of 
the dynamics. Usually, the subsystem dynamics are 
decoupled from each other, the mutual interaction is 
ignored, as well as, each MPC has its optimal problem [12, 
13]. On the other hand, the distributed model predictive 
control (DMPC) structure shown in Figure (1), is 
introduced when the decentralized configuration is 
associated with a communication ability between the 

individual MPC agents to facilitate exchanging information 
between them [13].  

 

 

 
 

Figure 1: Typical configuration of distributed MPC. 

The theory of DMPC and its stability has been 
extensively studied in the literature [14, 15]. Although the 
purpose of DMPC is to control large-scale with multiple 
objectives system, it has been applied successfully in 
controlling AC/AC converters in power applications to 
reduce the computational burden when centralized MPC is 
used [16]. The previous statement brings us to the 
contributions of the current research. To the best of our 
knowledge, no study was conducted to analyze the 
performance of different MPC configurations mainly when 
the nonlinear model is used. Furthermore, adopting 
DNMPC for quadrotors has gained less interest in the UAV 
control literature. Therefore, the contributions of this 
research are twofold: 
• Introducing Distributed Nonlinear MPC for controlling 

the quadrotor by decomposing the centralized MPC into 
multiple agents whilst reducing the computation 
complexity of the overall controller. 

• Evaluate various MPC configurations in terms of 
performance and computational complexity. 

The remainder of this paper is organized as follows: 
Section (2) focuses on the derivation of the quadrotor UAV 
model and its dynamics as a part of the control system. 
Section (3) highlights the problem formulation and theory 
behind the Distributed Nonlinear MPC. Section (4) gives 
the design of the DNMP for the quadrotor, Section (5) 
demonstrates the different tests applied on the proposed 
DNMPC and the other configurations and the results with a 
brief discussion while Section (6) concludes the findings of 
the paper. 

 

1.1. Notation 

In this paper, vectors are represented in bold lowercase 
letters (e.g., x), and the uppercase bolded letters are used for 
matrices (e.g., A). Other symbols represent scalars 
regardless of the letter case. The Euclidean 𝑸-weighted 
norm is denoted by ‖𝒙‖𝑸" = 𝒙#𝑸𝒙, where 𝑸 is a positive 
definite real symmetric matrix. 
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Figure 1: Typical configuration of distributed MPC.

The theory of DMPC and its stability has been exten-
sively studied in the literature [13, 14]. Although the pur-
pose of DMPC is to control large-scale with multiple objec-
tives system, it has been applied successfully in controlling
AC/AC converters in power applications to reduce the com-
putational burden when centralized MPC is used [15]. The
previous statement brings us to the contributions of the cur-
rent research. To the best of our knowledge, no study was
conducted to analyze the performance of different MPC con-
figurations mainly when the nonlinear model is used. Fur-
thermore, adopting DNMPC for quadrotors has gained less
interest in the UAV control literature. Therefore, the contri-

butions of this research are twofold:
• Introducing Distributed Nonlinear MPC for controlling the

quadrotor by decomposing the centralized MPC into mul-
tiple agents whilst reducing the computation complexity of
the overall controller.

• Evaluate various MPC configurations in terms of perfor-
mance and computational complexity.
The remainder of this paper is organized as follows: Sec-

tion 2 focuses on the derivation of the quadrotor UAV model
and its dynamics as a part of the control system. Section
3 highlights the problem formulation and theory behind the
Distributed Nonlinear MPC. Section 4 gives the design of the
DNMP for the quadrotor, Section 5 demonstrates the different
tests applied on the proposed DNMPC and the other configu-
rations and the results with a brief discussion while Section 6
concludes the findings of the paper.

1.1 Notation
In this paper, vectors are represented in bold lowercase

letters (e.g., x), and the uppercase bolded letters are used for
matrices (e.g., A). Other symbols represent scalars regard-
less of the letter case. The Euclidean Q-weighted norm is
denoted by ‖x‖2Q = xTQx where Q is a positive definite
real symmetric matrix.

2 QUADROTOR DYNAMIC MODEL

To model the dynamics of the quadrotor and describe its
states, it is crucial to define the coordinate systems. The iner-
tial frame is fixed on the earth, entitled ”Earth Frame”. This
frame denoted FE with an x-axis directed to the north, a y-
axis directed to the east, and a z-axis directed down toward
the earth, while FB represents the quadrotor as a rigid body
frame as shown in Figure 2. The attitude of the quadrotor is
defined by the Euler angles, roll angle φ, pitch angle θ, and
yaw angleψ. Due to the time independency of the quadrotor’s
body inertia and its symmetric structure, the motion equations
can be achieved with respect to its body frame FB [16]. The

Figure 2: Frames coordinate systems.

absolute position of the quadrotor is ξ = [x, y, z]
T and the

attitude denoted by η = [φ, θ, ψ]
T . The model in this paper
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follows the derivations made in [17] and [18]. The thrust Ti is
aligned with the rotor axis i which rotates at angular velocity
ωi and is given by:

Ti = bω2
i , i ∈ 1, 2, 3, 4 (1)

in which b is the lift constant equal toCT ρAr2, where ρ is the
density of the air that surrounds the propeller of surface area
A and radius of r and where CT is the thrust factor. Hence,
the thrust along the z-direction of the quadrotor is given by:

T = b

4∑

i=0

ω2
i = b

(
ω2
1 + ω2

2 + ω2
3 + ω2

4

)
(2)

On the other hand, Mφ and Mθ are the pitching and rolling
moments due to the thrust differences between the rotors. The
net drag force due to the rotors is causing the heading moment
Mψ . The moments are given by:

Mφ = l (T4 − T2) (3a)
Mθ = l (T3 − T1) (3b)

Mψ = d
(
−ω2

1 + ω2
2 − ω2

3 + ω2
4

)
(3c)

where l is the distance from the quadrotor’s COM to the ro-
tor axis, d is the drag constant given by CP ρA

3
r , and CP

is the torque coefficient of the motor. If quadrotor transla-
tional and angular velocity vectors are ξ̇ = [U, V,W ]T and
η̇ = [P, S,R]T respectively, the translational and angular
motion equations are given by:




U̇

V̇

Ẇ

Ṗ

Q̇

Ṙ




=




(sinφ sinψ + cosφ sin θ cosψ) Tm −
Ax
m U

(− sinφ cosψ + cosφ sin θ sinψ) Tm −
Ay
m V

−g + (cosφ cos θ) Tm −
Az
m W

1
Ixx
{(Iyy − Izz) Q R− Jr ωT Q+Mφ − Ar P}

1
Iyy
{(Izz − Ixx) P R− Jr ωT p+Mθ − Ar Q}

1
Izz
{(Ixx − Iyy) P Q+Mψ − Ar R}




(4)

where ωT = −ω1 + ω2 − ω3 + ω4, Jr is the motor’s rotor
inertia, Ar is the rotational aerodynamic drag coefficient and
Ax, Ay and Az are the linear aerodynamic drag coefficients
in the x, y, and z directions respectively. Also, Ixx, Iyy , and
Izz denote the time-invariant inertia of the quadrotor about
the body axes in FB . As discussed before, the only variables
that can be controlled are the angular velocity of the motors.
Before designing a control system, it is necessary to map the
control signals to state equations. Thrust and moments are
related to the motors angular velocities thanks to an allocation
matrix, as follows:




T
Mφ

Mθ

Mψ


 =




b b b b
0 −lb 0 lb
−lb 0 lb 0
−d d −d d







ω2
1

ω2
2

ω2
3

ω2
4


 (5)

The parameters of the quadrotor UAV used in this paper are

adopted from [19] and given in Table 1.

Symbol Description Value (Units)
g Acceleration due to gravity 9.806 (m/s2)
Ar Rotational aerodynamic drag coefficient 10e-15 (Nm.s/rad)
m Total mass of quadcopter UAV 0.65 (kgs)
l distance from the quadrotor’s COM motor 0.232 (m)
Ax, Ay, Az Linear aerodynamic drag coefficient 10e-15 (N.s/m)
Jr Rotor inertia 4e-4 (kg.m2)
Ixx Moment of Inertia along x-axis 7.5e-3 (Nm.s2/rad)
Iyy Moment of Inertia along y-axis 7.5e-3 (Nm.s2/rad)
Izz Moment of Inertia along z-axis 1.3e-2 (Nm.s2/rad)
ρ Air Density 1.293 (kg/m3)
r Propellers Radius 0.15 (m)
CT Thrust Coefficient 0.055
CP Torque Coefficient 0.024

Table 1: Quadrotor UAV parameters.

3 PROBLEM FORMULATION

Distributed Nonlinear MPC (DNMPC) is composed of
Na agents, where, each agent can be viewed as a local model
predictive controller with a separate open-loop optimal con-
trol problem (OLOCP). Considering the following nonlinear
discrete-time local system model for agent i [14],

xik+1 = fi
(
xik,u

i
k

)
, i ∈ {1, . . . , Na} (6)

Where, xik ∈ Rni and uik ∈ Rmi are the local state and
control vectors of agent i respectively, n, and m representing
the local state, and input vector dimensions, respectively. xik
is the successor or the next state and fi : Rni × Rmi → Rni
is naturally defined by the local system differential equation
that equals zero at zero initial conditions fi (0, 0). The sets
of constraints that represent the safety limits and physical re-
quirements for the local state and control inputs are denoted
Xi ∈ Rni and Ui ∈ Rmi respectively. They also represent
the feasible state and input of the agent i. Therefore

xik ∈ Xi, uik ∈ Ui, k ≥ 0, i ∈ {1, . . . , Na} (7)

At time step k, the current measure state xik is used to
solve an OLOCP based on the local system model (6). What-
ever the formulation of OLOCP, its solution is an optimal
state trajectory that stabilizes the system in addition to an
optimal control input trajectory that satisfies the anticipated
state trajectory. Specifying the prediction horizon is vital to
formulate the OLOCP problem and hence selecting the ap-
propriate optimization solver. According to [12], the OLOCP
problem is either infinite or finite. In this paper, the upper ap-
proximate finite OLOCP version adopted with the Terminal
Cost function Vfi , and Terminal Constraint Xfi ∈ Rni such
that:

xiN ∈ Xfi , i ∈ {1, . . . , Na} (8)

The control objective is to use the receding horizon con-
trol approach to cooperatively stabilize the Na agents and
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converging the state of each agent to the equilibrium point(
xie,u

i
e

)
by minimizing the following OLOCP

min
u

Jk (xk,uk) =

N−1∑

k=0

` (xk,uk) + Vf (xN ) (9)

Where N is the prediction horizon, and

xk =
[
(x

1
)
T
, . . . , (x

Na )
T
]T

, xk ∈ Rn, n =
∑

i

ni (10a)

uk =
[
(u

1
)
T
, . . . , (u

Na )
T
]T

, uk ∈ Rm, m =
∑

i

mi (10b)

Then, the overall dynamics can be expressed as

xk+1 = f (xk,uk) (11)

where f = [f1, . . . , fNa ]
T , f : Rn × Rm → Rn and

the global equilibrium point for all agents is (xe, ue). The
OLOCP in (9) can be used in centralized MPC and is sub-
jected to X = X1 × . . . × XNa , U = U1 × . . . × UNa , and
Xf= Xf1 × . . .× XfNa . Although this formulation slightly

increases the computation cost when it comes to solving the
optimization problem, the terminal cost and terminal con-
straints assure the stability and feasibility of the controlled
system [12, 20]. There is no specific rule to determine the
terminal cost, however, it captures the cost beyond N up to
∞ to guarantee the full covering of the horizon [21].

The objective of each agent’s optimization problem is to
minimize the tracking error between the local state xik and
its reference trajectory x̄i. Furthermore, to decompose the
centralized MPC into a distributed MPC, the following two
assumptions are made:

Assumption 1: The models for all agents presented in (6) are de-
coupled and the communication between agents is
sufficient and available as needed by any agent.

Assumption 2: The condition fi (0, 0) = 0 is not restrictive, since
fi

(
xi
e, ui

e

)
is not zero, thus, the equilibrium point

could be any aribtarary reference ∈ Xfi .

Accordingly, in a distributed style, problem (9) is divided
into multiple OLOCPs given by

min
ui

Ji
k

(
ui
k,u

i
k, x̄

i
k

)
=

N−1∑

k=0

`i
(
xi
k,u

i
k, x̄

i
k

)
+ Vfi

(
xi
N

)

s.t. (6), (7), (8), xi
0 = xi

k

(12)

Where the stage cost function `i(xik,u
i
k) and terminal cost

function Vfi(x
i
N ) are defined as:

`i(x
i
k,u

i
k, x̄

i
k) = ‖xik − x̄ik‖2Qi

+ ‖uik‖2Ri
(13a)

Vfi(x
i
N ) = ‖xik − x̄iN‖2Pi

(13b)

where Qi, Ri, and Pi are positive definite weighting matri-
ces for penalising the states, manipulated inputs, and terminal
state, respectively for agent i. For each agent i, the control

law at the end of each prediction iteration is

uik = ui0
∗ (
xik
)

(14)

The superscript * indicates the optimal value and ui0 is the
first control input action in the optimal control input trajec-
tory obtained from the OLOCP solution that is applied to the
system.

4 DNMPC FOR QUADROTOR UAV
When designing a controller for quadrotors, different ef-

fects could be considered in the dynamics model, the reader
is referred to [22] for a list of these effects. Including all ef-
fects with a full dynamics representation for the plant will
intuitively lead to an increase in computational complexity.
Therefore, a simplified version of the dynamics is used such
as [7] to achieve faster solution during each predication it-
eration. However, contrary to [9], the linear and rotational
aerodynamic drag forces are considered in this paper. The re-
sultant dynamics are driven from (4), decoupled and reduced
based on the following assumptions:

Assumption 3: The gyroscopic effect of the motor is ignored.

Assumption 4: When the quadrotor is moving in the x-axis direction
(pitching), the rolling angle is assumed zero.

Assumption 5: When the quadrotor is moving in a y-axis direction
or rolling, the pitching angle is assumed zero.

Assumption 6: When the quadrotor moves vertically, the pitching
and rolling angles are assumed zero.

Assumption 7: The heading of the quadrotor is assumed not con-
trolled and the related torque is zero.

If Ts is the sampling time, the subscript k denotes the
value of the variables at time kTs, and by using the forward
Euler discretization, the simplified decoupled dynamics are
given as follows

xk+1 =




xk
Uk
yk
Vk
zk
Wk

φk
Pk
θk
Qk




+ Ts




Uk
m−1(sin θkTk −AxUk)

Vk
m−1(− sinφkTk −AyVk)

Wk

−g +m−1(Tk −AzWk)
Pk

Ixx
−1Mφk −ArPk

Qk
Iyy
−1Mθk −ArQk




(15)

Although the nonlinearity has been significantly reduced and
weakened, the above dynamics in [14] without considering
the linear and rotational aerodynamic drag forces, are vali-
dated in [7] when the pitching and rolling angles are limited
to 0.2618 rad. Considering the linear and rotational aerody-
namic drag forces, it is expected to perform better and acts
more accurately compared to what was adopted in [7] with a
little additional computation cost.
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4.1 DNMPC Controller

Inspired by [15], with assumptions (1-7), we considered
the Quadrotor UAV dynamics as a large-scale system in this
paper, thanks to dynamics decoupling, (15) represented as
five interconnected subsystems where each subsystem is con-
trolled by its own MPC agent shown in Figure 3 to form the
DNMPC with Na = 5. Z-MPC, X-MPC, and Y-MPC form
the first MPC agents’ group for controlling the translational
motion, z-axis, x-axis, and y-axis respectively. On the other
hand, Rolling MPC, and Pitching MPC form the second MPC
agents’ group for controlling the angular position of φ and θ
respectively.

The reference set-point is provided for each correspond-
ing MPC agent in the first group. The role of the Z-MPC is
to determine the optimal thrust force T , then feed it to the
allocation matrix, X-MPC and Y-MPC as a cooperative input
within the first group. In the proposed design, X-MPC and
Y-MPC were utilized to generate the attitude trajectory for
the second MPC agents’ group. Thus, the two manipulated
inputs φ, and θ, were the optimal inputs resultant from the Y-
MPC, and X-MPC respectively and are provided to the sec-
ond group as reference trajectory. Finally, the second group
of agents, namely, Rolling MPC, and Pitching MPC, are de-
signed to determine the optimal rotational torques, Mφk, and
Mθk respectively and feeding them to the allocation matrix.
The local subsystem’s states and manipulated inputs for each
MPC agent are summarized in the equations set (16). It is
noteworthy to mention that according to assumption 7, no
controller was used for controlling the heading of the Quadro-
tor UAV.
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all effects with a full dynamics representation for the plant 
will intuitively lead to an increase in computational 
complexity. Therefore, a simplified version of the dynamics 
is used such as [8] to achieve faster solution during each 
predication iteration. However, contrary to [10], the linear 
and rotational aerodynamic drag forces are considered in 
this paper. The resultant dynamics are driven from (4), 
decoupled and reduced based on the following assumptions: 

Assumption 3: The gyroscopic effect of the motor is ignored. 
Assumption 4: When the quadrotor is moving in the x-axis 

direction (pitching), the rolling angle is assumed 
zero. 

Assumption 5: When the quadrotor is moving in a y-axis direction 
or rolling, the pitching angle is assumed zero. 

Assumption 6: When the quadrotor moves vertically, the pitching 
and rolling angles are assumed zero. 

Assumption 7: The heading of the quadrotor is assumed not 
controlled and the related torque is zero. 

 
If 𝑇H is the sampling time, 𝑘 denotes the discrete value 

of the variables at time 𝑘𝑇H, and by using the forward Euler 
discretization, the simplified decoupled dynamics are given 
as follows 
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Although the nonlinearity has been significantly reduced 
and weakened, the above dynamics in (15) without 
considering the linear and rotational aerodynamic drag 
forces, are validated in [8] when the pitching and rolling 
angles are limited to 0.2618 rad. Considering the linear and 
rotational aerodynamic drag forces, it is expected to 
perform better and acts more accurately compared to what 
was adopted in [8] with a little additional computation cost. 
 

4.1. DNMPC Controller 

Inspired by [16], with assumptions (1-7), we 
considered the Quadrotor UAV dynamics as a large-scale 
system in this paper, thanks to dynamics decoupling, (15) 
represented as five interconnected subsystems where each 
subsystem is controlled by its own MPC agent shown in 
Figure (3) to form the DNMPC with 𝑁? = 5. Z-MPC, X-
MPC, and Y-MPC form the first MPC agents’ group for 
controlling the translational motion, z-axis, x-axis, and y-
axis respectively. On the other hand, Rolling MPC, and 

Pitching MPC form the second MPC agents’ group for 
controlling the angular position of 𝜙 and 𝜃 respectively. 

 

 

 

 

 

 

 
 

Figure 3:  Block diagram for Distributed nonlinear MPC for Quadrotor 
UAV. 

The reference set point is provided for each 
corresponding MPC agent in the first group. The role of the 
Z-MPC is to determine the optimal thrust force 𝑇, then feed 
it to the allocation matrix, X-MPC and Y-MPC as a 
cooperative input within the first group. In the proposed 
design, X-MPC and Y-MPC were utilized to generate the 
attitude trajectory for the second MPC agents’ group. Thus, 
the two manipulated inputs 𝜙, and 𝜃, were the optimal 
inputs resultant from the Y-MPC, and X-MPC respectively 
and are provided to the second group as reference trajectory. 
Finally, the second group of agents, namely, Rolling MPC, 
and Pitching MPC, are designed to determine the optimal 
rotational torques, 𝑀+@

, and 𝑀,@ respectively and feeding 
them to the allocation matrix. The local subsystem’s states 
and manipulated inputs for each MPC agent are 
summarized in the equations set (16). It is noteworthy to 
mention that according to assumption 7, no controller was 
used for controlling the heading of the Quadrotor UAV.  

𝒙+# = p 𝑧𝑊q , 			𝒖+
# = [𝑇]																																																(16𝑎) 

𝒙+,## = p
𝑧+
𝑊+
q + 𝑇< r

𝑊+
−𝑔 +𝑚2#(𝑇+ − 𝐴?	𝑊+)

s										(16𝑏) 

𝒙+" = p𝑥𝑈q , 			𝒖+
" = [𝜃]																																																		(17𝑐) 

𝒙+,#" = p
𝑥+
𝑈+q + 𝑇< r

𝑈+
𝑚2#(𝑠𝑖𝑛 𝜃+ 𝑇+ − 𝐴=	𝑈+)

s											(17𝑑) 

𝒙+$ = p𝑦𝑉q , 			𝒖+
$ = [𝜙]																																																			(17𝑒) 

𝒙+,#$ = p
𝑦+
𝑉+q + 𝑇< r

𝑉+
𝑚2#(−𝑠𝑖𝑛𝜙+ 𝑇+ − 𝐴>	𝑉+)

s									(17𝑓) 

𝒙+% = p𝜙𝑃q , 			𝒖+
% = [𝑀(]																																																(17𝑔) 

𝒙+,#% = r𝜙+𝑃+
s + 𝑇< v

𝑃+
𝐼==2#𝑀(+

− 𝐴@	𝑃+w
																							(17ℎ) 

𝒙+A = r𝜃𝑄s , 			𝒖+
A = [𝑀)]																																																	(17𝑖) 

𝒙+,#A = r𝜃+𝑄 s + 𝑇< v
𝑄+

𝐼>>2#𝑀)+ − 𝐴@	𝑄+
w																								(17𝑗) 

Figure 3: Block diagram for Distributed nonlinear MPC for
Quadrotor UAV.
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4.2 Handling Constraint
In order to unify the framework of the analysis and intro-

duce a fair comparison between the various configurations,
unified constraints have been applied. The constraints set for
the forces (5) are calculated based on the technical parame-
ters of the brushless motors and their propellers. Assuming
that all propulsion brushless motors are identical, the mini-
mum lifting force is equal to mg, whereas the maximum lift
force is given (2). Also, by recalling (3), therefore, the max-
imum and the minimum value of the rotational moment can
be calculated by substituting the parameters of Table 2 in (3).

5 SIMULATION RESULTS & DISCUSSION

In this section, the simulating environment under which
the proposed DNMPC controller and the other three different
configurations are tested is explained. The other configura-
tions are the Centralized Nonlinear MPC with full dynamics
(CNMPC-F) built with dynamics (4), Centralized Nonlinear
MPC with reduced decoupled dynamics (CNMPC-R) built
with dynamics (15), and Nonlinear MPC with PID (MPC-
PID) in [9].

5.1 Simulation Setup
The modelling of the quadrotor UAV has been done in

MATLAB/Simulink while the model predictive controllers in
all configurations have been carried out in MATLAB in MAT-
LAB/Simulink by integrating CasADi, an open-source opti-
mization toolkit with MATLAB interface [23]. The nonlinear
OLOCP has been solved using the Interior Point Optimizer
(Ipopt) [24], which is natively available in CasADi. The
weighting matrices for each configuration, prediction hori-
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zon, control horizon, and sampling time are summarized in
Table 2.

CNMPC Sampling Time Ts 0.05 s
DNMPC Translation Group Ts 0.1 s
DNMPC Attitude Group Ts 0.05 s
MPC in MPC-PID Ts 0.05 s
PID Sampling time Ts 0.01 s
Prediction horizon 40

Weighting matrices for CNMPC Q = P = diag(15, 15, 150)
R = diag(0.5, 8, 8, 0.01)

Z-MPC weight in DNMPC Q = P = 10,R = 0.09
X-MPC weight in DNMPC

Q = P = 35,R = 50Y-MPC weight in DNMPC
Rolling MPC weight in DNMPC

Q = P = 200,R = 20Pitching MPC weight in DNMPC

Weighting matrices for CNMPC Q = P = diag(5, 5, 80)
R = diag(0.1, 7, 7)

Z-MPC weight in DNMPC Q = P = 10,R = 0.09

PID controller parameters
KP θ = KPφ = 25
KIθ = KIφ = 0.1
KDθ = KDφ = 15

Table 2: Controllers parameters for all configurations.

5.2 Step Response Results
All configurations were tested by applying a step input of

5m on the x-axis while the quadrotor is at a hovering point (0,
0, 4m). The step response characteristics for each configura-
tion have been summarized in Table 3.

CNMPC-F CNMPC-R DNMPC MPC-PID
Rise Time 1.4207 1.567 2.1466 2.3924
Transient Time 2.5409 2.7869 3.4209 3.509
Settling Time 2.5409 2.7869 3.4209 3.509
Settling Min 4.5022 4.5288 4.5387 4.5608
Settling Max 5.0001 5.0001 5.0000 5.0159
Overshoot 0.0017 0.0015 0 0.3157
Peak 5.0001 5.0001 5.0000 5.0159
Peak Time 5.65 5.40 7.00 4.15

Table 3: Step Response characteristics for each configuration.

5.3 Tracking Results
Two trajectories were used to test the tracking perfor-

mance of each configuration. Figures (4) and (5) illustrate
the tracking response for the infinity shape and the multiple
short rectangles’ trajectory respectively. The corresponding
motors’ angular velocities for each tracking response are il-
lustrated in Figures (6) and (7). It is seen how the DNMPC
configuration provides fewer changes for all trajectories, es-
pecially for the sharp manoeuvres. Moreover, it is obvious
that the MPC-PID configuration has the worst variation, and
this is expected as the only optimal input is the left force,
where the other forces are generated from the PID. To investi-
gate the practicability and performance of each configuration,
the solution time for the OLOCP in each prediction cycle. In
addition, the root mean square error RMSE has been deter-
mined for all trajectories. Table 5.3 shows the solution time
and RMSE of each configuration for the tested trajectories.

Infinity Shape Trajectory (40 s)
RMSE x-axis (m) 0.3556 0.29982 0.29688 0.22453
RMSE y-axis (m) 0.35302 0.30021 0.2982 0.23771
RMSE z-axis (m) 0.40636 0.40672 0.53857 0.29981
Total Solving time (s) 68.3392 14.9918 25.0127 10.8356
Average Solving time (ms) 85.42 18.74 31.22 13.54

Multiple Short Rectangles’ Trajectory (26 s)
RMSE x-axis (m) 0.96495 1.0071 1.0551 1.0633
RMSE y-axis (m) 0.68085 0.67747 0.71234 0.712
RMSE z-axis (m) 0.42955 0.42866 0.52551 0.38389
Total Solving time (s) 36.0099 14.7204 17.6784 9.0684
Average Solving time (ms) 69.25 28.30 33.93 17.43

Table 4: Step Response characteristics for each configuration.
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Figure 4: Tracking response for an infinity shape trajectory.

5.4 Discussion

It is seen from Table 5.3 that decomposing the dynamics
and reducing its complexity in the DNMPC led to a signif-
icant computation time reduction. That is expected as com-
putational complexity and thus the computation cost can be
reduced when the problem dimension is scaled down, for in-
stance, the factorization in Newton-type solver requires 2n3

flops (floating point operations) for a state equation of dimen-
sion n [25]. Therefore, when scaling down dynamics (4) used
in the CNMPC-F to dimension 2 in the individual state equa-
tions of (16), the number of flops required for factorization
is then reduced to 1/216 (where n divided by 6). Concern-
ing tuning, the different configurations have been tuned by a
simple strategy where all weighting parameters are initiated
with 1, and then manipulated in steps until an acceptable step
response performance is achieved. As a matter of fact, tuning
the centralized MPC is challenging. However, the DNMPC
configuration was the most flexible one for tuning. This is
because each agent in the proposed DNMPC is independent
of the other in terms of its cost function and penalty weight.
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Figure 5: Tracking response for multiple short rectangles’ tra-
jectory.

The results reveal that the MPC-PID configuration is faster
than the other configurations since the time needed for solv-
ing the OLOCP in its MPC is 84% better than the nominal
CNMPC-F configuration. In terms of practicability and real-
time application, the CNMPC-R, DNMPC, and MPC-PID
configurations are more suitable than using the CNMPC-F.
The step response characteristics in Table 3 provide a plain
understanding of the response for each configuration and it is
discernible that the DNMPC is slower compared to the other
configurations but steadier in reaching the set-point.

6 CONCLUSION

This paper explores the possible configuration for design-
ing MPC based flight controller for a quadrotor UAV. The dy-
namics of the quadrotor UAV were modelled using its equa-
tions of motion and used as an oriented model for the MPC.
Four configurations were studied based on two architectures,
centralized and distributed architecture. A nonlinear flight
controller based on the distributed MPC was proposed, in
which five separate MPC agents were used to stabilise the
quadrotor. All configurations were tested with a step input
in addition to tracking two different trajectories. The re-
sults disclose that the use of simplified decoupled dynam-
ics reduces the computational complexity of the overall con-
trol law. The proposed DNMPC unfolds promising perfor-
mance, especially for the sharp manoeuvres trajectories. Fur-
thermore, the DMPC is more flexible and easier to tune than
the conventional MPC. Further investigations could be con-
ducted to evaluate the practicability and the suitability of each
configuration, where real-time optimization is limited by the
capabilities of the on-board microcontroller.
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Figure 6: Motors’ angular velocities for an infinity shape tra-
jectory.
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Figure 7: Motors’ angular velocities for multiple short rect-
angles’ trajectory.
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