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for Autonomous Collision Avoidance in Inland

Waterways
Dhanika Mahipala1 and Tor Arne Johansen2, Senior Member, IEEE,

Abstract—The Scenario-Based Model Predictive Control (SB-
MPC) is an autonomous collision avoidance algorithm primarily
designed for open and coastal waters. One of the challenges
in adapting SB-MPC for autonomous inland waterway collision
avoidance is the inability to use a derivative based optimization
strategy due to non-smooth components in its cost function.
Hence, we propose a novel algorithm, Smooth Scenario-Based
Model Predictive Control (Smooth-SBMPC) specifically designed
for highly constrained and complex navigational environments
inherent to inland waterways. The effectiveness of Smooth-
SBMPC is validated through a comprehensive simulation study,
providing insights into its performance in complex navigational
environments.

Index Terms—Maritime collision avoidance, model predictive
control, autonomous ships, Inland waterways, multi-layer opti-
mization.

I. INTRODUCTION

AN algorithm designed for autonomous vessel navigation
and collision avoidance in inland waterways should ad-

dress the following aspects [1]:
• Should be able to avoid collisions with target vessels,

riparian land (grounding hazard on either side of the water
body e.g., riverbank) and static obstacles (reeks, wrecks,
navigational aids, fishing zones and small islands etc.)
without deviating unnecessarily from the original path.

• Should be compliant with local traffic rules or the Con-
vention on the International Regulations for Preventing
Collisions at Sea (COLREGS) [2] (A brief overview of
the main rules related to collision avoidance can be found
in APPENDIX I).

• Should be able to easily adapt secondary performance
criteria.

There are numerous research results found in the literature
that proposes different methods to address one or more of these
aspects [3]–[5]. The Scenario-based Model Predictive Control
(SB-MPC) method presented in [6], is such an algorithm
that has proven to be successful over the years as a reactive
collision-avoidance method based on prediction and receding
horizon optimization in open and coastal waters. Since the
initial introduction, many modifications have been suggested
to improve different aspects of SB-MPC by various authors
such as, [7]–[9] to name a few. The SB-MPC has a com-
prehensive cost function that includes cost considerations for
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COLREGS rules violation, maneuvering effort and collision
risk. As proved in the cited articles above, SBMPC is a flexible
algorithm that can be re-configured to account for issues that
were not addressed in the initial implementation.

However, one of the main challenges in utilizing SB-MPC
for autonomous inland waterway navigation is the resolution
limitations that arise when deriving the optimal control inputs
from a finite set of discretized solutions [1]. To that extent,
previous literature on SB-MPC has not adequately tackled the
issue. As a solution, a numerical optimization strategy can be
employed to find the optimal control inputs instead of using
exhaustive search method as proposed in [6]. In literature,
similar optimization problems are handled by transcribing the
Optimal Control Problem (OCP) to a Non-Linear Program-
ming Problem (NLP) by discretization, and solving the NLP
using a gradient optimization scheme [10], [11]. However, the
cost function used in SB-MPC cannot be optimized using a
gradient-based optimization algorithm due to non-smoothness
in some of the cost components (such as the COLREGS
cost) in the cost function. One solution to this problem is
stochastic optimization [12], [13]. However, unlike gradient-
based optimization strategies, stochastic-optimization methods
do not guarantee local optimality. Another approach found in
literature is the hybrid control system architecture [1], [14]–
[16]. In these type of approaches, generally, several different
algorithms are combined in a layered architecture, where
each layer is responsible for a different task in the collision
avoidance process. Hence, typical non-smooth costs such as
COLREGS violation cost can be handled by an algorithm that
uses a derivative-free optimization strategy. However, this im-
plies that the control objective at different layers are different
thus, creating the possibility of dissension between algorithms.
Therefore, instead, we propose modifying/replacing the non-
smooth cost components of the SB-MPC cost function in order
to be able to use a gradient based optimization strategy.

An important step of gradient based optimization is the
initialization step. A good initialization strategy is important
to handle non-convex constraints and nonlinear dynamics in
the OCP [17]. It also helps converge to the same locally
optimal solution given that external factors remain constant,
thus, improving the consistency in the overall performance
of the algorithm. In addition, if the initialization trajectory is
feasible, the OCP is guaranteed to find an optimal solution at
least as good as the sub-optimal initialization trajectory. In the
papers [18], [19], the authors present a similar concept where
a two-step optimization strategy is proposed for automatic ma-
neuvering of ships in cluttered environments. In this research,
the authors use a state lattice [20] to generate a resolution
optimal solution to a motion planning problem which is then
used to warm-start the receding-horizon optimization based
second step. However, this method could be less favorable
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having to pre-generate motion primitives to build the lattice
structure. In addition, the cost function formulation is different
and less concise to that of SB-MPC.

In addition, we require a method to find the navigable area
for the vessel that is free of collisions with riparian land and
other static obstacles. There are different approaches in the
literature, where some propose to include the static obstacle
avoidance as part of the objective function (for example using
Artificial Potential Fields (APF) [21]) while others propose to
use constraints [22]. We believe using constraints is a more
direct and natural representation of the avoidance requirement.
In authors’ previous publication [1], the concept of a cross-
track error corridor was proposed where, the edges of the
riparian land were used as constraints of the MPC. The
algorithm requires a path to generate the corridor where in
the paper, the path connecting two adjacent way points was
used. The obstacles that intersect with this path are considered
as other static obstacles despite being part of the riparian land.
The constraints for such obstacles were proposed to be derived
by assuming circular regions around the obstacle and the ship
(ship domain). Since this is not ideal in confined and complex
environments, there is a need to propose a method to produce
a better trajectory for the cross-track error corridor algorithm
to generate the constraints.

Hence, this research aims to address three primary research
objectives:

• Modifying/replacing non-smooth components of the SB-
MPC cost function with smooth ones to be able to use
a gradient-based optimization strategy. This will in turn
solve the resolution limitation problem discussed.

• Propose an initialization method to warm-start the
gradient-based optimization scheme.

• Develop a method to generate a trajectory that can be
used to generate the cross-track error corridor at each
time step.

To that extent, a novel autonomous navigation and collision
avoidance algorithm suitable for inland waterways is proposed.
From this point forward it will be called Smooth Scenario-
Based Model Predictive Control (Smooth-SBMPC).

II. OVERVIEW

This section aims to provide an overview of the methodol-
ogy of this research. The Smooth-SBMPC algorithm consists
of a two stage optimization strategy. At the first stage i.e.,
initialization stage, the SB-MPC algorithm [6] is used to derive
a collision free sub-optimal trajectory for the own ship. The
non-smooth components of the cost function in the original
SB-MPC will either be modified or replaced. At the next
stage, a Model Predictive Controller (MPC) will be employed
to generate the resolution sufficient solutions. The trajectory
from the initialization stage will be used for,

• Deriving local spatial constraints (cross-track error corri-
dor).

• Warm-starting the MPC.
The expected outputs from the MPC are modifications to
course and speed commands generated by a guidance con-
troller (similar to the original SB-MPC). Once, the modifi-
cations are applied, these commands can be directed to an
autopilot (the design of the autopilot is beyond the scope of
this research) to drive the steering and propulsion systems of
the vessel accordingly.

III. SB-MPC BACKGROUND

In this section, we present the SB-MPC [7] algorithm along
with its associated cost components utilized in this research.
The goal is to provide the reader with a comprehensive
understanding of the algorithm, serving as the groundwork
for the modifications discussed in the subsequent sections.

In SB-MPC, the input to the autopilot of the vessel is pa-
rameterized as a course command (χd) and a speed command
(Ud). The main objective of the algorithm is to calculate course
and speed modifications (χm and Um) that would aid the
vessel to avoid hazardous situations. These modifications are
selected from discretized solution sets where a minimum in a
typical implementation would look like the following:

• Course offset in degrees (χm): -90, -75, -60, -45, -30,
-15, 0, 15, 30, 45, 60, 75, 90.

• Speed modification factors (Um): 0, 0.5, 1
A combination of a course modification and a speed mod-

ification is defined as a control behavior k ∈ {1, 2, . . . , Ns}
where, Ns stands for the total number of control behaviors.
The two course and speed modification sets stated above leads
to a total of Ns = 13× 3 = 39 control behaviors.

To find the optimal course and speed modifications (χ∗
m and

U∗
m), each control behavior k is evaluated at discrete sample

times over the prediction horizon T using the discretization
interval Ts, as D (τ0) = {τ0, τ0 + Ts, . . . , τ0 + T}, where τ0
is the current time. The optimal control behavior k∗ which
minimizes the objective function defined in (1), gives the
optimal χ∗

m and U∗
m.

k∗ (τ0) = argmin
k

Hk(τ0) (1)

where,

Hk(τ0)

= max
i

max
τ∈D(τ0)

(Ck
i (τ)Rk

i (τ) + κiµ
k
i (τ) + λiT

k
i (τ))

+ Γ(Uk
m, χk

m)

(2)

The terms of the cost function in Equation (2) are defined
as follows,

• The cost associated with collision with obstacle i at time
τ in control behavior k, is Ck

i (τ), and the corresponding
collision risk factor is Rk

i (τ).
• The COLREGS rules violation cost is κiµ

k
i (τ), where

µk
i (τ) is a binary indicator of COLREGs rule violation

and κi is a positive tuning parameter.
• The COLREGS-transitional cost which penalize aban-

donment of a COLREGS compliant maneuver is denoted
by λiT

k
i (τ), where T k

i is a binary indicator and λi is a
positive tuning parameter.

• The cost of maneuvering effort associated with control
behavior k is given by Γ(Uk

m, χk
m).

A. Collision Cost
The collision cost associated with the ith obstacle if using

control behavior k at time τ can be calculated as,

Rk
i (τ) =

{
1

|τ−τ0|p

(
dsafe
i

dk
o,i(τ)

)q
, if dko,i(τ) ≤ dsafei

0, otherwise
(3)

and,
Ck

i (τ) = Kcoll
i

∣∣v⃗ko (τ)− v⃗ki (τ)
∣∣2 (4)
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where, τ0 is current time and τ > τ0 is the time of prediction.
The parameter dko,i(τ) is the predicted distance between own
ship and obstacle i at time τ in control behavior k. Typical
choices for the exponents q (>1) and p (>1/2) are q = 4
and p = 1. The parameters v⃗ko (τ) and v⃗ki (τ) represent the
predicted velocity of own ship and obstacle i at time τ in
control behavior k. Moreover, dsafei should take into account
COLREGS by ensuring sufficient safety distance to ships.

B. COLREGS Cost

The SB-MPC COLREGS cost has two factors, κi and
µk
i (τ), from which κi > 0 is a constant that can be used

as a tuning parameter and µk
i (τ) which gives a binary true

output if the the own ship violates COLREGS rules 14 or
15 with the obstacle i at time τ in control behavior k. The
variable µk

i (τ) can be defined as,

µk
i (τ) = RULE14 or RULE15 (5a)

RULE14 = CLOSE & STARBOARD

& HEAD −ON
(5b)

RULE15 = CLOSE & STARBOARD

& CROSSED

& NOT OV ERTAKEN

(5c)

where,
• the obstacle i is said to be CLOSE to own ship at time

τ in control behavior k if,

dko,i(τ) < dcli (6)

where, dcli is the smallest distance where the COLREGS
responsibility for stay away is considered to apply.

• the own ship is said to be OVERTAKEN by the obstacle
i at time τ in control behavior k if,

v⃗ko (τ) · v⃗ki (τ) > cos(67.5◦)
∣∣v⃗ko (τ)∣∣ ∣∣v⃗ki (τ)∣∣ (7a)

|v⃗ki (τ)|> |v⃗ko (τ)| (7b)

• the obstacle i is said to be STARBOARD of own ship at
time τ in control behavior k if,

bearing angle > heading angle of the own ship (8)

• the obstacle i is said to be HEAD-ON at time τ in control
behavior k if, ∣∣v⃗ko (τ)∣∣ is not close to zero (9a)

v⃗ko (τ) · v⃗ki (τ) < − cos(22.5◦)
∣∣v⃗ko (τ)∣∣ ∣∣v⃗ki (τ)∣∣ (9b)

v⃗ko (τ) · L⃗k
i (τ) > cos(ϕahead)

∣∣v⃗ko (τ)∣∣ (9c)

where L⃗k
i (τ) is a unit vector in the Line-of-sight (LOS)

direction from own ship to the obstacle with index i at
time τ in control behavior k. The parameter ϕahead can
be selected appropriately. In this implementation we have
set this to 67.5◦.

• the obstacle i is said to be CROSSED at time τ in control
behavior k if,

v⃗ko (τ) · v⃗ki (τ) < cos(67.5◦)
∣∣v⃗ko (τ)∣∣ ∣∣v⃗ki (τ)∣∣ (10)

C. COLREGS-transitional cost
First introduced in [7], the COLREGS-transitional cost pe-

nalizes control behaviors that abort one COLREGS-compliant
maneuver for another. It is formulated with the use of the
binary indicator T k

i ∈ {0, 1} as,

T k
i (τ) = Ok

i (τ) ∨Qk
i (τ) ∨Xk

i (τ) (11)

where, the binary indicators Ok
i (τ) = 1, Qk

i (τ) = 1 and
Xk

i (τ) = 1 indicate the type of situation (the own ship is
overtaking a vessel, the own ship is being overtaken and
crossing situation, respectively) at time τ , and that the control
behaviour k will at time τ cause the vessels to pass each
toher on the side opposite to what is predicted with the current
control behaviour.

D. Maneuvering Cost
The maneuvering cost can be calculated as,

Γ(Uk
m, χk

m) = kU (1− Uk
m) + kχχ

k
m

2
+∆U (U

k
m − Uk

m,last)

+ ∆χ(χ
k
m − χk

m,last)

(12)

where, ∆U and ∆χ are penalty functions that are zero at the
origin while kU (> 0) and kχ (> 0) are scalar tuning param-
eters. The parameters kχ and ∆χ are generally asymmetric
and give a higher penalty on course commands to port than
starboard, in compliance with COLREGS rules 14, 15 and 17.

IV. SHIP MODELING

In this section we introduce the internal prediction models
of the own ship and the target ships used for calculating the
state at the next time step.

A. Own ship model
For this research we have decided to adapt the kinematic

model used in [23] as,
xτ+δτ = xτ + Uτ cos (χτ )δτ

yτ+δτ = yτ + Uτ sin (χτ )δτ

χτ+δτ = χτ +
δτ

Tχ
(χinput,τ − χτ )

Uτ+δτ = Uτ +
δτ

TU
(Uinput,τ − Uτ )

(13)

which describes the own ship state, xτ = [xτ , yτ , χτ , Uτ ]
T at

time τ , that consists of East and North position in Cartesian
local coordinates, course over ground (COG), and speed over
ground (SOG). Tχ and TU are course and speed time constants.
The χinput,τ and Uinput,τ i.e., uτ are the course and speed
commands that serve as the inputs to the system at time τ .
The parameter δτ is the discretization interval.

B. Target ship model
Other vessels in the vicinity of the own ship are identified

as target ships. For these, we are using the Constant Velocity
Model (CVM) as follows,

(14)
xtarget
τ+δτ = xtarget

τ + U target
τ cos

(
χtarget
τ

)
δτ

ytargetτ+δτ = ytargetτ + U target
τ sin

(
χtarget
τ

)
δτ

where, xtargetτ = [xtarget
τ , ytargetτ , χtarget

τ , U target
τ ]T describes

the target ship state at time τ and the parameter δτ is the
discretization interval. Essentially, a straight-line trajectory is
assumed for the target vessels.
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V. MODIFIED SMOOTH-SBMPC COST

The objective of this section is to convert the non-smooth
cost components of the SBMPC cost function (2) so that it can
be optimized using a gradient optimization scheme. Different
strategies have been utilized for each cost component, which
will be explained separately in the following sub-sections. A
key tool used in these strategies is the sigmoid function defined
in (15).

σ(z) = a3 +
a4

1 + e−a2(z−a1)
(15)

where a1, a2, a3 and a4 are constants that can be utilized
to adjust the shape of the sigmoid function according to the
requirement.

A. Collision Cost
The collision cost component in (2), has a discontinuity in

its collision risk factor (3). Therefore, the equation is modified
by introducing the sigmoid function defined in (15) as,

(16)Modified collision cost⇒ σcoll(do,i(τ))Ci(τ)Ri(τ)

where,

Ri(τ) =
1

|τ − τ0|p

(
dsafei

do,i(τ)

)q

(17)

and,
Ci(τ) = Kcoll

i |v⃗o(τ)− v⃗i(τ)|2 (18)

The scaling parameters of σcoll can be denoted as a1 =
dsafei , a3 = 0, a4 = 1. The parameter a2 can be used to adjust
the slope of the curve. We note that the superscript k has been
removed in the above equations to denote that it is not limited
to a discretized set of control behaviors when evaluating the
respective cost.

B. COLREGS Cost
The original COLREGS cost component in (5) is formulated

using Boolean Logic, which results in a non-smooth cost
function. Therefore, we propose replacing Boolean Logic with
smooth Fuzzy Logic. The rest of the sub-section will explain
how the said cost component is modified/converted using a
Fuzzy Inference System (FIS). However, this section does not
repeat the theory of Fuzzy Logic and its implementation as
it is well documented in literature. Instead, the readers are
referred to articles such as [24], [25]. For each fuzzy expert
system explained here, standard Mamdani fuzzy inference [26]
is used to execute the designs.

Before delving into the FIS that replaces the binary logic
defined in (5) i.e., FIScolregs, two parameters need to be
defined. These are, the course angle difference (∆COGi(τ)),
and the Relative Bearing Angle (RBi(τ)) of the obstacle i
at time τ . These parameters can be represented as shown in
Figure 1.

Using ∆COGi(τ), the conditions stated in Equations (7a),
(9b) and (10) can be represented as shown in Figure 2. There-
fore, ∆COGi(τ) can be taken as an input to the FIScolregs

using the linguistic variable DeltaCOG. It consists three
membership functions to represent Overtaking (OT ), Crossing
(CR) and Head-on (HO). As illustrated in Figure 2, the input
to DeltaCOG range between [0, 180◦]. The crisp ranges of
OT (0◦−67.5◦), CR (67.5◦−157.5◦) and HO (157.5◦−180◦)
are extended by approximately 3◦, 5◦ and 5◦ respectively.
The Table I summarizes the details of the linguistic variable

Fig. 1: The figure depict the parameters ∆COGi(τ) and
RBi(τ). The parameter ABi is the actual bearing angle of
the obstacle i (red) relative to the own ship (blue).

Fig. 2: Different collisions situation identified in Equations
(7a),(9b) and (10) using ∆COGi(τ). The blue dot and the
arrow represent the own ship and its course direction while
red represent the target vessels.

DeltaCOG. In the table, the function type sigmf represent
Sigmoidal Membership Function while dsigmf represents the
difference between two Sigmoidal Functions, and the param-
eters a1, a2, a3, a4 are defined in Equation (15).

Label Type Parameters P
[a1, a2, a3, a4] (unit)

DeltaCOG
OT sigmf [67.5,−1.5317, 0, 1](◦)

CR dsigmf [67.5, 0.919, 0, 1](◦)
[157.5,−0.919, 0, 1](◦)

HO sigmf [157.5, 0.919, 0, 1](◦)

TABLE I: Definition of the linguistic variable DeltaCOG.

Using RBi(τ), the conditions stated in Equations (8) and
(9c) can be represented as shown in Figure 3. Therefore,
RBi(τ) is also taken as an input to the FIScolregs using the
linguistic variable RB. It consists of membership functions
to represent Starboard (SB) and Starboard Ahead (SBAH).
As illustrated in Figure 3, the input to RB range between
[−180◦, 180◦]. The crisp ranges of SB (0◦−180◦) and SBAH
(0◦ − 67.5◦) are extended by approximately 5◦. The Table II



5

Fig. 3: The conditions identified in Equations (8) and (9c)
using RBi(τ). The blue dot and the arrow represent the own
ship and its course direction while red represent a target vessel.

summarizes the details of the linguistic variable RB.

Label Type Parameters P
[a1, a2, a3, a4] (unit)

RB
SB sigmf [0, 0.919, 0, 1](◦)

SBAH dsigmf [0, 0.919, 0, 1](◦)
[67.5,−0.919, 0, 1](◦)

TABLE II: Definition of the linguistic variable RB

Finally, using do,i(τ) (the distance between own ship and
obstacle i at time τ ), the condition stated in Equation (6) can
be evaluated by taking it as an input to the FIScolregs using
the linguistic variable DCL. It contains one membership func-
tion Close (CL). The value for the parameter dcli (introduced
in Equation (6)) is taken as the crisp value and extended by a
constant value chosen depending on the size of the own ship.
A sigmf is used for the CL membership function, where it’s
parameters can be set according to the requirement.

The output of FIScolregs is represented by the linguistic
variable mu which ranges between [0, 1]. The output contains
two membership functions which have been summarized in
Table III.

Label Type Parameters P
[a1, a2, a3, a4]

mu
mutrue sigmf [0.95, 114.878, 0, 1]
mufalse sigmf [0, 05.− 114.878, 0, 1]

TABLE III: Definition of the linguistic variable mu

The graphical representation of the membership functions
of inputs and outputs of FIScolregs are depicted in Figure 4.

Finally, the rules of the FIS needs to be defined. As the
initial step, the different traffic situations in (5) i.e., CLOSE,
STARBOARD, HEAD-ON, CROSSED and OVERTAKEN
can be defined using the input membership functions of the
FIS as shown in Table IV.

Traffic Situation Linguistic Variable Membership Function
CLOSE DCL CL
STARBOARD RB SB

HEAD-ON DeltaCOG HO
RB SBAH

CROSSED DeltaCOG CR
OVERTAKEN DeltaCOG OT

TABLE IV: Definition of traffic situations in (5) using the
input membership functions of FIScolregs

Fig. 4: Graphical representation of the membership functions
of inputs and outputs of FIScolregs. (a) DeltaCOG (b) RB
(c) DCL (d) mu.

In (5b), both STARBOARD and HEAD-ON traffic situa-
tions are included. Referring to Table IV, it is evident that the
same linguistic variable RB appear for both traffic situations
with different membership functions namely, SB and SBAH .
However, when observing the graphical representation of RB
depicted in Figure 3, it is clear that RB in SB is redundant
when RB is in SBAH since the input range of SBAH
overlap with that of SB. In simpler terms, when the target
vessel is in the SBAH range it is already on the Starboard
side of the own ship. Therefore, the RULE14 defined in (5b)
can be redefined with the input membership functions of the
FIS as,

R1: If DeltaCOG is HO and RB is SBAH and
DCL is CL then mu is mu true

(19)

which can be considered the first rule of FIScolregs.
Similarly, in (5c), both CROSSED and OVERTAKEN traffic

situations are included. Referring to Table IV, it is evident that
the same linguistic variable DeltaCOG appear for both traffic
situations with different membership functions namely, CR
and OT . However, the condition in RULE15 is triggered when
the target vessel is not overtaking the own ship. By refering
to Figure 2, it becomes evident that due to the manner which
the linguistic variable DeltaCOG is defined, the condition
NOT OVERTAKEN becomes redundant when DeltaCOG is
in CR. Thus, the RULE15 can be redefined with the input
membership functions of the FIS as,

R2: If DeltaCOG is CR and RB is SB and
DCL is CL then mu is mu true

(20)

which can be considered the second rule of FIScolregs.
Additionally, due to the same reason, the speed condition for
OVERTAKEN defined in (7b) can be disregarded as well.

Lastly, the third and the final rule of the FIS can be derived
to drive the FIS output mu towards mufalse membership
function range when the above two conditions are not met
as,

R3: If RB is not SB and
DCL is not CL then mu is mu false

(21)
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Therefore, the entire boolean logic explained in Equation (5)
can be replaced by FIScolregs. If the defuzzified crisp output
of FIScolregs for obstacle i at time τ is represented by µi(τ),
the COLREGS cost component in (2) can be re-defined by
multiplying µi(τ) with the tuning parameter κi as,

Modified COLREGS cost⇒ κi · µi(τ) (22)

There are additional advantages of using a FIS for COL-
REGS evaluation such as (a) accounting for uncertainties in
measurements, and (b) ambiguity in COLREGS rules. The
majority of the crisp values used when designing the linguistic
variables are based on authors’ experience and information
from literature e.g. [27]. Therefore, they should not be taken as
convention. These values can be modified depending on your
system requirements and/or through surveys from experienced
seafarers.

C. Maneuvering Cost
The maneuvering cost component defined in (12) is also

modified by introducing the Sigmoid Function in (15). As
mentioned in Section III-D, the parameters kχ and ∆χ needs to
be asymmetric and penalise port side turns more compared to
starboard turns. Therefore, addition of two Sigmoid Functions
were used for each parameter as shown.

(23)Modified kχ ⇒ σport
kχ

(χm) + σstarboard
kχ

(χm)

where, the scaling parameters of σport
kχ

can be denoted as a1 =
tunable, a2 = tunable, a3 = lowerlimp, a4 = upperlimp,
while parameters of σstarboard

kχ
as a1 = tunable, a2 =

tunable, a3 = lowerlimsb, a4 = upperimsb. The ’s’ curve
represented by σport

kχ
gives the penalty value when χm in-

creases on the port side while σstarboard
kχ

gives that on the
starboard side. The parameters a1 and a2 of the two sigmoids
can be use to adjust the slope of the curves. The parameters
lowerlimp = lowerlimsb = 0 since the penalty should be
zero when χm = 0. The parameters satisfy upperlimp >
upperlimsb, since port side turns should be penalized more
than the starboard side turns. Similarly, for ∆χ,

(24)
Modified ∆χ ⇒ σport

∆χ
(χm − χm,last)

+ σstarboard
∆χ

(χm − χm,last)

where, the parameters a1, a2, a3, a4 of the two Sigmoid func-
tions are chosen accordingly. Finally, the modified maneuver-
ing cost can be denoted as,

(25)

Γ(Um, χm) = kU (1− Um)2

+ Modified kχ · χ2
m

+∆U (Um − Um,last)
2

+ Modified ∆χ · (χm − χm,last)
2

VI. INITIALIZATION STRATEGY

The initialization strategy utilizes the SBMPC algorithm
stated in Section III with the modifications proposed for its
cost components in Section V. The idea is to find a collision
free state trajectory Ψ(τ0) = {ξτ0 , ξτ0+T init

s
, . . . , ξτ0+T init}

where, T init and T init
s are prediction horizon and the dis-

cretization interval for the initialization stage. Following this
definition, a single trajectory point at time τ ∈ D(τ0) can be
denoted as ξτ = [xτ , yτ , χτ , Uτ ]

T , which represent the state

Algorithm 1: calcInitTraj()
Calculate the initialization trajectory
Data: current own ship state ξτ0 , current target ship

state ξtsτ0 , χm,last and Um,last at time τ = τ0.
Result: own ship trajectory Ψ(τ0) predicted over the

horizon T init at discretization intervals T init
s ,

starting from time τ = τ0.
Ψ(τ0)← add current own ship state ξτ0 ;
χinit
m,last = χm,last;

U init
m,last = Um,last;

ξτ = ξτ0 ;
ξtsτ = ξtsτ0 ;
τ = τ0;
while τ ≤ τ0 + T init do

χinit
d , U init

d ← using LOS guidance [28];
χinit
m , U init

m ←
calcOptCtrls(ξτ , ξ

ts
τ , χinit

d , U init
d , χinit

m,last, U
init
m,last);

χinit
m = χinit

m,last,U
init
m = U init

m,last;
χinit
c = χinit

d + χinit
m ;

U init
c = U init

d · U init
m ;

ξτ ← get the own ship state at τ + T init
s using

χinit
c and U init

c as inputs of Equation (13);
ξtsτ ← predict the target ship state at τ + T init

s
using Equation (14);
Ψ(τ0)← add current own ship state ξτ ;
τ ← τ + T init

s ;
end

vector of the vessel. Algorithm 1 describes how the trajectory
is calculated.

The function calcOptCtrls() is used to calculate the op-
timal control inputs (χ∗

m and U∗
m) at the time step τ using

the same exhaustive search method as the original SB-MPC.
The Algorithm 2 further explains the function. The following
finite sets of course (χm) and speed (Um) modifications are
considered in this process.

(26a)χ∗
m ∈ {−90,−75,−60,−45,−30,

−15, 0, 15, 30, 45, 60, 75, 90}
U∗
m ∈ {0.1, 0.5, 1} (26b)

In Algorithm 2, for every combination of χ∗
m and U∗

m
stated in (26), the trajectories of the own ship and target ships
(Ψ̄ and Ψ̄ts) are derived. When calculating the trajectory of
the own ship over the horizon T init, it is worth noting that
the corresponding course and speed modifications (χ∗

m, U∗
m)

are assumed to remain constant. Thus, the inputs of the
Equation (13) can be calculated as χinput,τ = χinit

d +χ∗
m and

Uinput,τ = U init
d ·U∗

m. Next, cost from the SB-MPC algorithm
and the length of the trajectory before the first collision point
(with a static obstacle i.e., grounding hazard) in the trajectory
is calculated (NTP ). Then, the NTP value is converted to a
cost component and added to sbmpc cost to penalize χ∗

m, U∗
m

combinations that result in shorter trajectories. This is achieved
by subtracting the NTP value from N init(= T init/T init

s ),
which can be the maximum possible length of a trajectory at
any given time, and multiplying the difference by a tuning
parameter kNTP

to scale the value before adding it to the
total cost. The purpose of this step is to penalize any control
behaviors that would drive the vessel towards static obstacles.
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To find NTP , all points in the own ship trajectory (Ψ̄) is
looped-over while a counter variable is incremented (starting
from zero) until a situation such as depicted in Figure 5 is
reached, in which case the loop is terminated and the final
value of the counter variable is taken as NTP . In the Figure 5,
the circular dashed-line marked around the ship is considered
a hazardous region and any object that breaches the limits of
this region is considered a collision with the vessel. In the
literature, several studies propose different cost functions to
address grounding hazards [8]. A shared characteristic among
these methods lies in the parameterization, specifically the
calculation of the distance to each static obstacle. However,
the utilization of this common parameter poses implementation
challenges. In contrast, our proposed method offers a more
simplified strategy. Notably, our approach is characterized by
its practicality and ease of parameter tuning. This advantage
comes from the automatic consideration of ship domain and
maneuvering capabilities when identifying collision situations,
as illustrated in Figure 5.

Fig. 5: The figure illustrates what is considered collision
situations when calculating NTP in Algorithm 2. The situation
on the left is showcasing a collision instance where the limits
of the hazardous region of the vessel is breached by the static
obstacle. The situation on the right showcases another such
instance where even though the limits of the hazardous region
is not breached by the static obstacle, the path connecting
the two trajectory points crosses a static obstacle region, thus
considered another collision situation.

VII. MPC
This section will describe the implementation of the MPC

controller for the vessel. Using (16), (22) and (25), the Discrete
time Optimal Control Problem (DOCP) at time τ0 can be
defined as (27).

minimizexτ ,um,τ

Jd =

Nts∑
i=1

τ0+Tmpc∑
τ=τ0

(σcoll(do,i(τ)) · Ci(τ) ·Ri(τ)

+ κi · µi(τ))

+

τ0+Tmpc∑
τ=τ0

Γ(um,τ )

s.t. xτ+Tmpc
s

= Fd(xτ ,uτ ),

x(τ0) = ξτ0 , x(τ0 + Tmpc) = ξτ0+Tmpc ,

− 90 ≤ χm,τ ≤ 90,

0.1 ≤ Um,τ ≤ 1,

hcorr(xposτ ) ≤ 0, ∀τ ∈ D(τ0)

(27)

where xτ , uτ and Fd are the states, control inputs and
the discrete vessel dynamics of the own ship defined in

Algorithm 2: calcOptCtrls()
Calculate the optimum control inputs (χ∗

m and U∗
m) at

the time step τ

Data: own ship state ξτ , target ship state ξtsτ ,
χinit
d ,U init

d ,χinit
m,last and U init

m,last at time step τ .
Result: The optimum control modifications χinit

m and
U init
m for the vessel at time step τ .

foreach χ∗
m in Equation (26a) do

foreach U∗
m in Equation (26b) do

Ψ̄← calculate the trajectory for own ship
using χ∗

m, U∗
m, χinit

d , U init
d and Equation (13)

over the horizon T init;
Ψ̄ts ← calculate the trajectory for own ship

using Equation (14) over the horizon T init;
NTP = calculate the number of trajectory
points before the first collision point;
sbmpc cost = solve Equation (1) using
Ψ̄, Ψ̄ts, χinit

m,last and U init
m,last;

total cost =
sbmpc cost+ kNTP

(N init −NTP );
cost matrix← [χ∗

m, U∗
m, total cost];

end
end
χinit
m ,U init

m ← χ∗
m, U∗

m that gives the lowest
total cost value in the cost matrix;

(13). The control inputs uτ i.e., χinput,τ and Uinput,τ are
calculated by applying control modifications um,τ i.e., χm,τ

and Um,τ to the desired control commands derived using a
LOS guidance controller. If the desired control commands
are defined as χd,τ and Ud,τ , the control inputs χinput,τ and
Uinput,τ can be calculated as, χinput,τ = χd,τ + χm,τ and
Uinput,τ = Ud,τ ·Um,τ . Furthermore, the parameter Nts denote
the number of target vessels while the parameters Tmpc

s and
Tmpc represent the sample time and the prediction horizon
respectively. The sample times T init

s and Tmpc
s should be

equal while T init > Tmpc. The initial and terminal conditions
for the vessel states are applied using the state trajectory Ψ(τ0)
derived in Algorithm 1. The terminal condition is the vessel
state at τ = τ0 + TMPC i.e., ξτ0+Tmpc . This is set to ensure
the vessel ends up at a collision free state found during the
initialization and is updated at every time step. The value range
of the decision variables χm,τ and Um,τ are set according
to the maximum and minimum of the finite sets of course
and speed modifications used for the initialization step as
defined in (26a)-(26b). An additional constraint, hcorr(xposτ )
is used to ensure that the vessel respect the cross-track error
corridor boundaries explained in Section VII-A. The constraint
is dependent on the variable xposτ that denotes the position
coordinates [xτ , yτ ] of the vessel state at τ . The DOCP is
solved repeatedly using the receding horizon approach while
using Ψ(τ0) to warm-start the solver. Furthermore, given the
feasibility of the initialization stage, the DOCP is assured to
discover an optimal solution that is at least as good as the
sub-optimal initialization trajectory.

A. Cross-track Error Corridor
The local spacial constraints hcorr(xposτ ), are also calculated

using the own ship trajectory derived from Algorithm 1.
The constraints are generated using the trajectory generated
during the initialization stage i.e., Ψ(τ0), as the reference
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trajectory to generate a cross-track error corridor; introduced
in authors’ previous work [1]. The idea is to define a corridor
region as the navigable area for the vessel trajectory over
a time horizon. As explained in Algorithm 2, the trajectory
Ψ(τ0) is free of collisions with static obstacles. Therefore,
by using Ψ(τ0) to generate the so called cross-track error
corridor, we essentially ensure that the constraints hcorr(xposτ )
eliminate grounding hazards. Hence, it is favourable to have
a larger T init as it would help take early action against
collision hazards with a relatively lower computational effort.
The algorithm to generate the cross-track error corridor is
explained in Algorithm 3,

Algorithm 3: Calculating cross-track error corridor
Data: Static obstacle polygon data G, the own ship

trajectory Ψ(τ0) calculated in Algorithm 1, and
maximum corridor width ∆d.

Result: Two arrays of points, g∆d+ and g∆d− that
mark the error corridor on either side of the
vessel

Nmpc = (Tmpc/Tmpc
s );

while i < Nmpc + 1 do
Pi ← ith vessel coordinate point in Ψ(τ0);
Pi+1 ← (i+ 1)th vessel coordinate point in Ψ(τ0);
Lperp ← perpendicular line to the line connecting
Pi and Pi+1;
P∆d+ ← point on Lperp at a +∆d distance along
the Lperp from the point Pi;
P∆d− ← point on Lperp at a −∆d distance along
the Lperp from the point Pi;
L∆d+ ← line connecting P∆d+ and the point Pi;
L∆d− ← line connecting P∆d− and the point Pi;
if L∆d+ intersect with G then

g∆d+ ← coordinate of the intersection point
else

g∆d+ ← P∆d+

end
if L∆d− intersect with G then

g∆d− ← coordinate of the intersection point
else

g∆d− ← P∆d−
end
i← i+ 1;

end

In Algorithm 3, the input G is obtained by defining the static
obstacles as two dimensional polygons. Since the own ship is
considered as a point object for the calculations in Algorithm
3, we offset that by adding a buffer of length equivalent to
the radial distance of a circular region around the vessel (a
breach in the limits of this circular region by a static obstacle
is considered a collision). The input, maximum clearance on
each side (∆d) is half of the total width of the corridor when
static obstacles aren’t present on either side of the vessel, and
can be defined based on the vessel dimensions. When obstacles
are present on either side of the vessel, the total clearance on
each side is less than ∆d. Finally, the outputs of the algorithm
(the two point arrays g∆d+ and g∆d−), can be used to derive
the hcorr(xposτ ) constraints as,

(28)hcorr(xposτ ) =

[
xposτ −max(g∆d+

j , g∆d−
j )

−(xposτ −min(g∆d+
j , g∆d−

j ))

]
where, j = 1, 2, . . . , Nmpc(= Tmpc/Tmpc

s ) for ∀τ ∈ D(τ0).

B. Fuzzy Logic Implementation
Building a smooth objective function in (27) for an NLP

solver is not straightforward due to the Fuzzy Logic compo-
nent µi(τ). In particular, there are two main stages in fuzzy
logic implementation that could result in non-smooth function
components, namely, inference stage and the defuzzification
stage. Let us first analyse the fuzzy inference stage. It is the
process of interpreting the fuzzified inputs as outputs accord-
ing to the user defined fuzzy inference rules, for example,
(19)-(21) of FIScolregs. In a typical implementation, the ’and’
and ’or’ statements in the rules are interpreted using standard
’min’ and ’max’ functions respectively. These can be defined
as,

max(z1, z2) =

{
z1, if z1 ≥ z2
z2, otherwise

(29a)

min(z1, z2) = −max(−z1,−z2) (29b)

where z1 and z2 are inputs.
However, equations in (29) are non-smooth functions.

Therefore, it is important to use a smooth variant of the ’max’
function when building the objective function. Different ’max’
function approximations can be found in literature such as
Mellowmax, p-Norm and Smooth Maximum Unit to name a
few. From these we have chosen the Smooth Maximum Unit
which is defined as,

maxε(z1, z2) =
z1 + z2 + |z1 − z2|ε

2

=
z1 + z2 +

√
(z1 − z2)2 + ε

2

(30)

where, ε ≥ 0 is a small pertubation. As ε → 0, |·|ε→ |·|
and thus maxε → max. Therefore, following the definition
in (29b), the smooth approximation of ’min’ function can be
defined as, minε(z1, z2) = −maxε(−z1,−z2).

After the inference stage, the resulting fuzzy set is converted
into a crisp value during the defuzzification stage. The Center
of Gravity (CoG) method is one of the most popular defuzzi-
fication methods [29] and is used in this research as it gave
the best results. For comprehensibility, consider a Single Input
Single Output (SISO) FIS as shown in Figure 6. The input has
been limited to two Triangular membership functions namely,
A and B for simplicity, and the output has been assigned
two Sigmoidal membership functions C and D similar to the
output mu in FIScolregs. The rules are stated as follows,

• R1: If Z is A then Y is C
• R2: If Z is B then Y is D

Fig. 6: A Single Input Single Ouput FIS example.

When following the CoG defuzzification method, calcula-
tion of y

′

1 and y
′

2 is required which is difficult and could
lead to discontinuities in the objective function (27). Hence,
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we propose scaling the output membership functions by mul-
tiplication of each membership function with the respective
inference values r1 and r2 (in Figure 6) as r1 ·σC and r2 ·σD

where, σC and σD represent membership functions C and D.
Next, these scaled membership functions can be directly used
for CoG calculation using an integral approximation method
such as rectangle approximation, eliminating the need of
calculating y

′

1 and y
′

2. The scaling process of the membership
function is further explained in Figure 7.

Fig. 7: The figure illustrates an example where the output
membership function is scaled for defuzzification. The Origi-
nal sigmf is the actual membership function D of output Y .
The inference value is 0.6 from the fuzzy rules r1 in Figure
6. The Scaled sigmf is the result of r2 · σD.

VIII. CONTROL SYSTEM ARCHITECTURE
This section intends to summarize the the entire collision

avoidance algorithm explained over the Sections VI and VII.
The Figure 8 depicts the flowchart of the process where the
optimum course and and speed modifications are determined
at each time step.

Initially, the Algorithm 1 is run to find the a sub-optimal
trajectory Ψ(τ0), that is free of collisions with static obstacles.
As explained in the Section VII, the prediction horizon of
the initialization stage (T init) is larger than that of the MPC
stage (TMPC), allowing the algorithm to look far ahead
with comparatively lower computational effort. Once Ψ(τ0)
is obtained, it is used to formulate the DOCP in (27). Firstly,
Ψ(τ0) is used directly by Algorithm 3, to generate the cross-
track error corridor which serves as constraints of the DOCP.
Secondly, the trajectory position of own ship at τ0 + TMPC

i.e., ξτ0+Tmpc is used as the terminal point and the trajectory
points from τ0 to τ0 + TMPC i.e., ξτ0 , · · · , ξτ0+Tmpc are used
to initialize the optimization variable xτ to warm-start the
MPC. The ξτ0+Tmpc value is also used by the LOS Guidance
controller to calculate the desired course and speed commands
(χd and Ud). Finally, the MPC solves the DOCP to obtain
the optimal control input modifications χm and Um. After
modifying χd and Ud values by χm and Um, the resulting
course and speed commands should be fed to an autopilot to
control the vessel.

IX. SIMULATION RESULTS
The Smooth-SBMPC algorithm is evaluated in a simulation

study. The algorithm is implemented on Matlab version 9.13.0
(R2022b) Update 3 running on a work station with Intel (R)
Core(TM) i7-10750H CPU with 32 GB RAM and an NVIDIA
RTX 2070 SUPER Mobile GPU. When generating simulation

Begin time step

Waypoints ξτ0 ξtsτ0 χm,last, Um,last

Algorithm 1

Algorithm 2

Ψ(τ0)

Algorithm 3 x(τ0 + Tmpc)
initialize

xτ

g∆d+,g∆d−

MPC

LOS Guidance
χm, Um

End time step

extract
ξτ0+Tmpc

extract
ξτ0 , · · · , ξτ0+Tmpc

Fig. 8: The collision avoidance control system flow chart

environments, two-dimensional polygons are used to represent
riparian land and other static obstacles. Matlab built-in API are
used for polygon manipulation and information extraction.

The study is designed as a comparative analysis. In Section
I, it was pointed out that deriving optimal control inputs from
a finite solution pool hinder the chances of adapting SB-
MPC for inland waterway navigation and collision avoidance.
Therefore, the Smooth-SBMPC algorithm is compared with
the original SB-MPC [7], and the objective of the comparison
is to investigate the benefit of higher accuracy in the control
space. As mentioned in the same section, one of the solutions
found in the literature for this problem is using a hybrid
control system architecture. Hence, we also compare Smooth-
SBMPC with the two-level hybrid control algorithm from our
prior research [1] to assess the significance of maintaining
consistent optimization constraints across all layers. During
the study, first, a simulation scenario i.e., static obstacles, own
ship way points, target ship trajectories etc. is defined and three
separate simulations were conducted changing the collision
avoidance algorithm of the own ship. Next, the obtained data
were analyzed and compared. We have repeated this process
for several simulation scenarios and have obtained similar
results. Thus, we have decided to present only one of those
simulation scenarios in this paper. Simulation 1-3 presented
in the subsequent sections all contain the same simulation
scenario while the own ship is equipped with a different
collision avoidance algorithm in each simulation.

Four snapshots of each said simulations are depicted in
the Figures 9, 11 and 13. Here, gray color areas mark static
obstacle polygons while white regions denote the water body.
The blue color is used to denote the own ship. The target
vessels are denoted using red, magenta, cyan and green colors.
The target vessels are considered as point objects while the
own ship is given a circular ship domain marked by the
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solid blue circle around the ship. The remaining two blue
colored dashed circles around the own ship represent dsafe

(see (3) for the definition) and dcl (see (6) for the definition)
parameters respectively. In addition, in Figures 10a, 12a and
14a, the Euclidean distance between each target vessel and the
own ship is plotted. The colors of the lines in these figures
correspond to the respective target vessel color in Figures 9,11
and 13. The course angle and speed commands of the own ship
in each simulation is plotted in Figures 10b, 12b and 14b.

A. Simulation 01
In this section we will be studying the original SB-MPC

algorithm [6]. The tuning parameter values of the SB-MPC
algorithm are set to be consistent with the corresponding
parameters in the Smooth-SBMPC algorithm. This consistency
ensures a standardized basis for comparison between the
two algorithms, facilitating a meaningful evaluation of their
respective performances. The results of the simulation are
shown in Figures 9 and 10.

B. Simulation 02
In this section we will be observing the the two-level

hybrid collision avoidance algorithm presented in [1]. The
algorithm consists of two layers where, the top layer is equiped
with an MPC controller which acts as a guidance controller
while respecting the assigned constraints for riparian land and
other static obstacles. On the bottom layer the original SB-
MPC is run with an additional cost component accounting
for the grounding cost. The bottom layer SB-MPC is solely
responsible for avoiding collisions with target vessels. Similar
to Simulation 01, the tuning parameter values of the bottom
layer SB-MPC algorithm are also set to be consistent with the
corresponding parameters in the Smooth-SBMPC algorithm.

The results of the simulation are shown in Figures 11 and
12. The land section that intersect with the path connecting the
two adjacent waypoints is considered a static obstacle. Thus,
a circular region is generated (beige colored circular region
marked in the Figure 11) as an approximation to derive the
constraints.

C. Simulation 03
In this section we will be observing the performance of the

Smooth-SBMPC algorithm presented in this paper. The results
of the simulation are shown in Figures 13 and 14.

D. Comparisons
1) Evaluation Framework: Several papers can be found in

literature with methods to validate different collision avoidance
algorithms. Among them, based on the initial work by [30], the
authors of [27] have developed an evaluation framework with
regards to safety and compliance with the COLREGS Rules
8(a, b), 13, 14, 15, 16 and 17, which from here on referred to as
EvalTool. The assessment is conducted on an encounter basis,
where an encounter is defined as the period when two vessels
assume a specific configuration of position, course, and speed
that triggers the application of one of the COLREGs rules. For
each encounter, the evaluation generates a single score (Ssit ∈
[0, 1]) per vessel, reflecting the vessel’s adherence to safety
measures and COLREGs compliance concerning the relevant
rules. This score is computed using metrics that characterize
the vessels’ trajectory throughout the encounter. Scores or

(a) t = 4s

(b) t = 24s

(c) t = 49s

(d) t = 76s

Fig. 9: Trajectories of each vessel during Simulation 01
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(a) Euclidean distance between each target ship
and own ship

(b) Course and speed commands of the own ship

Fig. 10: Additional information of Simulation 01. In (a), each
colored-line corresponds to the respective colored vessel in
Figure 9.

penalties are assigned to the behavioral traits represented by
these metrics based on whether the behavior aligns with or
deviates from the prescribed rules. These individual scores and
penalties are then aggregated to establish the overall encounter
score for the vessel. An overview of the scores and penalties
employed in the EvalTool can be found in APPENDIX II. In
addition, the readers are referred to the original paper [27] for
detailed information. While the suggested framework exhibits
considerable potential, it is crucial to recognize that it is not
exhaustive in addressing all aspects. This is evident in its
limitations, such as not considering the overall quality of the
trajectory and being restricted to accounting for single-ship
encounters.

Hence, we first use the EvalTool to obtain a primary valida-
tion for the three algorithms in terms of safety and COLREGs
compliance. Each target ship encounter is compared over the
three simulations for comparison. In the study by Hagen et al.
[27], a default set of tuning parameter values for the EvalTool
is introduced. It’s important to note that these values are ini-
tially proposed for larger vessels executing collision avoidance
maneuvers in open waters. However, our research focuses
exclusively on smaller inland vessels operating in confined
environments. Consequently, apart from the parameter values
explicitly outlined in Table V, all other values have been
adopted without alteration for the purposes of this simulation
study. Furthermore, these parameter values have been kept
equal for all simulations.

The evaluation results from EvalTool for each target vessel
are presented in Tables VI, VII, VIII and IX. For every target

(a) t = 5s

(b) t = 24s

(c) t = 50s

(d) t = 73s

Fig. 11: Trajectories of each vessel during Simulation 02
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(a) Euclidean distance between each target ship
and own ship

(b) Course and speed commands of the own ship

Fig. 12: Additional information of Simulation 02. In (a), each
colored-line corresponds to the respective colored vessel in
Figure 11.

Parameter Value Unit
rStage2 80 m
rStage3 45 m
rStage4 16 m
rpref 7 m
rmin 6 m
rnm 5 m
rcol 4 m
ϵU 0.2 m/s
∆χap 13 deg
∆χmd 1 deg
∆Urel

ap 0.2 m/s

∆Urel
md 0.1 m/s

TABLE V: EvalTool adjustable parameter values changed
from that of the default values presented in [27].

vessel, Simulation 3 has scored the highest score closely
followed by Simulation 2 while Simulation 1 having the
lowest scores. From the four target vessels, the own ship has
fared poorly against the Magenta colored vessel in all three
simulations. This observation can be illustrated using Figures
9c, 11c, and 13c, which depict corresponding instances in
each simulation involving the Magenta-colored target vessel.
Subsequently, the own ship adjusts its maneuvering not only to
avoid collision with the Magenta-colored vessel but also with
the Cyan-colored vessel. However, the EvalTool is designed
only for evaluating single-ship encounters, thus, unable to
compensate for maneuvers related to other target vessels that
needs a simultaneous reaction. The EvalTool recognizes the
encounter with the Magenta-colored vessel as a ’crossing
stand-on’ (based on COLREGs rule 15 and 17) situation.
In such scenarios, the own ship is expected to maintain its

(a) t = 5s
johansen˙ship˙2016

(b) t = 22s

(c) t = 52s

(d) t = 72s

Fig. 13: Trajectories of each vessel during Simulation 03
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(a) Euclidean distance between each target ship
and own ship

(b) Course and speed commands of the own ship

Fig. 14: Additional information of Simulation 03. In (a), each
colored-line corresponds to the respective colored vessel in
Figure 13.

course and speed until it becomes evident that the give-
way vessel (the Magenta-colored vessel, in this case) fails to
take appropriate action. Consequently, the own-ship’s reaction
to avoid collision with the Cyan-colored vessel is penalized
when evaluating the Magenta-colored vessel. Hence the overall
lower score from all three algorithms.

Simulation 01 Simulation 02 Simulation 03

C
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Crossing give-way Head-on Crossing give-way

Sc
or

es
an

d
Pe

na
lti

es

-S15: 0.34564
–Pah15: 0
–S16: 0.34564
—Ssafety : 0.96321
—-SΘ: 0.75188
—-Sr : 0.85174
—Pdelay : 0.64116
—P¬ap

∆ : 0
—-P¬ap

∆χ
: 0

—-P¬ap
∆U

: 0

-S14: 0.955
–Pnsb: 0
–Psts: 0.075006
–P¬ap

∆χ
: 0

–Pdelay : 0

-S15: 1
–Pah15: 0
–S16: 1
—Ssafety : 1
—-SΘ: 0.89363
—-Sr : 1
—Pdelay : 0
—P¬ap

∆ : 0
—-P¬ap

∆χ
: 0

—-P¬ap
∆U

: 0

TABLE VI: Results of the EvalTool for the Red colored target
vessel in Simulation 1-3.

Another essential factor in assessing the safety of a collision
avoidance algorithm is the grounding clearance, which refers
to the distance between the vessel and the shore throughout
its trajectory. While all three algorithms examined in the study
managed to prevent grounding hazards during navigation,

Simulation 01 Simulation 02 Simulation 03
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Crossing stand-on Crossing stand-on Crossing stand-on

Sc
or

es
an

d
Pe

na
lti

es

–S15: 0.09
–Ssafety : 1
—SΘ: 0.91321
—Sr : 1
–S17: 0.09
—Ppt: 0
—P2: 0.7
—-P2,∆χ: 1
—-P2,∆U↑: 0
—-P2,∆U↓: 0
—-C2,gw: 0.2
—P3: 0.7
—-P3,∆χ: 1
—-P3,∆U↑: 0
—-P3,∆U↓: 0
—-C3,gw: 0.2

–S15: 0.24
–Ssafety : 1
—SΘ: 0.88079
—Sr : 1
–S17: 0.24
—Ppt: 0
—P2: 0.2
—-P2,∆χ: 0
—-P2,∆U↑: 0
—-P2,∆U↓: 0
—-C2,gw: 0.2
—P3: 0.7
—-P3,∆χ: 1
—-P3,∆U↑: 0
—-P3,∆U↓: 0
—-C3,gw: 0.2

-S15: 0.30291
–Ssafety : 1
—SΘ: 0.9627
—Sr : 1
–S17: 0.30291
—Ppt: 0
—P2: 0.53154
—-P2,∆χ: 0.66308
—-P2,∆U↑: 0
—-P2,∆U↓: 0
—-C2,gw: 0.2
—P3: 0.35339
—-P3,∆χ: 0.30679
—-P3,∆U↑: 0
—-P3,∆U↓: 0
—-C3,gw: 0.2

TABLE VII: Results of the EvalTool for the Magenta coloured
target vessel in Simulation 1-3.
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Head-on Crossing give-way Crossing give-way
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-S14: 0.70719
–Pnsb: 0
–Psts: 0.086949
–P¬ap

∆χ
: 0

–Pdelay : 0.25389

-S15: 1
–Pah15: 0
–S16: 1
—Ssafety : 1
—-SΘ: 0.95141
—-Sr : 1
—Pdelay : 0
—P¬ap

∆ : 0
—-P¬ap

∆χ
: 0

—-P¬ap
∆U

: 0

-S15: 1
–Pah15: 0
–S16: 1
—Ssafety : 1
—-SΘ: 1
—-Sr : 1
—Pdelay : 0
—P¬ap

∆ : 0
—-P¬ap

∆χ
: 0

—-P¬ap
∆U

: 0

TABLE VIII: Results of the EvalTool for the Cyan coloured
target vessel in Simulation 1-3.

it is imperative to evaluate the effectiveness of this hazard
avoidance. Such evaluation serves as evidence of the benefits
derived from increased resolution in the control space. Hence,
the shortest distance from the vessel to the shore was calcu-
lated for each simulation, resulting in values of 5.86 meters
for simulation 1, 9.45 meters for simulation 2, and 9.46 meters
for simulation 3. As expected, Smooth-SBMPC algorithm has
the highest ground clearance out of the three algorithms.

2) Trajectories: While it is essential to evaluate safety
and compliance with COLREGs rules for a comprehensive
assessment of the three algorithms, the advantages of increased
resolution in the control space become more apparent in the
overall quality of trajectories. A side-by-side comparison of
the trajectories followed by the own ship across the three
simulations proves valuable in assessing the overall trajec-
tory quality produced by each algorithm. Figure 15 clearly
illustrates that Smooth-SBMPC yields a significantly smoother
path compared to the other two algorithms.

Furthermore, the trajectory in Simulation 3 can be con-
sidered the expected behaviour if a manned-vessel encounter
a similar collision scenario. This is evident in its ability to
navigate between the two way-points without substantial alter-
ations to course and speed. In contrast to the EvalTool, which
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Simulation 01 Simulation 02 Simulation 03
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Overtaking
give-way

Overtaking
give-way

Overtaking
give-way

Sc
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-S13: 1
–Pah13: 0
–S16: 1
—Ssafety : 1
—-SΘ: 0.55148
—-Sr : 1
—Pdelay : 0
—P¬ap

∆ : 0
—-P¬ap

∆χ
: 0

—-P¬ap
∆U

: 0

-S13: 1
–Pah13: 0
–S16: 1
—Ssafety : 1
—-SΘ: 0.54698
—-Sr : 1
—Pdelay : 0
—P¬ap

∆ : 0
—-P¬ap

∆χ
: 0

—-P¬ap
∆U

: 0

-S13: 1
–Pah13: 0
–S16: 1
—Ssafety : 1
—-SΘ: 0.31925
—-Sr : 1
—Pdelay : 0
—P¬ap

∆ : 0
—-P¬ap

∆χ
: 0

—-P¬ap
∆U

: 0

TABLE IX: Results of the EvalTool for the Green coloured
target vessel in Simulation 1-3.

Fig. 15: Trajectories of the own ship from simulation 1-3 are
plotted in the same graph.

is commonly employed for safety and COLREGS compliance
evaluation, there is a limited body of research dedicated to
numerically assessing the performance of collision avoidance
algorithms in terms of quality and their resemblance to manned
vessels in similar collision scenarios. However, certain papers
primarily focused on safety and collision risk assessment
propose straightforward equations for evaluating trajectory
fitness [31], [32]. While these equations have limitations when
used independently for our comparison, they share a common
parameterization approach for the task. Namely, path length
and voyage time. Hence, the path length and voyage time
for each simulation have been extracted and are presented
in Table X. As anticipated, the Smooth-SBMPC algorithm
exhibits the shortest path length, indicative of the smoothness
of its trajectory.

Simulation Distance (m) Time (s)
1 166.3 172
2 169.2 176
3 165.6 174

TABLE X: Total distance travelled by the own ship in each
simulation and the respective time spent.

3) Course and speed changes: Another useful data when
contemplating the advantage of increased control space is the
course angle and speed changes throughout the trajectory.
Figure 16a depict the course angle variations of the own ship
over the simulation period for all three simulations, while

(a) Course Angle (χ)

(b) Speed (U )

Fig. 16: Course Angle (χ) and Speed (U ) of the own ship for
over the duration of each simulation for Simulation 1,2 and 3.

Figure 16b demonstrate the corresponding variations in speed.

The Figure 16 illustrates that in Simulation 3, successive al-
terations in course and speed tend to be more modest compared
to the other two simulations. Quantitatively, the course values
exhibit ranges: 59◦− 165◦, 53◦− 155◦, and 55◦− 153◦ while
speed values exhibit ranges: 0.37− 0.99ms−1, 0.48− 1ms−1

and 0.48−0.99ms−1 for simulations 1-3, respectively. More-
over, the average rate of absolute course change, representing
the average magnitude by which the course angle of a vessel
changes over a specific time frame, was determined to be 2.43,
2.04, and 1.53 degrees per second for simulations 1, 2, and
3, respectively. These observations serve as a testament to the
smoothness achieved by the Smooth-SBMPC algorithm.

X. CONCLUSIONS

A novel collision avoidance control algorithm for ships,
Smooth-SBMPC (Smooth Scenario-Based Model Predictive
Control), has been developed to address the resolution limita-
tion of solutions derived from the discretized set of solutions in
the original SBMPC algorithm [6]. Smooth-SBMPC modifies
and replaces non-smooth cost components in the fitness func-
tion used in the SBMPC, enabling the derivation of optimal
solutions through derivative-based optimization.

The algorithm employs a two-stage optimization process.
First, the original SBMPC generates a sub-optimal solution
trajectory, which is then used to warm-start the MPC controller
in the subsequent optimization stage. Additionally, this trajec-
tory is utilized to derive local spatial constraints, effectively
avoiding grounding hazards. The algorithm’s efficacy has been
verified through a comparative simulation study, where it
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was compared with two other algorithms, including the orig-
inal SBMPC. Results from the simulation study suggest that
Smooth-SBMPC addresses the research objectives outlined
in Section II. Future work may delve into improving the
efficiency of the algorithm.

APPENDIX I
Below you can find the main rules of COLREGS [2]

associated with collision avoidance, cited from [6],
• Rule 6—Safe speed: The following should be considered:

Visibility, traffic density, stopping distance and turning.
• Rule 8—Actions to avoid collision. Actions shall be made

in ample time. If there is sufficient sea-room, alteration
of course alone may be most effective. Safe distance
required. Reduce speed, stop or reverse if necessary.
Action by the ship is required if there is risk of collision,
also when the ship has right-of-way.

• Rule 13—Overtaking. Any vessel overtaking any other
shall keep out of the way of the vessel being overtaken.
A vessel shall be deemed to be overtaking when coming
up with another vessel from a direction more than 22.5
degrees abaft her beam.

• Rule 14—Head-on situation. When two power-driven
vessels are meeting on nearly reciprocal courses so as to
involve risk for collision, then alter course to starboard
so that each pass on the port side of each other.

• Rule 15—Crossing situation. When two power-driven
vessels are crossing so as to involve risk of collision,
the vessel which has the other on her own starboard side
shall keep out of the way.

• Rule 16—Actions by give-way vessel. Take early and
substantial action to keep well clear.

• Rule 17—Actions by stand-on vessel. Keep course and
speed (be predictable) if possible. If it is necessary to take
action, then the ship should try to avoid altering course
to port for a vessel on her own port side.

• Rule 18—Responsibilities between vessels. Except for
Rules 9, 10, and 13, a power-driven vessel shall keep
out of the way of: a vessel not under command, a vessel
restricted in her ability to maneuver, a vessel engaged in
fishing, and a sailing vessel.

• Rule 19—Conduct of vessels in restricted visibility. Avoid
alteration of course to port for a vessel forward of the
beam, and avoid alteration of course towards a vessel
abeam or abaft the beam, if possible.

APPENDIX II
In Table XI you can find the scores and penalties employed

by the EvalTool cited from [27]. In the table, the term ’CPA’
stands for Closest Point of Approach, i.e., the point when the
range between vessels is at its smallest. Moreover, the term
’stage’ is employed to differentiate specific ranges of distance
values between the target ship and the own ship. The definition
of each stage is as follows:

• Stage 1: Includes vessels that have been identified but are
situated at a distance where no actions need to be taken.

• Stage 2: The nature of the encounter needs to be deter-
mined, and considerations for evasive maneuvers must be
made.

• Stage 3: At this stage, the stand-on vessel has the option
to take measures to prevent a collision.

• Stage 4: In this stage, the stand-on vessel is obligated to
take measures to prevent a collision.

Parameter Value
S13 Score for overtaking situation.
S14 Score for head-on situation.
S15 Score for crossing situation.
S16 Total score for give-way behavior.
S17 Total score for stand-on behavior.
Ssafety Score for pose and range safety at CPA.
Sr Score for range safety at CPA.
SΘ Score for pose safety at CPA.
Sα Score for contact angle safety at CPA.
Sβ Score for relative bearing safety at CPA.
Ss2 Score for stand-on behavior during Stage 2.
Ss3 Score for stand-on behavior during Stage 3.
Spt Score for stand-on behavior during Stage 4.
S∆U↑ Penalty on speed increase by stand-on vessel.
S∆U↓ Penalty on speed decrease by stand-on vessel.
Sdelay Penalty delayed action by give-way vessel.
Snsb Penalty on making a non-starboard turn in head-on situa-

tions.
Ssts Penalty on starboard-to-starboard passing in head-on situa-

tions.
Sap
∆ Score for apparentness of maneuver by give-way vessel.

Sap
∆χ Score for apparentness of course change by give-way vessel.

Sap
∆U Score for apparentness of speed change by give-way vessel.

Sah13 Penalty on the give-way vessel crossing ahead of the stand-
on vessel in overtaking situations.

Sah15 Penalty on the give-way vessel crossing ahead of the stand-
on vessel in crossing situations.

TABLE XI: Scores and penalties employed in EvalTool
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