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Abstract

The capability for robotic systems to rearrange objects based on human instructions represents a critical step towards realizing

embodied intelligence. Recently, diffusion-based learning has shown significant advancements in the field of data generation

while prompt-based learning has proven effective in formulating robot manipulation strategies. However, prior solutions for

robotic rearrangement have overlooked the significance of integrating human preferences and optimizing for rearrangement

efficiency. Additionally, traditional prompt-based approaches struggle with complex, semantically meaningful rearrangement

tasks without pre-defined target states for objects. To address these challenges, our work first introduces a comprehensive 2D

tabletop rearrangement dataset, utilizing a physical simulator to capture inter-object relationships and semantic configurations.

Then we present DreamArrangement, a novel language-conditioned object rearrangement scheme, consisting of two primary

processes: employing a transformer-based multi-modal denoising diffusion model to envisage the desired arrangement of objects,

and leveraging a vision-language foundational model to derive actionable policies from text, alongside initial and target visual

information. In particular, we introduce an efficiency-oriented learning strategy to minimize the average motion distance

of objects. Given few-shot instruction examples, the learned policy from our synthetic dataset can be transferred to the

real world without extra human intervention. Extensive simulations validate DreamArrangement’s superior rearrangement

quality and efficiency. Moreover, real-world robotic experiments confirm that our method can adeptly execute a range of

challenging, language-conditioned, and long-horizon tasks with a singular model. The demonstration video can be found at

https://youtu.be/fq25-DjrbQE.
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Abstract—The capability for robotic systems to rearrange
objects based on human instructions represents a critical step
towards realizing embodied intelligence. Recently, diffusion-
based learning has shown significant advancements in the field
of data generation while prompt-based learning has proven
effective in formulating robot manipulation strategies. However,
prior solutions for robotic rearrangement have overlooked the
significance of integrating human preferences and optimizing
for rearrangement efficiency. Additionally, traditional prompt-
based approaches struggle with complex, semantically meaning-
ful rearrangement tasks without pre-defined target states for
objects. To address these challenges, our work first introduces
a comprehensive 2D tabletop rearrangement dataset, utilizing
a physical simulator to capture inter-object relationships and
semantic configurations. Then we present DreamArrangement, a
novel language-conditioned object rearrangement scheme, con-
sisting of two primary processes: employing a transformer-
based multi-modal denoising diffusion model to envisage the
desired arrangement of objects, and leveraging a vision-language
foundational model to derive actionable policies from text,
alongside initial and target visual information. In particular, we
introduce an efficiency-oriented learning strategy to minimize the
average motion distance of objects. Given few-shot instruction
examples, the learned policy from our synthetic dataset can be
transferred to the real world without extra human intervention.
Extensive simulations validate DreamArrangement’s superior re-
arrangement quality and efficiency. Moreover, real-world robotic
experiments confirm that our method can adeptly execute a
range of challenging, language-conditioned, and long-horizon
tasks with a singular model. The demonstration video can be
found at https://youtu.be/fq25-DjrbQE.

Index Terms—Robotic rearrangement, Denoising diffusion,
Prompt-based learning, Vision-language model.

I. INTRODUCTION

FROM the perspective of embodied intelligence, how can
we empower the household robots with the capability to

discern how and where they should rearrange messy tabletop
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objects especially involving ambiguous human instructions?
Comprehensive reasoning and planning across diverse con-
straints from object geometry, language-conditioned tasks,
collision physics, and human preference, pose a significant
challenge for autonomous robots operating within varied and
unstructured household scenarios, such as automated packag-
ing and sorting in warehouses, kitchen cleaning, and complex
assembly tasks in manufacturing. In this work, we study this
challenge by introducing human-like imagination and planning
ability to the robots in the context of human instructions and
prior observations.

Robotic rearrangement can be defined as a canonical task:
given a previously unseen environment, the robot needs to re-
arrange each object into an appropriate pose to form a specified
structure following human preference. This paradigm can also
encompass a diverse array of activities, such as making a bed,
ironing clothes, and cleaning a room. However, we specifically
concentrate on investigating tabletop object arrangements,
considering this challenging but tractable [1]. Recently, some
approaches that leverage large language models (LLMs) have
demonstrated a strong generalization for robots to understand
complex semantic contexts and generate long-horizon planning
for tabletop arrangement task [2]–[4]. However, the goal states
of different objects still need to be manually specified in the
prompt instructions. Furthermore, to estimate the target states
of objects intelligently, some generative work based on VAE
[5] and diffusion models [6], [7] has been proposed to endow
the robot with human-like imagination, hopefully generating
and refining the distribution of object poses. For instance, [6]
proposes to utilize DALL-E, a web-scale artificial intelligence-
generated content (AIGC) model, to generate a target image
that implicitly incorporates various objects the robot observes.
Nevertheless, the exclusive reliance on textual input for image
generation has proven to be notably unstable and inefficient
in real-world robot manipulation, primarily due to the neglect
of crucial observational cues. Inspired by this prior work,
building a model that conducts observation reasoning first and
then imagines goal states intuitively via language is a crucial
step towards autonomous robotic rearrangement.

On the other hand, considering functional and stylistic
inter-object relationships emerges as a critical dimension for
real-world robotic rearrangement [8]. For a given “messy”
scenario, a “clean” arrangement should not be deterministic
because there exists a plurality of desirable layouts from
different human preferences. Thus, beyond the initial phase

https://youtu.be/fq25-DjrbQE
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Rearrange the objects into 
the container, please.

Human
There is a bottle, an apple, and a cracker box on the table. I see 
the container is a plate. I will imagine a proper target layout.

AgentRobot Observations:

VLM planner

Input Scene
t = 0

Generated Policy:
#Get input messy layouts and target layouts with bounding box 
from our previous step
objs, masks, target_masks= GetObsVLM(input, prompt)
#Robot execution
app_pos = Pix2Pos(masks, obj=”apple”)
target_app_pos = Pix2Pos(target_masks, obj=”apple”)
action = PickAndPlace(pick=app_pos, place=target_app_pos)

Robot Rearrangement

t = T/2 t = T
Dreaming Process

Fig. 1. Overview of the proposed scheme on the robotic rearrangement task when the multi-object structure setting is containing.

of estimating the goal poses of objects, the subsequent phase
involves reorganizing the global layout of rearranged objects
to align with human preferences, often communicated through
language instructions. Moreover, to improve the real-world
rearrangement efficiency, we also need to reduce the duration
cost of the long-horizon manipulation by considering the
motion distance of each object as much as possible. De-
spite notable advancements in learning-based scene synthesis
and robotic rearrangement methods [7]–[10], there remains
a challenge to meet diverse desiderata in real human-robot
cooperation environments.

In this paper, we design a novel robotic arrangement scheme
to solve the aforementioned flaws and maximize versatility and
adaptivity, where the robot can rearrange objects in different
goal poses and structures via language instructions without
extra manual intervention. Specifically, we first construct a
kitchen-based tabletop arrangement dataset consisting of four
different global structures - horizontal, vertical, circle, and
containing, and two local regularities - symmetry and uniform,
where 22-class objects with different shape scales and texture
materials are selected. Given that the input is a messy scene
with human language instructions, we propose a transformer-
based multi-modal denoising diffusion framework to estimate
the goal states of objects by implicitly reasoning multi-object
semantic relations.

Furthermore, we treat the planning problem of robotic
rearrangement as a long-horizon estimation task by utiliz-
ing a frozen vision-language model (VLM) like GPT-4 to
bridge connections between language text, visual perception,
and robotic action. When prompted with several examples
followed by the corresponding rearrangement policy, VLM
planners can take in new language instructions and semantic
contexts from initial “messy” scenes and predicted “clean”
scenes, autonomously generating a new robotic arrangement
policy. An example of the whole human-robot arrangement
process of the containing structure can be visualized in Fig. 1.
It describes a task scene in which a household robot needs
to place all objects on the table into a container like a
plate or box without causing objects collision and penetration.
Finally, the proposed scheme is evaluated in both simulation
and real robot experiments and compared with several state-
of-the-art baselines, demonstrating that it can achieve better
rearrangement quality and efficiency for different structure-

based rearrangement tasks. The contributions of this paper are
described as follows:

1) Considering the differentiated requirements of inter-
object relationships and human preference in the robotic
rearrangement task, we construct a 2D kitchen rearrangement
dataset consisting of a variety of household object scenes with
different global structures and local regularities.

2) To generate a high-quality rearranged scene, we propose
a transformer-based multi-modal denoising diffusion model,
which can effectively reason semantic and geometric relations
from diverse objects, and explicitly predict the goal states of
objects instructed by contextualized language representation.

3) To obtain the optimal layout in the real world, we propose
an efficiency-oriented rearrangement learning strategy, which
pursues a minimal average motion distance of objects.

4) Inspired by prompt-based learning, we integrate the
generative model with VLMs to formulate a VLM planner,
which outputs robot action policies in different arrangement
tasks and can be directly deployed into a physical robot.

This paper is organized in the following manner: Sec. II
provides a review of literature relevant to our study. The
problem we aim to address is detailed in Sec. III. Secs. IV
and V discuss our approach and the experimental validation,
respectively. The paper is concluded in Section VI.

II. RELATED WORKS

A. Language-based Robotic Manipulation

Language is a flexible and instinctive medium, enabling hu-
mans to specify tasks, communicate contextual details, and ex-
press their intentions. Much work about language-conditioned
robot manipulations has been proposed to control a robot
by generating low-level policies via reinforcement learning
(RL) or imitation learning (IL) [11]–[14]. [15] proposes using
language as abstract representations of hierarchical RL frame-
work, demonstrating that the agent can learn compositional
tasks like object sorting and multi-object arrangement in a
simulation environment. Furthermore, [16] designs a novel
RL agent that directly maps language instructions and raw
visual input to generate a sequence of actions without requiring
intermediate representations and planning procedures. How-
ever, language-conditioned RL methods are difficult to deploy
into real physical robots due to the challenge of learning the
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relationship between language and multimodal sensor data
in the unstructured robot environment. To further improve
learning efficiency, other researchers adopt the language-
conditioned IL approaches, where agents are trained to per-
form tasks by mimicking the actions demonstrated by a human
expert. Focusing on the containing task, [17] first proposes a
language-conditioned visuomotor policy utilizing unstructured
and unlabeled data collected from a teleoperated robot in a
physics simulator. [18] further integrates the low-level motion
controller into the language-conditioned learning framework.
Both test results indicate that the robot can hopefully ac-
complish long-horizon tasks in the simulation environment.
However, these IL-based methods require a large and diverse
set of high-quality demonstration data. Acquiring such data on
actual robots is a process that demands considerable time and
resources. Contrary to prior efforts in language-conditioned
research, our work emphasizes the utilization of language
instructions to steer the denoising diffusion process, where
the target states of objects will be estimated and used for the
subsequent robot planning.

B. Large Foundation Models in Robotics

Recently, large foundation models based on language
and vision have become a dominant paradigm in solving
long-horizon robotic manipulation tasks [2], [19]–[22]. They
demonstrate strong few-shot or zero-shot reasoning ability to
any text or vision input through just prompting by human
instructions [23]. SayCan [20] uses a large language model
(LLM) to perform various tasks, where language objectives
are destructed into a hierarchical sequence of instructions.
These instructions are subsequently fed into skill-oriented
value functions and search heuristics to obtain optimal action
sequences. Informed by multimodal prompting, Socratic Mod-
els [21] exhibits a modular framework to capture multimodal
information and leverage LLMs to achieve zero-shot robotic
perception and planning. Furthermore, Code-as-Policies [2]
adopts the LLMs to generate a policy code of robot action,
showing LLMs have a strong programming ability in con-
trolling robots by recomposing perception and controller API
functions. Utilizing the capability to generate codes, [22] uses
LLMs to integrate 3D value maps into the robotic observation
space after inferring affordances and constraints from language
instructions, which produces low-level control on the contact-
rich manipulation tasks successfully. Nevertheless, the final
goal states of each robot task from previous work on LLMs
remain predominantly predefined, relying on human expertise
or demonstrative guidance encapsulated within the prompt
instructions. In contrast, our work adopts the diffusion model
to make the robot imagine an appropriate rearranged layout
from different objects autonomously. This conceptualization
is subsequently incorporated as a visual cue within the VLMs
module to facilitate the generation of robotic policy code.

C. Diffusion Models

In the computer vision field, diffusion models have risen to
prominence as leading generators of data, distinguished by
their ability to accurately model complex distributions and

generate a diverse array of high-quality samples. [24], [25].
The concept draws inspiration from the physical phenomenon
of diffusion, where particles migrate from regions of higher
concentration to lower concentration until a state of balance
is achieved. Many applications from diverse domains, such as
text, image, audio, and video, demonstrate that diffusion mod-
els can significantly improve the quality, realism, and creativity
over previous generative models [26], [27]. Especially for the
text-to-image diffusion models, their groundbreaking synthesis
abilities with input from text description can significantly
improve creating efficiency [28], [29]. However, these models
offer limited control over the content they generate, primarily
achieved through a single text-based input modality. Some
techniques have been developed to enhance performance and
gain more precise control using various input types, such as
contextual layouts and class labels. These techniques strive to
finely tune the creation of content by adjusting the generation
process following the model that has been pre-trained. [30]–
[32]. Taking an example of the inpainting task, [32] proposes a
solution to achieve image inpainting successfully by leveraging
a pre-trained vision-language model (CLIP), where the inpaint-
ing process is guided from a text description along with an
ROI mask. Inspired by the recent development of controllable
diffusion models, we design our diffusion architecture by
considering natural language instruction, designated placement
position, and diverse object attributes to generate a clean scene
for different initial messy scenes.

D. Tabletop Robot Rearrangement
The objective of an intelligent robotic rearrangement sys-

tem is to equip robots with the ability to understand their
surroundings and interact with humans, thereby achieving
precise and efficient object repositioning according to different
structures or criteria that reflect human preferences [10]. Var-
ious approaches have been explored to tackle this challenge.
Typically, [33] proposes to utilize an RL strategy based on
the proximal policy optimization (PPO) algorithm to push
irregular objects on the table inside a crate, which is hard to
generalize to other rearrangement tasks because of the fixed
position of the crate on the table. To improve the generaliz-
ability, VIMA [34] introduces prompt-based learning to train
a multimodal generalist agent, achieving a simple zero-shot
robot arrangement setting in the simulation environment. Nev-
ertheless, it is still difficult to deploy in real robot experiments
due to the lack of human-designed visual prompts. Moreover,
[10] first introduces the concept of semantic structure in the
robot arrangement task, which necessitates a robot’s ability
to understand the relationships between scattered objects and
subsequently rearrange them into a spatial structure instructed
by human languages. However, the efficiency is compromised
by its sequential processing, where the goal state of the current
object is estimated only after finishing the arrangement of the
previous object. To address this inefficiency, StructDiffusion
[7] implements a 3D diffusion-based approach based on the
same dataset, achieving a better rearrangement performance.
However, we found that the predicted object states for a given
structure demonstrate negligible layout adaptability on the ta-
ble when the initial messy observation and motion distance of
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objects between the messy scene and the rearranged scene are
not taken into account. This issue largely results from all target
object states being derived from predetermined Gaussian noise
throughout the denoising diffusion process. Moreover, the
inherent design of the dataset presents challenges in enabling
scattered objects to form varied structures upon completion of
the rearrangement process.

To overcome the limitations in prior work, we first con-
struct a dataset consisting of different semantic structures
corresponding to language instructions where the same messy
scenes can exhibit different goal scenes. Primarily, we add the
containing structure in our rearrangement task as it represents
an important application in the industrial sorting task. Further-
more, we design a transformer-based multi-modal diffusion
architecture to generate goal states of objects according to
language commands and prior observation. For the sake of
improving real-world rearrangement efficiency, we also add a
constraint to minimize the average moving distance of objects.
To reduce human intervention when executing such a long-
horizon task, we further integrate the proposed target genera-
tion network into a VLM module via prompt-based learning,
where robot policy codes are generated autonomously.

III. PROBLEM STATEMENT

We introduce DreamArrangemnt, a novel robotic arrange-
ment scheme designed to comprehend diverse human language
instructions and the distribution of 2D object scenes including
variations in attributes like semantic classes, geometric shapes,
and placements of multiple objects, which shows the ability
to perform a long-horizon manipulation task autonomously.

We consider the initial tabletop scenes where all objects are
scattered in an image coordinate system, starting from the top
left corner as the origin. In each messy scene S, we depict
a combination of of a table T and objects {o1, ..., oN}. To
achieve semantic rearrangement based on human preference,
a structure-based language instruction L (e.g., “rearrange
all objects into a circle shape”) is also given. To enhance
contextual understanding, we further employ approaches from
text summarizing (e.g., prompt-based LLM parsing or search-
based word dictionary) to decompose the abstract language
into specified word tokens L → (l1, l2, ..., ln). This study
primarily explores the challenge of generating a language-
conditioned clean object scene S∗ for a robot r. S∗ can be
directly used in the planning phase as a visual prompt module
in the VLM planner, finally generating a manipulation policy
P . We formulate this as an optimization problem to use the
robot r to rearrange a “messy” scene S under a language
instruction L via learning a bijection f of paired objects and
minimizing their motion distance, referring to the ground truth
“clean” scene S̃:
f∗ = argmin

f
Farrangement(S,L) + λFmotion(S,L),

s.t. Farrangement(S,L) = f(S,L)− S̃,

Fmotion(S,L) = f(S,L)− S,

(1)

where λ is the weight hyperparameter of the Fmotion(S,L)
term. Then the policy can be expressed as:

P = V LM(S, f∗(S,L),L), (2)

More specifically, each object o in the input scene S is
defined by its semantic class c ∈ RC , 2D oriented bounding
box size s ∈ R2, object translation t ∈ R2, and object rotation
r ∈ SO(2)1, respectively. Since the containing structure is a
special semantic scene, we define an additional ‘mask’ object
class m to represent containers like plates and tables. Besides,
we use type tp ∈ RT instead of c to differentiate different
containers. In summary, we denote each scene S as follows:

S = {mi, ..., oi, ...},mi = (ti, ri, si, tpi), oi = (ti, ri, si, ci).
(3)

The object semantic class label ci and container type label
tpi are represented as one-hot vectors of C and T classes,
respectively, and the 2D bounding box size si is obtained by
performing the principal component analysis (PCA) and then
computing the positional relation of 4 corners. The values of
translation ti and rotation ri are characterized by calculating
the center position and the orientation angle of the bounding
box. To facilitate a stable training process, we further use the
normalization operation to make ti and si into the same range
of [−1, 1] as ri.

IV. METHODOLOGY

A. Denoising Diffusion Models

Denoising Diffusion Models [24], [35] are a class of gen-
erative models that learn data distribution by progressively
denoising from a tractable noise distribution. Below, we
provide a brief preliminary introduction from a score-based
perspective. For more details, please refer to [35]. Given
various samples from an unknown data distribution q0 (x), our
goal is to train a model capable of generating new samples that
mimic the original distribution q0 (x). A critical mechanism
employed in this endeavor is Langevin dynamics, a concept
borrowed from the domain of physics. This approach can
produce samples from a distribution pdata(x) when its score,
defined as its gradient ∇x log pdata(x), is known. Starting
from xT of any prior distribution, the Langevin method
recursively denoises the data as follows:

xt−1 = xt + αt∇xt log q0 (xt) + βtϵ, (4)

where αt and βt are pre-defined step sizes associated with
the time step t and ϵ ∼ N (0, I) is a stochastic term. As T
becomes sufficiently large, the final obtained x0 will converge
to a sample drawn from q0(x).

We aim to train a neural network sθ to approximate the
score of the target distribution. The denoising score matching
technique [36] is adopted to make the estimation of score
tractable, with the key insight being to utilize conditional
distribution settings. This involves perturbing x0 ∼ q0(x)
with various noise kernels qt (xt|x0) across a spectrum of
step parameters t ∼ U [1, T ]. The original score match-
ing objective of the perturbed distribution qt(x) can be ex-
pressed as Eqt(xt|x0)q0(x0) ∥sθ(xt)−∇xt

log qt (xt|x0)∥2. As
demonstrated in [35], the final optimal network parameter
θ∗ for this objective should ensure sθ∗(x) ≈ ∇x log qt (x).
Moreover, when employing Gaussian kernels qt (xt|x0) =

1The first column of the rotation matrix is used.
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TABLE I
OBJECT ATTRIBUTES AND SPATIAL STRUCTURES IN OUR DATASET

Entity Type Name

Object attributes
class (22) apple, bear, banana, bowl, box, can, cracker box,

cup, fork, knife, lemon, milk...
material (3) YCB texture, metal, wood
scale ratio (3) 0.8, 1.0, 1.2

Spatial structures global structure horizontal, vertical, circle, containing
local regularity symmetry, uniformity

N (x0, σ
2
t ) with pre-defined noise levels σt, the score of the

conditional probability density can be analytically derived
as ∇xt

log qt (xt|x0) = x0−xt

σ2
t

. Consequently, the unified
objective amalgamating all procedural steps is formulated as:

Lscore(θ) = Et∼U [1,T ],qt(xt|x0)q0(x0)λt

∥∥∥∥sθ(xt)−
x0 − xt

σ2
t

∥∥∥∥2 ,
(5)

where λt denotes the objective weight, pragmatically set to
σ2
t .
In summary, we need to first optimize the score network

sθ to minimize objective Eq. 5. After that, we use the trained
model sθ∗(xt) to incrementally refine the approximation of
∇xt

log q0 (xt) as per the Langevin dynamics, facilitating an
update along the Markov chain with Eq. 4 to generate new
samples ultimately.

B. 2D Object Rearrangement Dataset

To facilitate tabletop robotic rearrangement, it’s necessary
to collect a large object rearrangement dataset which includes
different object categories and spatial structures. However, col-
lecting such a dataset involving complex physical interactions
in the real world can be time-consuming, labor-intensive, and
costly. In this work, we collect a 2D synthetic dataset based on
the Mujoco physics simulator, consisting of 2223 clean object
scenes. A physics simulator can help us precisely control
the position, orientation, scale, and texture of each object
and keep each object in the rearrangement scene collision-
free and penetration-free. Additionally, it is convenient for
us to describe each clean rearrangement structure with high-
level language instruction. Specifically, we adopt 22 household
object models from the YCB objects and ShapeNet objects
as our object database. For each valid clean scene in the
dataset, we preprocess it using instance segmentation and
extract the oriented bounding box of each object as its explicit
representation. The obtained scene S̃ will be regarded as our
target output of the generation model. To simulate different
messy scenes in our daily lives, we further perturb the target
scene on the fly to generate clean-messy pairs and re-associate
objects within each category, where the generated messy
scenes will serve as the input data.

More importantly, high-level language instruction corre-
sponding to a structure usually conveys different object layouts
in the real world. As seen in Fig. 2, when we tell the household
robot: “Based on the current messy scene, please rearrange
the apple, lemon, orange, and peach into a horizontal shape”,
the mainstream solutions [5]–[7] will make the robot arrange
objects into a centered layout as in clean scene1, which is
a common pattern in their training data. However, according

W. Chen, TAMS -- Learning Language-conditioned Robotic Rearrangement of Objects via Diffusion Model 23

Experiment
Future WorkMotivation ExperimentMethodRelated Work

Output grasp 

“Rearrange the
apple, lemon,
orange and
peach into a 

horizontal shape.”

Messy scene Language prompt Clean scene1 Clean scene2

Fig. 2. Comparison of different generation results for clean scenes based on
the same messy scene and language prompt.
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Experiment
Future WorkMotivation ExperimentMethodRelated Work

(1) Horizontal (2) Vertical (3) Circle (4) Containing

Fig. 3. The four kinds of global structures in our dataset: horizontal, vertical,
circle, and containing.

to our human experience, we prefer to arrange the unordered
objects into clean scene2, because it can save a large amount of
time and effort. Therefore, to avoid the drawback in previous
works that diverse initial scenes are arranged into the identical
layout given the same instruction, we adopt the technique of
data augmentation to enrich layout variations of target scenes
with the same structure in our dataset.

Another rearrangement setting is that we want to arrange
the same configuration on the table into different structures
given different language prompts. We further design four kinds
of physically meaningful spatial structures to pair with text
descriptions. As shown in Fig. 3, the structures of horizontal,
vertical, and circle represent all objects forming a horizontal,
vertical, and circle shape globally, respectively. Since the
containing structure involves the additional ‘mask’ object class
mi, we describe it as placing different objects in different con-
tainers, including plate-like containers and box-like containers.
The semantic and geometric parameters of these containers
will also be employed in the containing rearrangement task.

Moreover, to distinguish the difference of local distribution
in real-world table settings, we introduce the concept of
symmetry and uniformity in language instruction. Taking forks,
knives, and plates as an example, symmetry represents that a
pair of knives and forks are placed on varied sides of the plate
while uniformity denotes that knives and forks are positioned
on the same side of the plate. Finally, all object attributes and
spatial structures in our dataset are shown in Tab. I.

C. Vision and Language Parsing

Based on our collected synthetic dataset, we further propose
a scheme for solving the tabletop rearrangement task as shown
in Fig. 4. A messy scene S and a high-level text description
L from human language are taken as the input.

Object Detection and Parameterization: In order to obtain
the geometric and semantic attributes of all objects, including
oi and mi, in the messy scene S, we first adopt the latest
Grounded Segment Anything Model (SAM) [37], which has
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Method
Future WorkMotivation ExperimentMethodRelated Work

The proposed denoising process :

It computes the denoising gradient at each step to make the scene “cleanser”.
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Fig. 4. An overview of the proposed conditional rearrangement diffusion network. (a) We sample the combinations of text descriptions from the humans with
the messy observation as input. (b) The parsing process is to obtain explicit object attributes and word tokens from input. (c) We build a denoising diffusion
framework with transformer architecture that separately encodes object attributes and word tokens into latent space. (d) To achieve the rearrangement task,
the direction of translation and rotation of each instance are iteratively refined during the limited denoising steps T .
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Task Info: 
Based on the background Informa4on, please map the language instruc4ons about object rearrangement  to appropriate object 
name,  available label of global structure and local regularity.
Available label of global structure: horizontal, ver4cal, circle and containing
Available label of local regularity: symmetry and uniformity 

Background Info1: 
Here are the instance segmentation results of all objects:
There is an apple, a bottle, a banana and a plate on the table.

Prompt Info1: 
Example: Rearrange all objects into the container.
Output: {objects: [“apple”, ”boJle”, ”banana", "plate”], 

structure: containing, regularity: none}

Background Info2: 
Here are the instance segmentation results of all objects :
There is a knife, a fork, a spoon and a plate on the table.

Prompt Info2: 
Example: Rearrange all objects into a circle shape with symmetry.
Output: {objects: [“knife”, ” fork”, ” spoon ", "plate”], 

structure: circle, regularity: symmetry}

Example of GPT-4 Prompts

Fig. 5. Example of GPT-4 prompts that map human language instruction and
segmentation results from vision parsing to concise word tokens.

shown a strong zero-shot ability for object recognition and in-
stance segmentation. Then the segmented results are subjected
to principal component analysis (PCA) to get the oriented
bounding box of each object. Specifically, the values of object
translation ti and rotation ri are derived by averaging all pixel
points pm of the object and establishing the covariance matrix:

ti =
1

M

M∑
m=1

pm, (6)

ri = argmax
v, ∥v∥2=1

vT

[
1

M− 1

M∑
m=1

(pm − ti)(pm − ti)
T

]
v,

(7)
where M is the number of pixel points in the segmented
object and the vector v indicates the projection direction to be
searched for. Next, we employ separate neural network layers
to encode the geometric and categorical features to obtain the
instance embedding for the regular object oi and the mask
embedding for the container object mi.

Text Summarization: To encode the natural language in-
struction into implicit representation, we need to distill the
most important information and convert it into a condensed
form. In this work, we adopt the concept of text summarization
to capture the key essence from the text description and
visual clues and then stitch them together. For most language-

conditioned robotic works [10], [14], they generally need to
retrain an extra language model based on a pre-trained CLIP
or MiniLM model on their self-deigned task-oriented sentence
dataset to achieve text summarization.

To enhance the efficiency and multimodal adaptability of
the summarization process, we use prompt-based learning via
GPT-4 to achieve contextual understanding and generate word
tokens. As the most advanced language model, GPT-4 has a
vast knowledge base and linguistic proficiency, allowing it to
produce the concise summaries that humans want. An example
of prompts in Fig. 5 shows that GPT-4 can learn to produce
outputs tailored to our specific mapping tasks by providing
prompts that are representative of the summarization task. To
enable word embedding, we further use the strategy of label
encoding to assign a unique integer to each class of labels in
the generated word tokens.

D. Conditional Rearrangement Diffusion Network

The architecture of the proposed conditional rearrangement
diffusion network is illustrated in Fig. 4. The transformer
structure is employed as it is adept at fusing the information
from different modalities. We first encode various scene object
attributes and parsed word tokens into latent tokens, which are
then processed by the multi-modal transformer. The network
outputs translation and rotation predictions for each instance,
and a diffusion scheme is adopted to successively refine the
pose of each object. Below, we elaborate on each component
of our network.

Token Encoder: The input tokens of the transformer in-
clude word embedding, mask embedding, and instance embed-
ding. The word embedding represents the language instruction
used to specify the target configuration. We map the parsed
global structure and local regularity types to learned embed-
dings, which is conducive to identifying the commonalities
of instructions faster during training compared to encoding
the whole sentence with language models. Next, as defined in
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Sec. III, the attributes of container objects and regular objects
contain continuous variables such as translation, rotation, and
size, as well as discrete variables like type and class. Similar
to [8], we employ positional encodings of certain frequencies
and subsequent linear layers to convert ti, ri, and si into
vectors. As for discrete properties, a multilayer perceptron
(MLP) is adopted to map one-hot vectors to high-dimensional
latent. The above features are concatenated and then processed
through an MLP to form the mask embedding and the instance
embedding. This object-centric representation encodes each
object separately, and 2 sets of specific MLPs are applied for
mask and instance, respectively. Furthermore, a learned type
embedding TT , which is utilized to distinguish different types
of tokens (Word, Mask, and Instance), is concatenated to the
aforementioned embeddings as follows:

T̂W,M,I = TW,M,I ⊕ TW,M,I
T , (8)

where T and T̂ represent the embedding of each modality and
the final input token for the transformer, respectively.

Multi-Modal Transformer: We adopt the conventional
encoder-only transformer architecture as the backbone. Our
multi-modal transformer is a stack of several standard trans-
former blocks [38], consisting of the multi-head self-attention
module and the position-wise feed-forward module. The self-
attention mechanism helps the model enact the interactions
between multiple objects, which allows it to be regarded as a
fully connected graph structure. Besides, the language token
and the mask token serve as conditional constraints and affect
posture prediction through attention calculation. In the end,
we build our network decoder as a two-layer MLP to output
the denoised direction of ti and ri for each instance.

Efficiency-oriented Rearrangement Learning: To im-
prove the interpretability of the network in our rearrangement
task, we reparameterize the original score-based model sθ to
ϵθ = σ2

t sθ as our multi-modal denoising diffusion model,
indicating that the optimization of Eq. 5 evolves into a noise
prediction problem. For the forward process during model
training, we add sampled Gaussian noise with a specific
standard deviation to the translation and rotation parameters
of each object in the clean scene to formulate noisy St, which
allows for the generation of various perturbed scenes with
different levels of noise for one clean scene. After that, a
reversed denoising process is learned by projecting St to the
clean scene manifold via noise prediction.

As formulated in Eq. 1, we also want to minimize the
motion distance between the initial messy scene and the rear-
ranged clean scene. For most denoising diffusion works based
on high-dimensional image space, it is typically presumed
that the original image constitutes the nearest projection to
its version perturbed by noise. However, each object instance’s
pose information in our task is low-dimensional data. This dis-
crepancy suggests that with the introduction of different noise
levels, the optimal projection target for a messy scene might
not necessarily be consistent with the initially intended clean
scene. Especially when applied to practical applications, such
as food preparation or tabletop arrangement, the efficiency cost
is enormous if persistently converting diverse messy scenes
into the same specific layout.

Thus, we propose several techniques to ensure that the
rearranged scene shares more similarities with the initial
messy scene. First, we re-associate instances within the same
class. Taking a language instruction as an example: “Please
rearrange all small boxes into a circle shape”, we re-establish
the pairing relationship p among all boxes between the current
messy scene S and the target clean scene S̃ by computing their
Earth Mover’s Distance [39]:

EMD = min
p

1

n

n∑
i=1

∥∥ti − t̃p(i)
∥∥2
2
, (9)

where n is the number of instances in the scene, t and
t̃ represent translation parameters of S and S̃, respectively.
During training, we choose t̃p∗(:) with the optimal pairing
relationship p∗ instead of t̃: to construct S̃, which hopefully
encourages a more efficient movement during rearrangement.

Second, as shown in Fig. 2, horizontal and vertical struc-
tures possess a certain degree of ambiguity. Drawing on
the principles of least squares approximation from statistical
analysis, we further propose to pan the clean scene along the
relevant axis. This is to ensure that the average position of
all instances in the optimal target scene S̃∗ aligns with the
average position of all instances in the messy scene S. Through
this procedure, we analytically guarantee minimal movement
during the arrangement process, which can be formalized as:

t̃vi
∗
= t̃vi +

1

n

n∑
i=1

(
tvi − t̃vi

)
or t̃hi

∗
= t̃hi +

1

n

n∑
i=1

(
thi − t̃hi

)
,

(10)
where tvi and thi represent the coordinates of the vertical and
the horizontal axis, respectively. We operate on the vertical
axis for the horizontal structure and on the horizontal axis for
the vertical structure.

Inference: During inference, we pursue the typical diffusion
scheme shown in Eq. 4, where the learned ϵθ∗(St) is asymp-
totically proportional to ∇St log q0 (St) as t declines. Given
a messy scene S with attributes extracted, we treat it as ST

with a specific time step T and recursively predict the layout
of the “cleaner” scene. We update the translation and rotation
parameters of each instance and iterate continuously. αt and
βt in Eq. 4 are designed to decrease as denoising progresses.
The final attained S0 is our rearrangement of the messy scene.

E. VLM Programming as Planner

Recently, much work [2], [40] from LLM-based robotic
manipulation has demonstrated that language models have the
potential to directly generate code snippets by parametrizing
object states and the robot controller API. However, they all
have to define the goal object states manually to finish different
manipulation tasks. In this work, we use the conditional diffu-
sion model to imagine different goal object states and integrate
them as prompts into a multimodal vision-language model
(VLM) to generate programming policy. In practice, we use
the OpenAI GPT-4 model as our VLM cornerstone. Moreover,
the generated output from the GPT model is expected to be
valid Python code that covers programs from visual perception,
language parsing, and denoising diffusion to robotic control.
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import numpy as np
from vision_utils import get_obj_masks, PCA
from language_utils import LLM_parsing
from diffusion_utils import diffusion_pipeline
from robot_utils import pixel2pos, pick_and_place

Fig. 6. Statements of python APIs in our rearrangement task.
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Scene Info: 
You are an autonomous household robot ac1vated in a domes1c kitchen environment.
Your primary loca1on is by a table typically used for object arrangement and  food 
prepara1on. 

Now I give you the scene informa1on called ‘messy.png’ and related task instruc1ons. 
Please hierarchically u1lize known API func1ons to compose robot planning process.

Prompt Info: 
Example: 
’messy.png’, Rearrange an apple, a banana, a lemon into a plate container.
Output:
obj_names, obj_masks = get_obj_masks(‘messy.png’)
obj_bboxes = PCA(obj_masks)
word_token, specified_objects = LLM_parsing(‘Rearrange … container.’)
target_boxes = diffusion_pipeline(obj_bboxes, word_token)

##specified_objects = [‘apple’, ’banana’, ’lemon’, ’plate’]
For j in range(len(specified_objects)-1):

pick_pose = pixel2pos(obj_bboxes[specified_objects[j]])
place_pose = pixel2pos(target_bboxes[specified_objects[j]]) 
pick_and_place(pick_pose, place_pose)

Robot Planning Example of GPT-4 Prompts

Fig. 7. An example of GPT-4 prompts that generate a planning policy based
on human language instruction and visual information of the messy scene
when the robot executes the object rearrangement task.

Specifically, we first need to define our own Python function
libraries that can inform the GPT model of which APIs
are available and provide type hints on how to use these
APIs. Fig. 6 shows all statements that can be imported into
our rearrangement task. Furthermore, a few demonstration
examples are used as prompts to instruct the GPT model
to present contextual understanding and few-shot learning
ability. Fig. 7 gives an example that directly outputs executable
planning code comprising the capability to perform arithmetic,
call API functions, and implement other Python language
features. It can be seen that the GPT-4 model can well process
multimodal inputs as instructions, then convert them into high-
level perception features programmatically via vision, lan-
guage, and denoising diffusion APIs, and finally call the low-
level robot controller APIs to generate rearrangement actions.
Owing to our denoising diffusion model being trained on a
self-constructed synthetic dataset, it is usually challenging for
traditional work to overcome the sim2real gap to implement
our robotic arrangement task. However, by combining the
open-vocabulary Grounded SAM model as a vision module,
our GPT-based prompt-learning method can generalize to new
objects and environments in real experimental scenarios well.

V. EXPERIMENTS

A. Implementation Details

The token encoder produces 512-dimensional features as
the input for the transformer, which has 2 layers with 8 heads
of attention. The hidden layers of the transformer have 512
dimensions. We optimize our model on the proposed object
rearrangement dataset, which contains 1640 clean scenes for
training and 583 clean scenes for testing. We adopt the Adam
optimizer with a base learning rate of 10−4. The batch size is
selected as 64 and the denoising model is trained on an A800
GPU for 30, 000 iterations, which takes about 3 hours. During

inference, we choose to iterate 35 steps after considering both
rearrangement efficiency and generative effectiveness, which
takes seconds to rearrange a messy scene.

B. Evaluation Metrics & Baselines
To thoroughly estimate the performance of our proposed

model in the simulated object rearrangement task, we utilize
the following quantitative metrics:

Discrepancy between Results and the Ground Truth
(Dist2GT ): To measure the rearrangement quality, we com-
pare the difference between the rearrangement result and the
pre-perturbed scene. We compute the Earth Mover’s Distance
(EMD) between our rearranged configuration and the ground
truth. We further calculate the cosine distance between the
orientation of instances in the scene before and after rearrang-
ing consulting the new assignment from EMD. We report the
average difference in position and orientation of scenes in the
test dataset separately.

Distance Moved (Movement): To measure the rearrange-
ment efficiency, we compute the average movement distance
required for the scene to clean up. More specifically, we
calculate the average Euclidean distance between the paired
instances in the messy and rearranged layout for each scene.
Then we report the mean value of all scenes in the test dataset.
It is essential to consider the initial messy configuration and
provide a solution that moves instances as little as possible to
save time and energy for the robot.

Intersection over Union Threshold (IOUthreshold): In our
work, we take the 2D oriented bounding box to represent the
geometric attribute of the object. To quantitatively evaluate
the arrangement accuracy, we compute the Intersection over
Union (IoU) values between the predicted-target bounding box
pairs for each instance. If the IoU value of arbitrary bounding
box pairs is larger than a threshold δ (e.g. δ = 0.25, 0.5), it is
regarded as a success. Then we report the mean success rate
of all rearranged objects in the test dataset.

In summary, Dist2GT represents quality and alignment,
Movement shows the efficiency, and IOUthreshold indicates
success. For Dist2GT and Movement, a lower value denotes
a better performance of the generated results while a higher
IOUthreshold indicates a higher success rate. The metrics for
real-world experiments will be introduced later.

Baselines: We reproduce 2 state-of-the-art baselines about
object rearrangement on our dataset for comparison: 1) Struct-
Diffusion [7], an object-centric and language-based iterative
method that utilizes point clouds and instructions to learn
global structures of object rearrangement. Unlike our ap-
proach, it introduces an extra time embedding in its diffusion
framework to iterate from pure Gaussian noise without consid-
ering the initial messy configuration that the robot encounters.
2) LEGO-Net [8], a transformer-based data-driven method that
learns to rearrange objects in messy rooms, where the concept
of the moving distance of each object is first introduced. How-
ever, it lacks specialized designs for rich language conditions
and semantic structures, and it cannot be directly applied to
robot manipulation tasks. We reproduce these methods on our
2D rearrangement dataset, where training and evaluation splits
remain the same as our method.
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TABLE II
QUANTITATIVE COMPARISONS ON THE TASK OF REARRANGING INTO THREE KINDS OF GLOBAL STRUCTURES IN THE SIMULATION EXPERIMENTS.

Method
Horizonal Vertical Circle

Dist2GTT ↓ Dist2GTR ↓ Movement ↓ IoU0.25 ↑ IoU0.5 ↑ Dist2GTT ↓ Dist2GTR ↓ Movement ↓ IoU0.25 ↑ IoU0.5 ↑ Dist2GTT ↓ Dist2GTR ↓ Movement ↓ IoU0.25 ↑ IoU0.5 ↑

StructDiffusion [7] 0.308±0.004 0.071±0.010 0.481±0.004 13.5±0.7 3.3±0.5 0.249±0.004 0.016±0.003 0.448±0.006 21.0±1.0 6.2±0.6 0.248±0.003 0.011±0.002 0.429±0.013 23.8±0.8 10.3±0.4
LEGO-Net [8] 0.192±0.014 0.077±0.014 0.404±0.016 42.2±2.0 23.0±0.9 0.190±0.016 0.087±0.020 0.394±0.009 39.9±2.4 23.4±1.5 0.205±0.003 0.079±0.006 0.375±0.008 33.1±1.2 17.9±0.9
Ours 0.103±0.002 0.005±0.002 0.397±0.012 51.8±0.7 28.5±1.2 0.109±0.002 0.001±0.000 0.415±0.006 53.0±0.9 27.6±1.8 0.153±0.002 0.001±0.000 0.383±0.007 43.4±0.7 21.6±0.5

TABLE III
QUANTITATIVE COMPARISONS ON THE TASK OF PLACING INTO

CONTAINERS IN THE SIMULATION EXPERIMENTS.

Method Dist2GTT ↓ Dist2GTR ↓ Movement ↓ IoU0.25 ↑ IoU0.5 ↑

StructDiffusion [7] 0.106±0.001 0.002±0.000 0.479±0.011 19.7±1.0 7.4±0.4
LEGO-Net [8] 0.095±0.001 0.001±0.000 0.482±0.005 26.2±1.0 11.4±1.0
Ours 0.085±0.001 0.001±0.000 0.458±0.024 37.1±2.4 17.8±1.4
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Fig. 8. Qualitative results from different rearrangement tasks: Food prepa-
ration (column 1 and column 2): knives, forks, and plates; Object containing
(column 3 and column 4): cans and a banana. Our model can rearrange the
same messy scene of both tasks following different instructions.

C. Simulation Experiments

Quantitative Results: We compare our method against the
baselines mentioned above. We perturb clean scenes in the test
set and rearrange these messy scenes with various methods.
We conduct 5 replication experiments for each algorithm and
report the average and confidence interval values on several
metrics. The main results are presented in Tab. II and Tab. III,
with the best results shown in bold and the inferior results
within the confidence interval underlined. Our method is
shown to outperform previous methods in most aspects. Due
to StructDiffusion [7] starting denoising from pure noise, it
ignores the initial configuration. Therefore, the rearrangement
results obtained require a longer movement distance. As for
LEGO-Net [8], it does not consider language conditions,
thus causing uncertainty about achieving which kinds of
structure. Our multi-modal transformer network increases the
controllability of the rearrangement process, allowing for more
precise implementation of various regularities. Moreover, the
“container” object serves a distinct function compared to
the regular objects being arranged. By introducing an extra
“mask” object class and applying dedicated models to handle
it, we achieve a better performance in the containing task, as
evidenced in Table III.

Qualitative Results: Considering different human prefer-
ences from the same messy scene, we visualize some re-
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Fig. 9. Rearrangement results on different global structures. We compare
our method with several variants under 2 metrics.

arranged results of our model in Fig. 8. We use oriented
bounding boxes to represent instances on the table, with differ-
ent colors conveying different classes, whereas containers are
depicted by directionless bounding boxes. For the same messy
scene of each task, our method can rearrange it into different
layouts according to different conditions. For instance, the
final placements of forks (red) and knives (blue) for food
preparation conform to the local regularities of symmetry and
uniformity while the horizontal structure is also achieved. In
addition, for the object containing task, our model can rear-
range the objects from different categories into corresponding
containers regardless of their location variations. One notewor-
thy point is that the misalignment of containers in column 4
has not appeared in the training split. To sum up, our model
can learn how to leverage multi-modal conditional constraints
for rearrangement, which makes our method applicable and
generalizable to practical scenarios.

Ablation Study: As one of our contributions is to pro-
pose an efficiency-oriented rearrangement method, we further
compare our method with “W/O Efficiency” that does not
employ the operations in Eq. 10, “W/O Augment” that does
not adopt data augmentation, and “W/O E. + A.” that utilizes
neither. These variants are evaluated on the test split across
various global structures. As shown in the results of “Total”
in Fig. 9, our method achieves a better overall performance
than other variants in terms of both quality and efficiency
of rearrangement. Especially for the horizontal and vertical
structures, a significant improvement in the Dist2GTT metric
can be seen owing to mitigating the ambiguity of the projection
target. Besides, due to obtaining the optimal target on the clean
scene manifold, we achieve a smaller motion distance in the
Movement metric. Moreover, the data augmentation opera-
tion can slightly improve the performance on various structures
in both metrics, especially for the containing structure.

Analysis: Since we can perturb the clean scene with differ-
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Fig. 10. Rearrangement results under different noise spans. Various baselines
and inference strategies are compared. The black dashed line represents the
noise span we adopted for training.

“Please rearrange 
all forks, knifes, 
and plates into a 
circle shape with 

uniformity.”

Input text Input messy scene  StrucDiffusion LEGO-Net Ours Ground Truth

“Please rearrange a 
bowl, a mug, a cup 

and a meat can  
into a horizontal 

shape.”

“Please rearrange a 
banana, and a 

lemon  into the 
plate container.”

Fig. 11. Visualization results in simulation. We compare our method with
state-of-the-art methods StructDiffusion [7] and LEGO-Net [8].

ent noise levels, we further investigate the model’s denoising
ability in dealing with different perturbing noises. Follow-
ing [8], we use a noise span hyper-parameter σ to characterize
the spectrum of σt, which originates from the positive half of
N (0, σ2). When we disturb scenes with σt derived from σ, the
larger the σ value, the more likely the mess becomes severe.
Meanwhile, as the trained denoising network ϵθ∗ approximates
the added noise S0−St, we can set α = 1 and β = 0 in Eq. 4
to directly obtain S0 and denote it as the Direct denoising
strategy, distinguished from the standard Gradual denoising
strategy. Based on the Dist2GTT metric, we evaluate Struct-
Diffusion [7], LEGO-Net [8], and our method combined with
these inference strategies on the test split. For StructDiffusion,
we further adopt its original inference process starting from
pure noises and name it Noise. As shown in Fig. 10, our
Gradual recipe demonstrates the best denoising performance
as the increment of noise spans, indicating that the proposed
multi-modal transformer architecture can stably reconstruct a
regular scene, even though the perturbation added to the scene
is quite significant. Moreover, it can be seen that the Direct
strategy exhibits a worse denoising ability than the Gradual
strategy in handling high-noise scenes among all methods,
possibly due to inaccurately estimated scores in low-density
regions. The comparison results prove that iterative denoising
is crucial for rearrangement, as it can gradually update data
to high-density regions that possess more accurate estimates.

Visualization Comparison: In Fig. 11, we further visu-
alize several comparison results of rearranged scenes in the
physical simulator, where the dynamics of object collisions

Fig. 12. Experimental setup for tabletop robotic rearrangement in the real
world, consisting of the robotic arm, gripper, vision system, and messy scene.
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Experiment
Future WorkMotivation ExperimentMethodRelated Work

Evaluation on the impedance control

Grasp centroid (x, y) Grasp orientation (.  )

Grasp Generation

Grasp width (w)

𝜃

Input messy scene Object recognition Oriented bounding box Output grasp 

Fig. 13. The process of grasp generation for each object in the real robot
experiments.

are accounted for. Given the special language command and
the messy scene, it can be seen that among all scenes, our
method can achieve the most precise arrangement of objects
that conforms to human intentions while meeting the demand
for efficiency. For example, in the second scene, the rearranged
result from StrcutDiffusion [7] appears satisfactory, yet a more
substantial movement for each object is needed compared to
our rearranged result. In the case of LEGO-Net [8], a physical
collision occurred between the mug and the meat can, leading
to their dispersion across the table’s surface.

D. Real-world Experiments

Experimental setup: To verify the proposed scheme in
the real world, we also deploy a robotic experimental system
shown in Fig. 12. The robotic manipulator selected for our
setup consists of a 7-DOF KUKA LWR arm paired with a
Schunk WSG50 gripper, which is mounted on the side of a
table. The fixed point where the robot arm connects to the table
is considered the base, with its centre position in the real-world
coordinate system formulated as [x, y, z] = [0.0, 0.0, 0.8]. Our
vision system incorporates the Kinect V2 in qhd mode to
capture raw images. The qhd mode, while offering a wide field
of view (FOV), also introduces the challenge of potentially
detecting extraneous objects, such as camera fixtures and
robotic equipment, as noise for the open-vocabulary Grounded
SAM model. To mitigate this, we trim the raw image data
to a uniform size of 448 pixels for both height and width.
An AprilTag located on the table is used to calibrate the
vision system, which will further facilitate the transformation
of object pose from pixel coordinates to world coordinates.
Finally, the process of generating grasps for the real robot
experiment is illustrated in Fig. 13. To calculate the grasp on
each object, we employ the antipodal method on its oriented
bounding box. This involves determining the grasp point (x, y)
and orientation θ based on the bounding box’s average position
and rotation value. The whole experimental system is operated
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Fig. 14. All testing objects for robotic table rearrangement in the real world.

TABLE IV
QUANTITATIVE COMPARISONS ON THE TASK OF REARRANGING INTO

DIFFERENT STRUCTURES IN THE REAL ROBOT EXPERIMENTS.

Object structure Horizontal Vertical Circle Containing
Duration (s) 75.5 87.0 69.0 79.5

Collision-free rate (%)
avg (std) 75.0 (16.7) 83.3 (8.33) 75.0 (8.3) 91.7 (8.33)

Success rate (%)
avg (std) 66.7 (16.7) 75.0 (8.3) 58.3 (8.3) 83.3 (8.33)

by a ROS interface and the pick and place API of the robot
in our VLM planner is achieved based on MoveIt!.

Robotic Rearrangement results: We conduct 12 evalua-
tions for each task by altering the position and orientation of
objects within a messy scene and arranging them according
to a language-conditioned structure. For the structures defined
as horizontal, vertical, and circle, the categories of objects
in the messy scene include small boxes, toothpaste boxes,
knives, forks, and spoons. As for the containing structure,
the scene’s objects consist of small boxes, box containers,
plate containers, and various fruits. All objects utilized in our
robotic experiments are displayed in Fig. 14.

In Tab. IV, we first compare the average rearrangement du-
ration, collision-free rate, and final successful rate for different
structures in the real robot experiment. The collision-free rate
is calculated by observing whether all objects in the rearrange-
ment scene predicted by our denoising diffusion model are
collision-free. Additionally, the success rate is assessed after
the robot finishes each rearrangement task. Unlike the abstract
estimation metrics in simulation, a real-world rearrangement is
considered successful only if the objects are positioned without
any collisions and the overall structure adheres to the semantic
constraints set forth by the provided language instructions.
It can be seen that the horizontal, vertical, and circle con-
figurations present significant challenges due to the entirely
novel nature of various boxes in our dataset and the limited
tolerant positions for sequential placement. The requirement
to rearrange the same categories of objects into these three
distinct structures simultaneously further complicates the task
for our inference model. Additionally, we encounter failures
when the vision system struggles to accurately perceive the
depth of particular objects, such as spoons, knives, forks, and
bananas, due to their reflective surfaces. This incorrect depth
data prevents the robot’s gripper from achieving a stable grasp.

Furthermore, we compare the average success rate with
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Fig. 15. Comparisons of the average success rate on various rearrangement
structures for different methods in the real robot experiments.

baselines on four kinds of language-conditioned structures,
shown in Fig. 15. Our method outperforms other baselines
for all global structures, with an average improvement of 15%
on the success rate compared to LEGO-Net [8]. We also find
that the real-world rearrangement becomes more challenging
when more objects are added to the initial messy scene. This
may be attributed to the struggle of diffusion models to learn
a more complicated inter-object relationship, along with the
increase in robot planning and execution horizons.

VI. CONCLUSION AND DISCUSSION

We present a solution for the language-conditioned robotic
rearrangement task with different global structures and local
regularities. Firstly, we collect and process a 2D synthetic
arrangement dataset based on the physical simulator. To
capture long-range dependencies between visual and textural
inputs, we build our conditional diffusion model based on
the multi-modal transformer architecture, which endows the
robot with the ability to imagine the target pose information of
different objects from the observation scene. In particular, we
introduce an efficient-oriented rearrangement learning strategy
to reduce object motion distance and create a more appropriate
layout. Inspired by the recent prompt-based learning, we
further integrate the generative model into the most advanced
VLM module (GPT-4) to generate robot planning and action
policy. Finally, we carefully design three kinds of quantitative
metrics to evaluate our model in the simulation experiments,
showing that our generative model outperforms related state-
of-the-art methods. Extensive experiments on the real robot
further demonstrate that our proposed scheme can satisfy
the human language-based requirements and finish different
rearrangement tasks successfully on diverse unseen objects.

Concerning limitations, this work simplifies the inter-object
relationship in a clean rearrangement scene based on human
preference, with the global structure and the local regularity
limited to 4 and 2, respectively. In addition, when dealing
with more complex object interactions, our approach tends to
rearrange objects into a simpler layout composed of fewer
objects by overlapping some instances. Therefore, extending
our research to include and comprehend the inter-object re-
lationship on a larger scale is important. Moreover, since
we use prompt-based learning to achieve language instruction
parsing and robot action policy generation, we still need to
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pre-define a series of examples to instruct the VLM module
to interpret the prompt. As for future work, the introduction
of explicit collision avoidance mechanisms in the denoising
process can be explored, which may make the generated layout
more plausible. Besides, we currently use the same number
of inference steps, and we wonder whether it is possible
to determine a more accurate number of denoising steps by
assessing the level of mess in the present scene, which may
enhance efficiency. Finally, designing an end-to-end VLM
model to estimate robot actions directly rather than separating
the dreaming and planning process may further improve the
effectiveness of robot manipulation.
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