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Abstract—The numerical integration of expressions containing 

strong singularities or strong near-singularities has long been a 

challenging problem in the electromagnetics community. Much 

attention has been paid to this problem, as strong  𝟏/𝑹𝟐 

singularities routinely appear when implementing 

electromagnetic simulation techniques like the Method of 

Moments (MoM). To date, several techniques, from singularity 

extraction to singularity cancellation, have been employed to deal 

with problems of this type. However, no single technique has 

been proposed that can deal with both strong singularities and 

strong near-singularities in a fully-numerical manner. Moreover, 

it has been claimed that the Helmholtz-type strongly singular 

integral found in the MoM is convergent in a principal value 

sense, but this has yet to be proven rigorously. In this work, we 

will conduct the convergence proof and introduce a “polar 

scaling” change of variables method that may be used to evaluate 

Helmholtz integrals with both strong and weak 

singularities/near-singularities. The technique is fully-numerical 

and can in principle be applied to any planar polygon and any 

basis function. We will also provide numerical results showing 

useful convergence behavior for integrals involving both exact 

and near-singularities. 

 
Index Terms—Integral Equations, Method of Moments, 

Numerical Simulation.  

I. INTRODUCTION 

T is well known that the method of moments (MoM) 

technique, a popular method for solving electromagnetic 

integral equations, requires the numerical evaluation of several 

integrals containing the Green’s Function of the 

inhomogeneous electromagnetic Helmholtz Equation. This 

Green’s function is represented as: 

 

𝐺(�⃗�,  𝑥′⃗⃗⃗⃗ ) =
𝑒−𝑗𝑘𝑅

4𝜋𝑅
,                          (1.1) 
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where 𝑘 is the wavenumber and 

 

𝑅 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + (𝑧 − 𝑧′)2,         (1.2) 

 

where the primed coordinates denote the position of an 

electromagnetic current source and the unprimed coordinates 

denote the observation point. Since the field solution is often 

desired everywhere within a computational domain, 

computation for values of 𝑅 approaching 0 are necessary, 

leading to the task of evaluating integrals with integrands that 

contain singularities. One such integral that is often invoked is 

the following surface integral: 

 

∇ × ∫ �⃗⃗⃗�(�⃑�′)
𝑒−𝑗𝑘𝑅

4𝜋𝑅
𝑑𝑆′

= ∫
−�⃗⃗�𝑒−𝑗𝑘𝑅(1 + 𝑗𝑘𝑅)

4𝜋𝑅3
× �⃗⃗⃗�(�⃑�′) 𝑑𝑆′, (1.3) 

 

where �⃗⃗⃗�(�⃑�′) is a basis function used to approximate a portion 

of the current source over the surface and �⃗⃗� is �⃗� − 𝑥′⃗⃗⃗⃗ . Other 

integrals are involved in the MoM process, but this one is of 

particular interest, as it contains what is termed a “strong” 

singularity, i.e., a 1/𝑅2 singularity. This type of integral is 

often treated with the singularity extraction technique, which 

divides the integral into two, one regular and one singular, and 

solves the new singular integral analytically [1]-[2]. While 

powerful and common, this technique is limited in that the 

analytical integral is not general, and a new formulation must 

be developed for differing integration domains or basis 

functions. An equally accurate technique that is more versatile 

without creating substantially more computational work would 

therefore have greater utility. Another technique that has been 

used to treat Helmholtz integral singularities is the singularity 

cancellation technique, where the integrand is transformed 

with a change of variables into an expression that no longer 

contains the singularity, as it is cancelled with the Jacobian 

[2]-[8]. However, the strong singularity resists cancellation 

with this method alone and in fact, to the author’s knowledge, 

cancellation schemes have only been achieved for the above 

type of integral (with a strong singularity) when it is near-

singular, not exactly singular, as the transformations detailed 
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in the works above show diverging or undefined integral limits 

when the singular point is exactly within the integration source 

domain. However, several of the near-singularity papers, 

namely [4] and [5], imply or claim that the exact singularity 

case is tractable, as the integrand converges to a principal 

value, and that only the near-singular case is especially 

challenging. While this claim will be shown to be true in this 

work, a rigorous proof of the claim does not appear to have 

been presented in the literature before now; the reference that 

is often used to support the claim, [3], is a referral to a 

conference presentation, for which only the abstract is readily 

available, meaning that it is unclear exactly how the authors 

drew the convergence conclusion, as it can be made apparent 

both mathematically with a rigorous proof or empirically with 

numerical testing. If the latter method was used to draw the 

conclusion, this would constitute an incomplete justification of 

the claim. As such, there is a gap in the development of the 

theory that will be remedied here. It should be noted that the 

technique detailed in a recent work, [9], treats both near and 

exact singularities under the same umbrella by combining 

singularity extraction with singularity cancellation, but this is 

subject to the same analytical result limitation as the 

singularity extraction method alone. 

 Furthermore, the author has identified an opportunity to 

extend the integration of eqn. (1.3) to planar polygons with an 

arbitrary number of edges with one universal standard 

procedure. A formulation that treats all shapes of this type 

with the same sequence of variable transformations, regardless 

of basis function and shape type, presents substantial utility to 

any platform designed with generality in mind. Using this as a 

motivation, we will develop a general polar transformation 

(termed “polar scaling”), rigorously prove that it regularizes 

the integral in eqn. (1.3), and then connect it to an N-sided 

planar polygon. We will also detail how the method can be 

applied to near-singularities, creating an all-in-one solution for 

the type of surface integration considered here. The paper will 

be organized as follows: Section II. will detail the general 

polar regularization, Section III. will discuss an equally 

general coordinate renormalization procedure, Section IV. will 

describe how to complete the polar transformation once a 

particular shape is chosen, Section V. will discuss near-

singularity treatment, and Section VI. will demonstrate a 

numerical example. 

II. POLAR REGULARIZATION 

As alluded to in Section I, the polar transformation that will be 

executed below does not cancel the strong singularity in the 

conventional manner. However, it will be shown that the 

transformation used here will result in an integrand that is 

finite at all points within the integration domain, including the 

strong singularity. That is, the transformed integrand will have 

a limit that exists as the observation point approaches the 

source point. We will now formulate this transformation. 

Without loss of generality, for a two-dimensional domain 

described in (𝑢, 𝑣) coordinates, let us define the following 

transformation to polar coordinates:  

 
 Fig. 1.   Arbitrary polygon described in (𝑢, 𝑣) coordinate system.  

 

𝑢 = 𝜌𝑓(𝜑) + 𝑢0,                          (2.1𝑎) 

 

𝑣 = 𝜌𝑓(𝜑) tan 𝜑 +  𝑣0,                    (2.1𝑏) 

with 

 

�⃗� = 𝑐 + 𝑢�̂� + 𝑣�̂� + ℎ⃗⃗,                         (2.1𝑐) 

 

𝑥′⃗⃗⃗ ⃗ = 𝑐 + 𝑢′�̂� + 𝑣′�̂� ,                           (2.1𝑑) 

 

where 𝑓(𝜑) is some angular function yet to be defined, 𝑐 is 

the source domain centroid, and (𝑢0, 𝑣0) is the position of the 

observation point if it is within the source domain, or the 

projection of the observation point onto the source domain if 

the observation point is not within the source domain. ℎ⃗⃗ 

applies to the case where the observation point is not within 

the source domain and represents the vector between the 

observation point and its source domain projection (ℎ⃗⃗ is 

merely the 0 vector if the observation point lies within the 

source domain). |ℎ⃗⃗| is the shortest distance between the 

observation point and any point in the source domain. Note 

that 𝜌 is real and 𝜌 ≥ 0. �̂� and �̂� are orthogonal (𝑢, 𝑣)-space 

unit vectors defined according to the shape under 

consideration, also to be discussed in Section IV. Fig. 1 

illustrates this coordinate system, but 𝜌 is omitted as its 

calculation will be discussed in Section IV; we do not need its 

formal definition to show regularization. The Jacobian for the 

change of variables from the (𝑢, 𝑣) domain to the (𝜌, 𝜑) 

domain is 

 

|𝐽𝜌𝜑| = 𝜌𝑓(𝜑)2 sec2 𝜑 .                         (2.2) 

 

We may substitute these transformations into our expression 

for 𝑅, resulting in the following: 

 

𝑅 = √∑ {
𝑢�̂�(𝜌𝑓(𝜑) − 𝜌′𝑓(𝜑′))

+𝑣�̂�(𝜌𝑓(𝜑) tan 𝜑 − 𝜌′ 𝑓(𝜑′)tan 𝜑′) + ℎℎ�̂�

}

2𝑥,𝑦,𝑧

𝑛

. (2.3) 

 

We stipulate that (𝑢0, 𝑣0) is the transformed observation point 

or projection, so 𝜌 is 0. As such, eqn. (2.3) becomes 
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𝑅 = √ ∑ (𝑢�̂�𝜌′𝑓(𝜑′) + 𝑣�̂� 𝜌′𝑓(𝜑′)tan 𝜑′ − ℎℎ�̂�)
2

𝑥,𝑦,𝑧

𝑛

, (2.4) 

 

where ℎ = |ℎ⃗⃗| and ℎ̂ is the unit vector in the direction of ℎ⃗⃗. 

Note that we factored out -1 to reorient the signs in the 

expression. Let us now use the transformations executed thus 

far to manipulate the strongly singular Helmholtz integral 

described in eqn. (1.3): 

 

∫
−�⃗⃗�𝑒−𝑗𝑘𝑅(1 + 𝑗𝑘𝑅)

4𝜋𝑅3
× �⃗⃗⃗�(�⃑�′) 𝑑𝑆′ 

= ∫
−𝑒−𝑗𝑘𝑅(1 + 𝑗𝑘𝑅)

4𝜋𝑅3
 

∗ {

(𝑥 − 𝑥′)(𝑁𝑦(�⃑�′)�̂� − 𝑁𝑧(�⃑�′)�̂�)

+(𝑦 − 𝑦′)(𝑁𝑧(�⃑�′)�̂� − 𝑁𝑥(�⃑�′)�̂�)

+(𝑧 − 𝑧′)(𝑁𝑥(�⃑�′)�̂� − 𝑁𝑦(�⃑�′)�̂�)

} 𝑑𝑆′ (2.5) 

 

Let us consider only the first term in the brackets for now, 

leading to the following integral: 

 

∫
−𝑒−𝑗𝑘𝑅(1 + 𝑗𝑘𝑅)

4𝜋𝑅3
{(𝑥 − 𝑥′)(𝑁𝑦(�⃑�′)�̂�

− 𝑁𝑧(�⃑�′)�̂�)}𝑑𝑆′                                         (2.6) 

 

Further, let 

 

𝑁𝑦𝑧 ≡  (𝑁𝑦(�⃑�′)�̂� − 𝑁𝑧(�⃑�′)�̂�)                       (2.7) 

 

Substituting the coordinate transformations into eqn. (2.6), we 

obtain 

 

∫
−𝑒−𝑗𝑘𝑅(1 + 𝑗𝑘𝑅)

4𝜋𝑅3
{(𝑥 − 𝑥′)(𝑁𝑦(�⃑�′)�̂� − 𝑁𝑧(�⃑�′)�̂�)}𝑑𝑆′ 

 

= ∫ ∫
−𝑒−𝑗𝑘𝑅(1 + 𝑗𝑘𝑅)

4𝜋𝑅3
{[𝑢�̂�(𝑢 − 𝑢′) + 𝑣�̂�(𝑣 − 𝑣′) + ℎℎ�̂�] 

∗ 𝑁𝑦𝑧(𝜌′, 𝜑′)}|𝐽𝜌′𝜑′|𝑑𝜌′𝑑𝜑′ 

 

 

= ∫ ∫
𝑒−𝑗𝑘𝑅(1 + 𝑗𝑘𝑅)

4𝜋𝑅3
 

 

∗ {[𝑢�̂�𝜌′𝑓(𝜑′) + 𝑣�̂�𝜌′𝑓(𝜑′) tan 𝜑′ − ℎℎ�̂�]𝑁𝑦𝑧(𝜌′, 𝜑′)} 

 

∗ 𝜌′𝑓(𝜑′)2 sec2 𝜑′ 𝑑𝜌′𝑑𝜑′                 (2.8) 

 

Note that the negative sign in front of the exponential was 

absorbed into the expression in the square brackets. Also note 

that the 𝜌′ bounds are 0 and 1, whereas the 𝜑′ bounds are 0 

and 2𝜋. These details will be more closely described later on 

when we specify the computation of 𝜌 and 𝑓(𝜑). Substituting 

eqn. (2.4) into eqn. (2.8) and splitting the expression into two 

integrals, we arrive at the following result: 

 

∫ ∫
𝑒

−𝑗𝑘√∑ (𝑢�̂�𝜌′𝑓(𝜑′)+𝑣�̂� 𝜌′𝑓(𝜑′)tan 𝜑′−ℎℎ�̂�)
2𝑥,𝑦,𝑧

𝑛   

4𝜋 [√∑ (𝑢�̂�𝜌′𝑓(𝜑′) + 𝑣�̂� 𝜌′𝑓(𝜑′)tan 𝜑′ − ℎℎ�̂�)
2𝑥,𝑦,𝑧

𝑛 ]

3
2

 

 

∗ [

𝑢�̂�𝜌′𝑓(𝜑′)

+𝑣�̂� 𝜌′𝑓(𝜑′)tan 𝜑′

−ℎℎ�̂�

] 𝑁𝑦𝑧(𝜌′, 𝜑′)𝜌′𝑓(𝜑)2sec2 𝜑′ 𝑑𝜌′𝑑𝜑′     

 

+ ∫ ∫
𝑗𝑘𝑒

−𝑗𝑘√∑ (𝑢�̂�𝜌′𝑓(𝜑′)+𝑣�̂� 𝜌′𝑓(𝜑′)tan 𝜑′−ℎℎ�̂�)
2𝑥,𝑦,𝑧

𝑛

4𝜋 ∑ (𝑢�̂�𝜌′𝑓(𝜑′) + 𝑣�̂� 𝜌′𝑓(𝜑′)tan 𝜑′ − ℎℎ�̂�)
2𝑥,𝑦,𝑧

𝑛

 

 

∗ [

𝑢�̂�𝜌′𝑓(𝜑′)

+𝑣�̂� 𝜌′𝑓(𝜑′)tan 𝜑′

−ℎℎ�̂�

] 𝑁𝑦𝑧(𝜌′, 𝜑′)𝜌′𝑓(𝜑)2sec2 𝜑′ 𝑑𝜌′𝑑𝜑′  (2.9) 

 

Since the second integral in eqn. (2.9) was weakly singular in 

its original form, its singularity is cancelled by the polar 

transformation for ℎ = 0 (𝜌′ terms cancel). The sec2 𝜑′ in the 

numerator diverges at the same time and rate as the tan2 𝜑′ in 

the denominator as 𝜑′ approaches an odd multiple of 
𝜋

2
, 

creating a limit equal to 1 for their quotient. Furthermore, 

𝑓(𝜑′) and  𝑓(𝜑′) tan 𝜑′ are always finite for a valid 

transformation, as is clear from eqn. (2.1), and the angular 

integrand will be shown below to be well-behaved under 

typical circumstances. As such, the second integral may be 

evaluated numerically using standard quadrature rules such as 

the well-known Gauss-Legendre method. The first integral, in 

fact, is also regular despite the integrand’s 𝜌′ = 0, ℎ = 0 

singularity, but the justification of this claim is more involved. 

To show that the first integral is regular, we will examine its 

behavior as 𝜌′ → 0 for ℎ = 0 (the observation point is in the 

source domain). When ℎ = 0, the first eqn. (2.9) integral 

simplifies to the following expression: 

  

∫
∫ 𝐼𝑥(𝜌′, 𝜑′) 𝑑𝜑′

4𝜋𝜌′
𝑑𝜌′,                       (2.10) 

 

with 

𝐼𝑥(𝜌′, 𝜑′) ≡ sgn(cos 𝜑′)
𝑒

−𝑗𝑘𝜌′𝑓(𝜑′)√∑ (𝑢�̂�+𝑣�̂� tan 𝜑′)2𝑥,𝑦,𝑧
𝑛

[∑ (𝑢�̂� + 𝑣�̂� tan 𝜑′)2𝑥,𝑦,𝑧
𝑛 ]

3
2

 

 

∗ {[𝑢�̂� + 𝑣�̂� tan 𝜑′]𝑁𝑦𝑧(𝜌′, 𝜑′)} sec2 𝜑′ .      (2.11) 

 

Note that the cancellations from the simplification yield an 

expression that includes sgn(f( 𝜑′).  Here, we have replaced 

the signum argument with cos 𝜑′ since sgn(cos 𝜑′) and 

sgn(f( 𝜑′) are equal. This is apparent by consulting Fig. 1. 

When −
𝜋

2
< 𝜑′ <

𝜋

2
, 𝑢′ > 𝑢0, so sgn(𝑓(𝜑′)) must be positive. 
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The opposite is true when 
𝜋

2
< 𝜑′ <

3𝜋

2
. 

From here, we wish to take the limit of eqn. (2.11) as 𝜌′ →
0, where the integrand appears to diverge. If the limit exists, 

however, the integral is regular. To prove that the limit is 

indeed finite, we notice that if lim
𝜌′→0

∫ 𝐼(𝜌′, 𝜑′) 𝑑𝜑′ = 0, the 𝜌′ 

integrand in eqn. (2.10) is a L’Hopital indeterminant. When 

𝜌′ = 0, 𝐼𝑥(𝜌′, 𝜑′) becomes 
 

𝐼𝑥(0, 𝜑′) =  
sgn(cos 𝜑′)

[∑ (𝑢�̂� + 𝑣�̂� tan 𝜑′)2𝑥,𝑦,𝑧
𝑛 ]

3
2

 

 

∗ [𝑢�̂� + 𝑣�̂� tan 𝜑′]𝑁𝑦𝑧(0) sec2 𝜑′ .       (2.12) 

 

Note that when 𝜌′ = 0, 𝑁𝑦𝑧 is no longer a function of 𝜑′. We 

now represent the numerator integral of eqn. (2.11), in a 

principal value sense, as follows: 

 

∫ 𝐼𝑥(0, 𝜑′)𝑑𝜑′

2𝜋

0

 

=  lim
𝜖→0

∫ 𝐼𝑥(0, 𝜑′)𝑑𝜑′

𝜋
2

−𝜖

−
𝜋
2

+𝜖

+ ∫ 𝐼𝑥(0, 𝜑′)𝑑𝜑′

3𝜋
2

−𝜖

𝜋
2

+𝜖

. (2.13) 

 

The bounds are chosen to coincide with the divergent points in 

the tangent and secant functions in the integrand. Using the 

same tangent-secant limit arguments as those used for the 

second integral of eqn. (2.9), we see that 𝐼(0, 𝜑′) does not 

diverge at the integral bounds as 𝜖 → 0. Also note that for the 

first integral in eqn. (2.13), sgn(cos 𝜑′) = 1, whereas 

sgn(cos 𝜑′) = −1 in the second integral. We also notice that 

for 𝜑′ ≠
𝑝𝜋

2
 for some odd integer 𝑝,  

 

tan(𝜑′ + 𝜋) = tan 𝜑′ ,                     (2.14𝑎) 

 

sec2(𝜑′ + 𝜋) = sec2 𝜑′ .                   (2.14𝑏) 

 

Since the intervals of the two integrals in eqn. (2.13) are offset 

by 𝜋, it is clear that 

 

||lim
𝜖→0

∫ 𝐼𝑥(0, 𝜑′)𝑑𝜑′

𝜋
2

−𝜖

−
𝜋
2

+𝜖

|| = ||lim
𝜖→0

∫ 𝐼𝑥(0, 𝜑′)𝑑𝜑′

3𝜋
2

−𝜖

𝜋
2

+𝜖

|| . (2.15) 

 

Therefore,  

lim
𝜖→0

∫ 𝐼𝑥(0, 𝜑′)𝑑𝜑′

𝜋
2

−𝜖

−
𝜋
2

+𝜖

+ ∫ 𝐼𝑥(0, 𝜑′)𝑑𝜑′

3𝜋
2

−𝜖

𝜋
2

+𝜖

  

 

= lim
𝜖→0

∫ 𝐼𝑥(0, 𝜑′)𝑑𝜑′

𝜋
2

−𝜖

−
𝜋
2

+𝜖

− ∫ 𝐼𝑥(0, 𝜑′)𝑑𝜑′ = 0.        (2.16)

𝜋
2

−𝜖

−
𝜋
2

+𝜖

 

 

The limit in eqn. (2.10), then, is indeed a L’Hopital 

indeterminant, and thus may be evaluated via L’Hopital’s rule. 

Differentiating the numerator and denominator of eqn. (2.10) 

with respect to 𝜌′, we can take the limit of eqn. (2.10) as 

follows: 

lim
𝜌′→0

∫ 𝐼𝑥(𝜌′, 𝜑′) 𝑑𝜑′

4𝜋𝜌′
 

 

=
1

4𝜋
∫ −𝑗𝑘𝑓(𝜑′)√ ∑ (𝑢�̂� + 𝑣�̂� tan 𝜑′)2

𝑥,𝑦,𝑧

𝑛

 𝐼𝑥(0, 𝜑′)𝑑𝜑′, (2.17) 

 

which is a regular integral that may be evaluated normally. 

This analysis shows that the polar mapping defined in eqn. 

(2.1) reveals that the strong singularity of the Helmholtz 

integral is a “false” singularity, one that does not truly cause 

the integrand to diverge. As such, both integrals of eqn. (2.9) 

may be evaluated numerically, using conventional quadrature 

rules without the need for singularity extraction. In fact, 

examining eqn. (2.9), we find that the limit integral in eqn. 

(2.17), when 𝜌′ = 0, is exactly equal to the second 𝜑′ integral 

in eqn. (2.9) in magnitude and opposite in sign. This means 

that at the 𝜌′ = 0 point, the total integrand is null, i.e., the 

𝜌′ = 0 point contributes nothing to the integral. This is also 

trivially true if 𝜌′ = 0 and ℎ ≠ 0. Identical arguments may be 

made to evaluate the second and third terms of eqn. (2.5). 

Note that the transformation described in this section is 

applicable to any 2D planar shape. This is a powerful result 

since, as far as 2D planar shapes are concerned, it allows for a 

one-size-fits-all technique for the numerical integration of the 

integral under consideration herein. It should be noted that 

weakly singular 1/𝑅 Helmholtz integrals also have their 

singularities cancelled with this transformation, much like the 

second integral in eqn. (2.9). This means that the formulation 

is also open to problems involving 1/𝑅 potential integrals. In 

the next section, we will explain the method of moving the 

polygon definition to the (𝑢, 𝑣) space. 

III. (𝑢, 𝑣) TRANSFORMATION 

Consider a polygon defined in Cartesian space by 𝑁 

arbitrary points 𝑥1⃗⃗ ⃗⃗ ,  𝑥2⃗⃗⃗⃗⃗, … and 𝑥𝑛⃗⃗⃗⃗⃗ defined as 

 

𝑥𝑛⃗⃗⃗⃗⃗ = (𝑥𝑛𝑥 , 𝑥𝑛𝑦 , 𝑥𝑛𝑧), 𝑛 = 1, 2, …  𝑁.              (3.1)  

 

We will execute an unscaled change of basis to represent the 

points within the polygon in terms of two orthogonal vectors 

that are in-plane with the polygon surface. The exact choice of 

basis is somewhat arbitrary, and many definitions are 

available. Here, we will choose the unit vector pointing from 

the polygon centroid 𝑐 to the vertex 𝑥2⃗⃗⃗⃗⃗ as our first basis 
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vector, which will establish the �̂� direction (note, as shown in 

Fig. 1, the convention for this work is to label the lower left 

vertex of the polygon as 𝑥1⃗⃗ ⃗⃗  and increase the vertex numbering 

in the clockwise direction). 𝑐 may be easily computed as 

 

𝑐 =
1

𝑁
[

∑ 𝑥𝑛𝑥
𝑁
𝑛=1 ,  

∑ 𝑥𝑛𝑦
𝑁
𝑛=1 ,  

∑ 𝑥𝑛𝑧
𝑁
𝑛=1

].                              (3.2)  

 

With this convention, �̂� may be explicitly computed as 

 

�̂� =
𝑥2⃗⃗⃗⃗⃗ − 𝑐

|𝑥2⃗⃗⃗⃗⃗ − 𝑐|
.                                   (3.3) 

 

Using the unit vector pointing from 𝑥1⃗⃗ ⃗⃗  to 𝑥2⃗⃗⃗⃗⃗, which we will 

label as 𝑙21̂, we may develop an orthogonal vector to �̂�, which 

we will term �̂�: 

 

�̂� =
�̂� × 𝑙21̂ × �̂�

|�̂� × 𝑙21̂ × �̂�|
=

𝑙21̂ − �̂�(�̂� ∙ 𝑙21̂)

|𝑙21̂ − �̂�(�̂� ∙ 𝑙21̂)|
,             (3.4) 

 

where the BAC-CAB vector triple product identity has been 

used. Note that any in-plane vector that is not parallel to �̂� 

may be used in place of  𝑙21̂ and the resulting vector will be 

the same after normalization. We now represent each point 

within the polygon via the following function: 

 

𝑥′⃗⃗⃗ ⃑ = 𝑐 + 𝑢′�̂� + 𝑣′�̂�,                            (3.5) 

 

where 𝑢′ and 𝑣′ are constants. To find the constants that 

correspond to the point of interest 𝑥′⃗⃗⃗ ⃑, we use individual 

components of eqn. (2.5) to create a system of equations, 

which may be represented in matrix form as below: 

 

[
𝑢�̂� 𝑣�̂�

𝑢�̂� 𝑣�̂�
] [𝑢′

𝑣′
] = [

(𝑥′⃗⃗⃗ ⃑ − 𝑐)
𝑥

(𝑥′⃗⃗⃗ ⃑ − 𝑐)
𝑦

].                (3.6) 

 

Solving this matrix equation yields the unknown constants. 

Note that since all the points in the polygon are coplanar, each 

pair of two components can only correspond to one potential 

third coordinate while remaining in-plane, so only two of the 

components of eqn. (3.4) need to be invoked to find the 

unknown constants (here the 𝑥 and 𝑦 components are used). 

Note also that our differential element 𝑑𝑆′ is now 𝑑𝑢′𝑑𝑣′. 
Since the Euclidean distances between points in our new basis 

and the original Cartesian basis are identical, no scaling 

factors are needed to execute the change of variables. We are 

now prepared to execute the polar mapping for polygons. This 

will be done in the next section. 

IV. POLYGON POLAR COORDINATES 

Here, we will demonstrate an example of how to execute 

the polar mapping described in the previous sections for 

arbitrary polygons with straight edges. The polar coordinates 

𝜌′ and 𝜑′ are defined in relation to the point (𝑢0, 𝑣0) and the 

polygon vertices. From Fig. 1, it is clear that 𝜑′ is defined by 

the direction of the vector pointing from (𝑢0, 𝑣0) to (𝑢′, 𝑣′). 

𝜌′, in our formulation, will refer to an inner polygon scaling 

factor that corresponds to the dimensions of a similar polygon 

to the polygon under consideration (note that the term 

“similar” is meant in the mathematical geometric sense). This 

similar polygon will be termed the “scaled” polygon. The 

scaled polygon has an edge that intersects with (𝑢′, 𝑣′) and 

vertices that lie on the lines drawn between (𝑢0, 𝑣0) and the 

vertices of the larger polygon, which we will term the “base” 

polygon. Fig. 2 illustrates this scaling concept. When 𝜌′ = 1, 

(𝑢′, 𝑣′) lies on the base polygon boundary. We now define 

vertex vectors: 

 

𝑤𝑛⃗⃗⃗⃗⃗⃗ = 𝑝𝑛⃗⃗⃗⃗⃗ − (𝑢0, 𝑣0),      𝑛 = 1, 2, …  𝑁.              (4.1) 

 

where 𝑝𝑛⃗⃗⃗⃗⃗ denotes the (𝑢, 𝑣) coordinates of vertex n. These 

vectors will be used to determine the scaling of the similar 

polygon, and thus, 𝜌′. For some (𝑢′, 𝑣′) that we wish to map, 

we first must determine which edge the similar polygon will 

intersect the point with. We may do this by simply computing 

𝜑′ via 

 

𝜑′ = tan−1
𝑣′ − 𝑣0

𝑢′ − 𝑢0

.                           (4.2) 

 

We also define vertex 𝜑′ values as 

 

𝜑′𝑛 = tan−1
𝑤𝑛𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑤𝑛𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
, 𝑛 = 1, 2, …  𝑁.     (4.3) 

If 𝜑′𝑛+1 ≤ 𝜑′ < 𝜑′𝑛 the point is on edge 𝑒(𝑛+1)𝑛. We will 

term the edge that corresponds to the 𝜑′ value as the “active” 

edge. Note that if  (𝑢0, 𝑣0) lies on a vertex, one of the vertex 

vectors will be 0 and its inverse tangent computation will be 

undefined. If 𝜑′ is within an interval with an undefined bound, 

this undefined bound is replaced by the next defined bound in 

the sequence counting down from N to 1 and circling back to 

N. 

 

 
Fig. 2.  Polygon scaling. The black polygon is the base polygon and the 

dashed blue polygon is the scaled polygon. The scaled polygon vertices lie on 

the red dashed lines connecting (𝑢0, 𝑣0) to the base polygon vertices and the 

scaled polygon edges are parallel to the base polygon edges. (𝑢′, 𝑣′) lies on a 

scaled polygon edge and 𝜌′ is determined by how large the scaled polygon 

must be for its boundary to intersect with (𝑢′, 𝑣′). 
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For example, for 𝑁 = 3, if the undefined bound is 𝜑′3, we set 

𝜑′3 = 𝜑′2 instead. If the undefined bound is 𝜑′2, we set 𝜑′2 =
𝜑′1. Finally, if the undefined bound is 𝜑′1, we set 𝜑′1 = 𝜑′3. 

This effectively merges two potential active edges together. 

As we will see below, both of the merged active edges are 

treated identically regarding the numerical integration 

operation.  Once the active edge is known, we may use the 

vertex vectors to determine the intersection. 

For a straight edge 𝑒𝑖𝑗, let 

 

(𝑢′, 𝑣′) = (𝑢0, 𝑣0) + 𝜌′𝑤𝑗⃗⃗⃗⃗⃗ + 𝛽𝜌′(𝑤𝑖⃗⃗⃗⃗⃗ − 𝑤𝑗⃗⃗⃗⃗⃗),         (4.4) 

 

and let 

 

𝑤𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ = 𝑤𝑖⃗⃗⃗⃗⃗ − 𝑤𝑗⃗⃗⃗⃗⃗,                                (4.5) 

 

where 𝛽 is some constant. Note that the 𝑖-𝑗 indexing assumes 

clockwise vertex increment, so starting at vertex 1 for 𝑁 = 3, 

the edges are 𝑒21, 𝑒32, and 𝑒13. Qualitatively, this operation 

shifts the observation point to the jth vertex of the scaled 

polygon that intersects with the source point and then moves 

along 𝑒𝑖𝑗 of the scaled polygon until the source point is 

reached. This gives us two equations, one composed of 𝑢 

coordinates and one composed of 𝑣 coordinates. By 

substitution, it is straightforward to eliminate 𝛽 and show that  

 

𝜌′ =
𝑤𝑖𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑣′ − 𝑣0) − 𝑤𝑖𝑗𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑢′ − 𝑢0)

𝑤𝑗𝑣⃗⃗⃗⃗⃗⃗⃗𝑤𝑖𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑤𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑤𝑖𝑗𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
,           (4.6) 

 

where the 𝑢 and 𝑣 subscripts denote the 𝑢 and 𝑣 components 

of the vectors. Note that when 𝜌′ = 1, the source point always 

lies on the polygon periphery. Using eqn. (4.2), we may 

represent 𝑢′ in terms of 𝜌′ as 

 

𝑢′ = 𝜌′
𝑤𝑗𝑣⃗⃗⃗⃗⃗⃗⃗𝑤𝑖𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑤𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑤𝑖𝑗𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑤𝑖𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ tan 𝜑′ − 𝑤𝑖𝑗𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
+ 𝑢0.                (4.7) 

 

From our definition in eqn. (2.1), this implies the azimuth 

function 𝑓(𝜑′) is 

 

𝑓(𝜑′) =
𝑤𝑗𝑣⃗⃗⃗⃗⃗⃗⃗𝑤𝑖𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − 𝑤𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑤𝑖𝑗𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑤𝑖𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ tan 𝜑′ − 𝑤𝑖𝑗𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
.                     (4.8) 

 

This function encodes the varying Euclidean distance 

between (𝑢0, 𝑣0) and the source point as the scaled polygon 

edge is traversed, allowing for the transformation to be 

standardized across all polygon shapes under a single 

formulation. While we are effectively breaking the polygon 

into 𝑁 sub-triangles, similarly to other polar formulations, it is 

the consideration of each scaled polygon as its own unified 

shape with constant “radius” 𝜌′ that differentiates the 

proposed scheme. This thinking ultimately facilitates 0 to 2𝜋 

angular extent crucial to the proof of convergent exact strong 

singularity presented in the previous section. As we will see, 

the azimuth function combined with the rest of the integrands 

of the scaled polar formulation exhibit an angular dependence 

that is smooth enough to be tractable using Gaussian 

quadrature rules for the 𝜑′ integration. The number of 

necessary sample points will be discussed in Section VI.  

An aspect of this technique that should be noted is what 

happens if the observation point (𝑢0, 𝑣0) lies on an edge or 

vertex of the base polygon. If this is the case and 𝜑′ is such 

that the active edge of the scaled polygon overlaps entirely 

with the base polygon boundary, 𝑤𝑗𝑣⃗⃗⃗⃗⃗⃗⃗𝑤𝑖𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑤𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑤𝑖𝑗𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  for all 𝜑′ 

in that interval, and thus, (𝑢′, 𝑣′) = (𝑢0, 𝑣0) since 𝑓(𝜑′) = 0. 

To show that this is the case, consider (𝑢0, 𝑣0) lying on an 

arbitrary edge/vertex. Again, if this is the case, then every 

point on one or two of the scaled polygon edges (one if the 

source point is on a base polygon edge and not a vertex, and 

two if it’s on a vertex) lies on the base polygon boundary. Let 

𝑒𝑖𝑗𝑏  be the base polygon edge that overlaps with one of the 

scaled polygon edges. Given the overlap, it is clear that 

𝑒𝑖𝑗𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑤𝑖⃗⃗⃗⃗⃗ = 𝑒𝑖𝑗𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑤𝑗⃗⃗⃗⃗⃗ = 0 (note 𝑒𝑖𝑗𝑏⃗⃗ ⃗⃗ ⃗⃗ ⃗ is the vector between 

vertex 𝑖 and vertex 𝑗). Therefore, we may state that for some 

constant 𝛼, 𝑤𝑖⃗⃗⃗⃗⃗ = 𝛼𝑤𝑗⃗⃗⃗⃗⃗, meaning that 𝑤𝑖𝑗⃗⃗ ⃗⃗ ⃗⃗ = (𝛼 − 1)𝑤𝑗⃗⃗⃗⃗⃗. Since 

(𝛼 − 1) is scalar, it is clear then that 𝑤𝑗𝑣⃗⃗⃗⃗⃗⃗⃗𝑤𝑖𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑤𝑗𝑢⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑤𝑖𝑗𝑣⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  for 

this case. However,  𝜌′ is not necessarily equal to 0, 

depending on the size of the scaled polygon under 

consideration. Note that eqn. (4.6) cannot be used in this case 

to determine 𝜌′ since direct evaluation yields an 

indeterminant. Since our objective is numerical integration, 

however, we may simply assert 𝜌′ values during the 

evaluation process, so the potential ambiguity is not a 

problem.  

In any case, a 𝑓(𝜑′) equal to 0 does not change the analysis 

(it merely causes the integrand exponential and the 𝜌′ = 0 

limit integrand to vanish), and thus, edge/vertex observation 

points do not require special treatment other than the active 

edge merging described above if the observation point is a 

vertex. 

This now constitutes everything needed to evaluate the 

strongly singular integral over an arbitrary polygon. In the 

following sections, we will discuss some near-singularity 

strategies and show example computations of the eqn. (2.5) 

integral using the above formulation. 

V. NEAR-SINGULARITY TREATMENT 

For the above formulation, special care must be taken if the 

observation point is close to the source domain, but not lying 

exactly on it, thus creating a near-singularity. Under this 

circumstance, the integral computation becomes unwieldy 

near the projected observation point, and a spiked delta 

function-type behavior is observed, similar to the phenomenon 

highlighted in [5] that motivates focused treatment of near-

singular cases. During our analysis, this was empirically found 

to occur, with varying intensities, when the length of the 

vector connecting the observation point and its projection is 

between ~10-20 and 10-1. Below this range, the principal value 

behavior begins to dominate, and the integrand spike is 

suppressed. Above it, the spike fails to develop appreciably. 

To deal with the spike, if the length of the projection distance 
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vector, |ℎ⃗⃗|, is within this range, we break the radial integral 

into several logarithmic 𝜌′ intervals. The first interval is [0, 

10|ℎ⃗⃗|], the second is from [10|ℎ⃗⃗|, 100|ℎ⃗⃗|], and so on until 

10𝑁|ℎ⃗⃗| exceeds 0.1. Then, the rest of the integral is computed 

on the interval [10𝑁|ℎ⃗⃗|, 1]. This is similar in style to the “ℎ-

refinement” technique discussed in [5], only involving far 

fewer sample points. The distance from 𝜌′ = 0 that the spike’s 

maximum value occurs is proportional to |ℎ⃗⃗|, and this interval 

technique was empirically found to capture the dynamics of 

the spike well. Smaller interval divisions are possible, but 

were not found to increase evaluation accuracy substantially. 

The 𝜌′ integral on each interval is computed using the above 

formulation and Gaussian quadrature rules, as reducing the 

interval size creates smooth integrands in 𝜌′. In this way, the 

scaled polar formulation may be used in a general manner, 

even when near-singularities are involved. In the next section, 

we will demonstrate the results when applying this technique 

to a triangular domain. 

VI. NUMERICAL EXAMPLE 

To demonstrate polar regularization integrand computation, 

we will consider a triangular integration domain along with 

associated RWG basis functions [10]. These basis functions 

are defined for triangle pairs where one edge is shared 

between the triangles. As described in [10], for each shared 

edge, one triangle is the ”+” triangle and one is the “–“ 

triangle. Here, we will consider all of the edges of both 

triangles to be interior to the greater domain that the triangles 

are partially discretizing, meaning that there are three basis 

functions to evaluate (see eqn. (9) of [10]). Consider a + 

triangle with vertices 𝑥1⃗⃗ ⃗⃗ ,  𝑥2⃗⃗⃗⃗⃗, and 𝑥3⃗⃗⃗⃗⃗  in Cartesian coordinates 

as before. Similarly to above, we may form edge vectors 

defined as 

 

𝑙21
⃗⃗⃗⃗⃗⃗ =  𝑥2⃗⃗⃗⃗⃗ − 𝑥1,⃗⃗ ⃗⃗ ⃗                               (5.1𝑎) 

 

𝑙32
⃗⃗⃗⃗⃗⃗ =  𝑥3⃗⃗⃗⃗⃗ − 𝑥2,⃗⃗⃗⃗⃗⃗                               (5.1𝑏) 

 

𝑙13
⃗⃗ ⃗⃗ ⃗ =  𝑥1⃗⃗ ⃗⃗ − 𝑥3,⃗⃗⃗⃗⃗⃗                               (5.1𝑐) 

 

and compute the triangle area as 

 

𝐴 =
1

2
|𝑙13
⃗⃗ ⃗⃗ ⃗ × 𝑙21

⃗⃗⃗⃗⃗⃗ |.                                 (5.2) 

 

From here, we define the three RWG basis functions as 

 

�⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) =  
|𝑙32
⃗⃗⃗⃗⃗⃗ |

2𝐴
(𝑥′⃗⃗⃗⃗ − 𝑥1⃗⃗ ⃗⃗ ),                         (5.3𝑎) 

�⃗⃗⃗�𝟐(𝑥′⃗⃗⃗⃗ ) =  
|𝑙13
⃗⃗ ⃗⃗ ⃗|

2𝐴
(𝑥′⃗⃗⃗⃗ − 𝑥2⃗⃗⃗⃗⃗),                         (5.3𝑏) 

�⃗⃗⃗�𝟑(𝑥′⃗⃗⃗⃗ ) =  
|𝑙21
⃗⃗⃗⃗⃗⃗ |

2𝐴
(𝑥′⃗⃗⃗⃗ − 𝑥3⃗⃗⃗⃗⃗),                         (5.3𝑐) 

 

where some 𝑥′⃗⃗⃗⃗  lies within the triangle. The – triangle is 

formed by introducing a 4th node 𝑥4⃗⃗⃗⃗⃗, establishing 𝑒32 as the 

shared edge, and developing the – triangle basis functions 

accordingly. For the – triangle, �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) corresponds to the 𝑥4⃗⃗⃗⃗⃗ 

node. With these basis functions, we may now evaluate eqn. 

(2.5). As shown in the previous sections, this integral, once 

transformed, consists of a double integral in 𝜌′-𝜑′ space. 

Since the integral is regular, as proved previously, it may be 

evaluated using one’s desired choice of quadrature rules. Here, 

for demonstrative purposes, we will evaluate the 𝜑′ integral 

first and plot the resulting 𝜌′ integrand as a function of 𝜌′ to 

show that it is finite and continuous when 𝜌′ = 0.  That is, we 

may represent the integral we wish to evaluate as  
 

∫ ∫ 𝐼′(𝜌′, 𝜑′)𝑑𝜑′𝑑𝜌′

2𝜋

0

1

0

,                          (5.4) 

 

and we will plot the function 

 

𝑔(𝜌′) = ∫ 𝐼′(𝜌′, 𝜑′)𝑑𝜑′          

2𝜋

0

               (5.5) 

 

to show integrand existence and continuity for all 𝜌′ values. 

Note that 𝐼′(𝜌′, 𝜑′) may be found by following procedures 

similar to those outlined in eqns. (2.5)-(2.9), only for all the 

terms in the eqn. (2.5) brackets. We will choose a randomly-

generated set of nodes for this exercise with vertices defined 

as follows: 

 

𝑥1⃗⃗ ⃗⃗ = [−.0276, .0042, .0246],             (5.6𝑎) 

 

𝑥2⃗⃗⃗⃗⃗ = [. 0012, −.0349, .0294],            (5.6𝑏) 

 

𝑥3⃗⃗⃗⃗⃗ = [−.0251, .0188,  . 0343],            (5.6𝑐) 

 

𝑥4⃗⃗⃗⃗⃗ = [.0291, −.0050, .0099].             (5.6𝑑) 

 

Note that the vertices have been scaled such that the maximum 

triangle side-length is equal to λ/10 at 500 MHz. The shared 

edge for the triangle pair will be that connecting 𝑥2⃗⃗⃗⃗⃗ and 𝑥3⃗⃗⃗⃗⃗, 

with 𝑥1⃗⃗ ⃗⃗  belonging only to the + triangle and 𝑥4⃗⃗⃗⃗⃗ belonging to 

the – triangle. Following the polar regularization procedures 

described above, we obtain the integrand functions shown in 

Figs. 3, 4 for the + and – triangle �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) basis functions when 

the observation point is placed in the center of the shared 

edge, which we will term 𝑚32⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , and offset by with a vector 

equal to 10−3 times the vector connecting 𝑚32⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and the + 

triangle centroid, giving an |ℎ⃗⃗| of 3.6938 × 10−6 for the – 

triangle (the observation point is still within the + triangle, so 

|ℎ⃗⃗|  = 0 for that one) with ℎ̂ = −.6583�̂� − .2578�̂� − .7072�̂�.  

As demonstrated by the plots in Fig. 5, the 𝜌′ integrands for an 

observation point lying on the source domain are indeed 

smooth and continuous for all values of 𝜌′ including 𝜌′ = 0,  
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(a) 

 
(b) 

Fig. 3.   λ/10 + triangle �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) 𝜌′ integrand real part (a) and imaginary part 

(b). 

 

where the integrand vanishes. In fact, the real parts are linear 

in nature for small triangles, which is an advantageous 

property, as it lowers the required number of sample points for 

accurate integration.  

For the – triangle, the observation point position 

corresponds to 6 interval separations given our logarithmic 

interval scaling. Fig. 4 shows the �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) 𝑔(𝜌′) values 

computed for the – triangle for 𝜌′ = [0, 1], with a zoomed-in  

plot showing the 𝜌′ = [0, 10|ℎ⃗⃗|] interval for the real part. As 

is apparent from the figure, significant spikes in the integrand 

functions present themselves for this case, the spike peaks are 

adequately smooth within the first interval choice. The 

remaining intervals ensure that the fall-off from the large spike 

values is effectively represented. For all of these plots, the 

𝑔(𝜌′) values were computed using Gaussian quadrature rules 

with 11 sample points per active edge (33 points in total for 

the angular integral). This confirms that the integrals are 

tractable under the polar transformation.  

To examine the convergence dynamics, we plot the asymptotic 

behavior of the integral evaluations as the number of Gaussian 

quadrature sample points is increased. This will be done for  

 
(a) 

 
(b) 

 

 
(c) 

Fig. 4.   λ/10 – triangle �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) 𝜌′ integrand real part (a) and imaginary part 

(b), with zoomed-in view of near-singular spike (c). 

 

the observation point just described. For simplicity, we will 

keep the number of sample points the same for both the 

angular and radial integrals, though this is not required. Figs. 

5, 6 demonstrate the convergence for the �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) basis 

function. The plots show the absolute value of the difference 

between the integrals evaluated using differing numbers of 

sample points and the integrals evaluated using 101 sample  
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(a) 

 
(b) 

Fig. 5.   λ/10 + triangle �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) Gaussian quadrature convergence. 

 

points, normalized by the 101 sample point integral. Note this 

is done for each vector component. That is, we plot the value 𝜀 

defined as  
 

𝜀(𝑁) =
|𝐼𝑁 − 𝐼101|

|𝐼101|
,                                  (5.7) 

 

where 𝐼𝑁 is a component of the real or imaginary part of the 

integral evaluation using 𝑁 sample points and 𝐼101 is the 

evaluation of that component for 101 sample points. Note the 

total number of Gaussian quadrature evaluations for both the  

angular and radial integrals is 3𝑁2 for the + triangle and 18𝑁2 

for the – triangle since 6 intervals are used for the near-

singularity. For the + triangle evaluations, which contain the 

observation points in their source domains, the convergence 

requires ~20 or more sample points to achieve precision on the 

order of 1 × 10−6 for the real part and 1 × 10−4 for the 

imaginary part (all components have the same convergence 

behavior, so their curves overlap). Note that for these 

calculations, the imaginary part is several orders of magnitude 

smaller than the real part, which impacts the relative precision. 

The convergence on the – triangle is more modest, with a less 

stable precision curve that is below  1 × 10−3 for 20 or more 

sample points for both the real and imaginary parts. This is 

expected, since these integrals deal with the near-singularities. 

It should be noted that the precision is impacted negatively by  

 
(a) 

 
(b) 

Fig. 6.   λ/10 – triangle  �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) Gaussian quadrature convergence with 6 

interval separations for |ℎ⃗⃗| of 3.6938 × 10−6. 

 

the size of the triangle and the direction of the projection 

vector from the triangle domain to the near-singularity. To 

show this, we will repeat the convergence exercise for the 

same triangles scaled to λ/5 instead of λ/10, and place the 

observation point at a position that is offset from the center of 

the shared edge by λ/100 in the direction perpendicular to the 

+ triangle plane, similarly to a case examined in [9]. The  

results are shown in Figs. 7, 8. As the plots demonstrate, the + 

triangle precision is greatly improved, achieving results 

similar to previous works ([6]-[9]), while the precision for the 

– triangle is largely unchanged. Since the previous works in 

the literature, to the  

author’s knowledge, only demonstrate near-singularities with 

purely perpendicular projections, it is unclear how other 

methods would compare regarding the non-perpendicular 

projections and small triangles examined here. Nevertheless, 

the technique provided here is fully-numerical, natively 

supports any basis function, can be used on planar polygons 

with an arbitrary number of edges, and is directly applicable to 

strong and weak singularities alike. Because of this, and 

because even the reduced precision results are sufficient for 

most applications, the method proposed in this work shows 

great usefulness. In Table 1, for completeness, we show the 

total integral evaluations, taken to four significant digits, for 

each basis function for the λ/10 triangles and the first  
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(a) 

 
(b) 

Fig. 6.   λ/5, +-triangle-perpendicular observation point + triangle  �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) 

Gaussian quadrature convergence with 3 interval separations for |ℎ⃗⃗| of . 006. 

The breaks in the curve represent points where the reference and test integrals 

are equal to machine precision. 

 

observation point described above. Recall that this observation 

point is exactly singular for the + triangle and near-singular 

for the – triangle. 

VII. CONCLUSION 

In this work, we have demonstrated a polar transformation 

technique that regularizes the strong singularity found in 

common Helmholtz surface integrals used in MoM 

formulations regardless of observation point position. The 

technique is applicable to any basis function and straight-

edged planar shape, making it highly versatile compared to 

singularity extraction techniques, which require a new 

analytical integral to be evaluated for each type of shape and 

basis function. Moreover, the polar scaling formalism is 

intrinsically open to extension to higher order surfaces and 

more sophisticated edge geometries (as opposed to simple 

straight edges). These topics will be the focus of future 

research. Furthermore, this work rigorously proves that the 

Helmholtz strongly singular integral is convergent, whereas no 

such proof has been made readily available in the literature for 

this case before now. The technique of this work has been 

shown to smoothly regularize the integrand such that the latter 

may be simply evaluated with Gaussian quadrature rules.  

 
(a) 

 
(b) 

Fig. 7.   λ/5, +-triangle-perpendicular observation point – triangle   �⃗⃗⃗�𝟏(𝑥′⃗⃗⃗⃗ ) 

Gaussian quadrature convergence with 3 interval separations for |ℎ⃗⃗| of . 006. 

 

 

As such, the technique proposed here represents a powerful 

method for evaluating Helmholtz integrals over planar 

domains. 
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