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A Survey on Generative AI and LLM for Video
Generation, Understanding, and Streaming

Pengyuan Zhou, Lin Wang, Zhi Liu, Yanbin Hao, Pan Hui, Sasu Tarkoma, Jussi Kangasharju

Abstract—This paper offers an insightful examination of how
currently top-trending AI technologies, i.e., generative artificial
intelligence (Generative AI) and large language models (LLMs),
are reshaping the field of video technology, including video gener-
ation, understanding, and streaming. It highlights the innovative
use of these technologies in producing highly realistic videos, a
significant leap in bridging the gap between real-world dynamics
and digital creation. The study also delves into the advanced
capabilities of LLMs in video understanding, demonstrating their
effectiveness in extracting meaningful information from visual
content, thereby enhancing our interaction with videos. In the
realm of video streaming, the paper discusses how LLMs con-
tribute to more efficient and user-centric streaming experiences,
adapting content delivery to individual viewer preferences. This
comprehensive review navigates through the current achieve-
ments, ongoing challenges, and future possibilities of applying
Generative AI and LLMs to video-related tasks, underscoring
the immense potential these technologies hold for advancing the
field of video technology related to multimedia, networking, and
AI communities.

Impact Statement—This paper contributes to the field of video
technology by examining the integration of Generative AI and
Large Language Models (LLMs) in video generation, understand-
ing, and streaming. Its exploration of these technologies offers
a foundational understanding of their potential and limitations
in enhancing the realism and interactivity of video content.
The exploration of LLMs in video comprehension sets the
stage for advancements in accessibility and interaction, promis-
ing enhanced educational tools, improved user interfaces, and
advanced video analytics applications. Additionally, the paper
underscores the role of LLMs in optimizing video streaming
services, leading to more personalized and bandwidth-efficient
platforms. This could substantially benefit the entertainment
sector with adaptive streaming solutions tailored to individual
preferences. By identifying key challenges and future research di-
rections, the paper guides ongoing efforts to merge AI with video
technology, while raising awareness about potential ethical issues.
Its influence extends beyond academia, encouraging responsible
AI development and policy-making in video technology, balancing
technological advancements with ethical considerations.

Index Terms—Generative Artificial Intelligence (AI), Large
Language Model (LLM), Video Understanding, Video Genera-
tion, Video Streaming, GPT

I. INTRODUCTION

The creation, analysis, and delivery of video content have all
undergone significant breakthroughs in recent years thanks to
exciting advancements in video-related technology. Academia
and industry have worked to push the limits of what is
feasible in the field of video processing, from creating realistic
videos to comprehending complicated visual environments
and optimizing video streaming for better user experiences.

Corresponding author: Pengyuan Zhou (zpymyyn@gmail.com)

Integrating Generative AI and LLM can open up exciting
possibilities in video-related fields.

With the ability to create lifelike and contextually consistent
videos, video creation has emerged as an intriguing study
field. Researchers have made significant progress in producing
movie clips that reveal fine details and capture the essence
of real-world dynamics by utilizing deep learning methods
such as Generative Adversarial Networks (GANs). However,
challenges such as long-term video synthesis consistency
and fine-grained control over created content are still under
exploration.

Similar developments have been made in video understand-
ing, which entails gleaning important information from video
clips. Conventional techniques depend on manually created
features and explicit modeling of video dynamics. Recent
advancements in language and vision have made consider-
able progress. Pre-trained transformer-based architectures, like
OpenAI’s GPT, among other LLMs, in general, have shown
impressive talents in processing and producing textual data.
These LLMs hold great potential for video-understanding tasks
like captioning, action identification, and temporal localiza-
tion.

Furthermore, improving video delivery has become increas-
ingly important and challenging due to the rising demand for
high-quality, high-resolution, and low-latency video service
demands. Offering seamless and immersive streaming expe-
riences is significantly hampered by bandwidth restrictions,
network jitters, and different user preferences. By providing
context-aware video distribution, real-time video quality im-
provement, and adaptive streaming depending on user pref-
erences, LLMs present an exciting approach to overcoming
these difficulties.

In light of these advancements, this study thoroughly ana-
lyzes the potential of Generative AI and LLMs for generating,
comprehending, and streaming videos. We review existing
works to try to answer the following questions:

• What technologies have been proposed and are revolu-
tionizing the mentioned video research fields?

• What technical challenges remain to be addressed to
push forward the use of GAI- and LLM- methods in the
mentioned video services?

• What unique concerns have been raised due to the em-
ployment of GAI and LLM methods?

We hope to draw attention from the multimedia, networking,
and AI communities to encourage future research in this
fascinating and quickly developing area.
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Year GenAI LLM Generation Understanding Streaming Summary

[1], 2020
√

X
√

X X Overview of VAEs, GANs, and Transformers for video generation.

[2], 2023
√

X
√

X X Investigates Text-to-Image and Text-to-Video AI generators.

[3], 2023
√

X
√

X X Focus on AI methods for generating persuasive videos.

[4], 2022
√

X
√

X X Focus on GAN methods for video generation.

[5], 2023 X X X
√

X Focus on deep learning methods for description.

[6], 2020 X X X
√

X Survey description methods for specific datasets.

[7], 2019 X X X
√

X Methods, datasets and metrics for AI-based video description.

Ours, 2023
√ √ √ √ √

GenAI and LLM for video generation, understanding, and streaming.

TABLE I
RELEVANT SURVEY PAPERS IN RECENT YEARS.

II. METHODOLOGY

This survey targets a wide view of the interaction between
Generative AI and LLMs and the video field. It covers more
than 100 papers collected from Google Scholar, IEEE Xplore,
ACM Digital Library, Elsevier, ScienceDirect, DBLP, etc. The
queries combine the following keywords: Generative AI /
LLM & Video Understanding / Segmentation / Generation /
Streaming, and the keywords related to the key technologies
discussed in Section III. We further complement the articles
by adding prominent research featured on the Internet to cover
a comprehensive set of important publications in this area.
This process was continued until no new articles were found.
We have carefully examined the papers and selected the most
relevant and important articles while filtering out the less
relevant ones. The selected papers form the core of this survey,
and we have performed continuous updates during the survey
writing process to cover papers published since the start of
our process. Note that due to the rapid development and large
number of publications in relevant fields in 2023, there might
be some good new papers we overlooked; however, we have
made our best efforts.

III. OVERVIEW

We envision Generative AI and LLMs play key roles in the
full life cycle of video, from generation, and understanding,
to streaming. The framework crosses three major computer
science communities, i.e., AI, Multimedia, and Networking.
AI community is witnessing an unprecedented development
rate that takes only roughly a year from models capable
of text-to-image generation to those capable of text-to-video
generation, from 2021 to 2022. Now there are even demos
showing the ability to create 3D videos just by using prompts.
Therefore, we can only imagine Generative AI becoming more
important for the video generation industry, outrunning or even
replacing entirely the conventional generation methodologies.
Video understanding is useful for many cases, e.g., scene
segmentation, activity monitoring, event detection, and, video
captioning, a rising direction that gets increasing attention.
Since 2023, the LLMs’ capabilities of understanding mul-
timodal input such as images and videos have also been
significantly promoted by the most advanced products like

GPT-4 and Video-ChatGPT [8]. As for video streaming, LLMs
also hold interesting potential to improve several key steps of
the streaming pipeline. For instance, a model with improved
understanding capability can grasp the semantic meaning of
the video scenes and optimize the transmission by varying the
encoding rate accordingly. Further, 3D video streaming such
as point cloud which is widely used in XR games, can benefit
from LLM’s understanding of the surroundings to predict the
user’s FoV in the next moment to conduct content pre-fetching.

A. Main Components

The synergy between Generative AI and LLMs has opened
new frontiers in video generation, crafting visuals that are
increasingly indistinguishable from reality. These technologies
work together to enrich the digital landscape with innovative
content as follows (Section IV-A):

• GANs (Generative Adversarial Networks) leverage the
creative adversarial process between generative and dis-
criminative networks to understand and replicate complex
patterns, resulting in lifelike video samples.

• VAEs (Variational Autoencoders) generate cohesive video
sequences, providing a structured probabilistic framework
for the seamless blending of frames that narratively make
sense.

• Autoregressive models create sequences where each
video frame logically follows from the last, ensuring a
narrative and visual continuity that captivates viewers.

• Diffusion models convert intricate textual narratives into
detailed and high-resolution videos, pushing the bound-
aries of text-to-video synthesis.

Next, LLMs enhance video comprehension by providing
contextually rich interpretations and descriptions, facilitating
a deeper engagement with video content (Section IV-B):

• Video captioning employs LLMs to generate insightful
and accurate descriptions, capturing the essence of the
visual content in natural language, making videos more
searchable and accessible.

• Video question answering harnesses the contextual un-
derstanding capabilities of LLMs to field complex viewer
inquiries, providing responses that add value and depth
to the viewing experience.
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• Video retrieval and segmentation are revolutionized by
LLMs, which parse and categorize video content into
intelligible segments, streamlining the searchability and
navigation of extensive video libraries.

Last but not least, LLMs can redefine the streaming land-
scape by optimizing bandwidth usage, personalizing content
delivery, and enhancing viewer interaction from the following
perspectives (Section IV-C):

• Bandwidth prediction is refined through LLMs that ana-
lyze past and present network data, predicting future de-
mands to allocate resources proactively, thereby ensuring
uninterrupted streaming.

• Viewpoint prediction is augmented by LLMs’ compre-
hension of content and user behavior, anticipating the
next focus area within a video to deliver a tailored and
immersive viewing experience.

• Video recommendation and resource allocation are ad-
vanced by the analytical prowess of LLMs, matching
viewer preferences with content and managing network
resources to deliver a customized and efficient streaming
service.

IV. TECHNOLOGIES

A. Generative AI for Video Content Generation

Generative AI has emerged as a powerful tool for creating
a wide range of content, including images, text, music, and
video. For video content creation, generative models have the
potential to revolutionize the way we create and consume
video by automating the generation of realistic and high-
quality content. Generative models, especially deep learning-
based generative models such as GANs [9], Variational Au-
toencoders (VAEs) [10], autoregressive models [11], and
diffusion-based models [12], [13], [14], have demonstrated
remarkable success in generating realistic and diverse content
in various domains. These models learn the underlying data
distribution by training on large datasets, enabling the gen-
eration of samples that resemble the training data. Some of
the SOTA generative models are listed in table II. However,
generative AI models face unique challenges in the context of
video content generation due to the spatial-temporal property
of videos, the requirement of photo-realistic dynamic scenes,
and the considerable cost of processing video data. Despite
these challenges, significant progress has been made in devel-
oping generative models for video content creation. We now
discuss them in detail.
GANs consist of a generator and a discriminator, which are
trained in a two-player min-max game. The generator learns
to generate realistic samples, while the discriminator learns
to distinguish between generated samples (i.e., fake) and
ground truth (GT) samples (i.e., real). For video generation,
GANs have been extended to model temporal consistency and
generate realistic video frames. An example is VideoGAN [9],
introducing a two-stream architecture to separately model
appearance and motion in videos. The generator produces
video frames, while the discriminator evaluates the realism of
individual frames and the motion between consecutive frames.

This approach is successful in generating realistic videos of
human actions and scenes.
Variational Autoencoders (VAEs) are generative models that
learn a probabilistic mapping between the data space and a
latent space by optimizing a variational lower bound on the
data likelihood. In the context of video generation, VAEs
have been adapted to model the temporal structure of videos
and generate video sequences. One example is the Stochastic
Video Generation (SVG) framework [10], which extends VAEs
to model the distribution of future video frames conditioned
on past frames. The SVG framework introduces a hierarchy
of latent variables to capture the multi-scale nature of video
data, enabling the generation of diverse and realistic video
sequences.
Autoregressive models generate data by modeling the con-
ditional distribution of each data point given its preceding
data points. In the context of video generation, autoregressive
models can be used to generate video frames sequentially,
conditioning each frame on the previously generated frames.
A prominent example is the Video Pixel Networks [11],
an autoregressive model that extends the PixelCNN [22] to
model video data. VPN encodes video as a four-dimensional
dependency chain, where the temporal dependency is captured
using an LSTM and the space and color dependencies are
captured using PixelCNN. Transformer [23], on the other
hand, models the sequential data and performs well at many
NLP and vision tasks. In contrast to GAN-based methods,
autoregressive models can deal with both continuous and
discrete data.
Diffusion models construct data generation as a denoising pro-
cess. DMs have recently shown remarkable success in visual
generation and achieved a notable state-of-the-art performance
on most image-related synthesis or editing tasks. Video diffu-
sion model (VDM) [12] is the first work that introduces DMs
to the domain of video generation by extending the U-net [24]
to a 3D version. Later, Imagen-Video [13], by taking the merit
of its strong pretrained text-image generator Imagen, exhibits
substantial capability in high-resolution text-video synthesis.
It interplaces the temporal attention layer in serial spatial
layers to capture the motion information. Make-a-Video [14]
is another powerful competitor in text-video synthesis by
conditioning on the CLIP [25] semantic space. It first generates
the keyframes conditioning text prior information and then
cascaded with several interpolations and upsampling diffusion
model to achieve high consistency and fidelity. However, both
aforementioned pioneer works suffer from high computational
costs, and Video LDM [18] is proposed to alleviate the
problem by generating motion-aware latent representations in
a semantically compressed space.

B. LLMs for Video Scene Understanding

Video scene understanding is a task that aims to extract
meaningful information from videos. It involves recognizing
objects, activities, and events in a video and understanding the
relationships between them [26]. Generative AI and LLMs
have emerged as promising approaches for video scene un-
derstanding due to their ability to learn from large amounts
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GAI and LLM for Videos: Technologies (Section IV)
Video Generation

• Image-to-Video (GANs)
• Frame-to-Sequences (VAEs)
• Frame/Text-to-Video (Autoregressive)
• Text-to-Video (Diffusion)

Video Understanding
• Video Captioning
• Video Question Answering
• Video Retrieval 
• Video Segmentation

Video Streaming
• Bandwidth Prediction
• Viewport Prediction
• Optimized Video Compression
• Resource Allocation

GAI and LLM for Videos: Applications (Section V)

Video Generation
• Video Synthesis
• Video Editing
• Video Prediction

Video Understanding
• Human Action and Behavior Recognition
• Dialogue and Conversation
• Human-Machine Interaction

Video Streaming
• 360° and Volumetric Video Streaming
• Short Video Recommendation 
• Video Service Enhancement

GAI and LLM for Videos: Challenges (Section VI)

Video Generation
• Poor Temporal Consistency
• High Computational Cost
• Lack Large-scale Datasets

Video Understanding
• Poor Temporal Reasoning
• Multimodal Understanding
• Real-time Processing
• Lack datasets/Poor Zero-shot

Video Streaming
• Varied Environments and Demands
• Lack Unified Standard
• Lack large-scale datasets

Fig. 1. Taxonomy of video generation, understanding, and streaming with GAI and LLMs.

Fig. 2. An overview of advanced AI-based video generation technologies.

of data and generate natural language descriptions of video
contents [27]. In this paper, we discuss the use of LLMs for
video scene understanding and review some of the techniques
that have been proposed in recent years.

Video scene understanding involves several subtasks, in-
cluding object detection, action recognition, and event detec-
tion [28]. Object detection aims to identify and localize objects
in a video, while action recognition aims to recognize human
actions such as walking, running, and jumping. Event detection

aims to identify and classify events such as accidents, sports
events, and concerts. These sub-tasks are challenging because
videos are complex and dynamic, and the same object or action
can appear in different ways and contexts.

LLMs are neural network models that are trained on
large amounts of text data to generate natural language text.
These models have achieved impressive results in natural lan-
guage processing tasks such as language translation, question-
answering, and text generation. LLMs can also be used for
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TABLE II
THE REVIEWED GENERATIVE METHODS FOR VIDEO CONTENT GENERATION.

Method Input information Task
GAN models

VideoGAN [9] Video Video generation and video prediction given a single static image in a close-set scene domain.
EDN [15] Video Video-to-video translation using pose as an intermediate representation.

VAE models
SVG [10] Video Video prediction given the initial frames of a simple motion video like human activity
SadTalker [16] Image, audio Talking head generation given a face image and a piece of speech audio.

Autoregressive models
Video Pixel Networks [11] Video Video prediction given the initial frames of a simple motion video like MNIST motion.
CogVideo [17] video, text Text-to-video generation, video prediction, and video frame interpolation.

Diffusion models
VDM [12] Video, text/label Text-conditioned or label-conditioned video generation, and video prediction.
Imagen-Video [13] video, text Text-to-video generation, video prediction, and video frame interpolation.
Make-a-Video [14] video, text Text-to-video generation, video prediction, and video frame interpolation.
Video LDM [18] video, text Text-to-video generation, high-Resolution video synthesis.
DreamTalk [19] Image, audio Talking head generation given a face image and a piece of speech audio.
Dancing Avatar [20] Motion, text Generating highquality human videos guided by textual descriptions and motion.
Discro [21] Motion, text Generating highquality human videos guided by textual descriptions and motion.

Text Inputs

Text Encoder

Video Encoder

Spatial Modeling Temporal Modeling

“A person is 
dancing”

Video Clips

Object 
Detection 

Video 
Captioning 

Video 
Segmentation VQA Video  

Retrieval 

Large Language Models (LLMs)

Fig. 3. An overview of LLMs for video scene understanding tasks.

video scene understanding by generating natural language
descriptions of the video content [27]. These descriptions can
help to summarize the video content and provide insights into
the objects, actions, and events in the video.

Several methods have been proposed for using LLMs for
different tasks in video scene understanding. Although differ-
ent tasks hold different requirements regarding the way to use
LLMs, we find they share some common components, such
as temporal and semantic feature extraction from video clips,
semantic and video feature alignment, etc., as illustrated in
Fig. 3. In the following, we discuss some of these techniques
and their advantages and limitations.
Video Captioning is a task that involves generating natural
language descriptions of the video content [29], [30]. This task
can be approached using LLMs by training them on a large
dataset of videos with corresponding captions. It involves two
major steps. Firstly, the extracted visual and audio features
are encoded into a fixed-length vector representation using the
trained LLM [31], [32]. This encoding captures the essential
information from the video and provides contextual cues
for generating accurate captions. Then, the LLM generates
textual descriptions or captions for the video. These captions

can encompass a range of details, including objects, actions,
events, or any other relevant information that describes the
video content effectively [33], [34].

Video captioning using LLMs finds application in various
areas, including enhancing accessibility for individuals with
hearing impairments, facilitating video search and retrieval,
generating video summaries, and improving overall under-
standing of video content [35].
Video Question Answering is a task that involves answering
natural language questions about the video content. This
task can be approached using LLMs by training them on
a large dataset of videos with corresponding questions and
answers [36], [37], [36]. The model learns to extract relevant
information from the video content to answer the question.
The advantage of this approach is that it can generate specific
answers to specific questions. However, the limitations of this
approach are that it requires large amounts of labeled data and
it may not capture the context and complexity of the video
content [38], [39], [40].
Video Retrieval using LLMs refers to the process of searching
and retrieving relevant videos from a large video database
using advanced language models. LLMs are powerful neural
network models that can understand and generate human-like
text based on large amounts of training data [41], [35]. This
task can be approached using LLMs by training them on a
large dataset of videos with corresponding textual descriptions.
The representative approaches [33], [42] learn to associate
the visual content of the video with the corresponding textual
description, as depicted in Fig. 3. With the power of LLMs,
it enables more accurate and efficient video retrieval, improv-
ing the user experience and enhancing the utility of video
databases. However, the limitations of this approach are that
it requires large amounts of labeled data and may not capture
the fine-grained details of the video content [43], [44].
Video Segmentation, the task of segmenting objects or re-
gions of interest in videos, can benefit from the application
of LLMs [45]. LLMs can aid in semantic video segmentation
by leveraging their language understanding capabilities. By
incorporating textual descriptions or prompts, LLMs can guide
the segmentation process, providing high-level context and se-
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mantic understanding. For instance, LLMs can generate textual
masks or descriptions that describe the desired object or region
to be segmented, assisting in accurate and contextually relevant
segmentation [31], [46]. Moreover, video segmentation often
requires temporal reasoning to accurately segment objects or
regions over time. LLMs can be utilized to model long-range
temporal dependencies and capture contextual information
across video frames. By incorporating temporal cues into the
language prompts or training LLMs with temporal objectives,
they can facilitate temporal video segmentation, allowing for
more coherent and consistent segmentations [35].

In a nutshell, LLMs have emerged as a promising approach
for video scene understanding due to their ability to learn
from large amounts of data and generate natural language
descriptions of the video content. The techniques discussed
in this paper demonstrate the potential of LLMs for video
scene understanding. However, these techniques also have
limitations, such as the requirement for large amounts of
labeled data and the inability to capture fine-grained details
of the video content. Further research is needed to improve
the performance of LLMs for video scene understanding and
to overcome these limitations.

C. LLM for Video Streaming

Next, we explore how ChatGPT-like LLMs can enhance
the video streaming experience from various perspectives. As
illustrated in Fig. 41, a typical video system consists of video
capturing, video encoding (i.e., compression), video network
transmission, video decoding, and video frame recovery. We
first discuss the trending video formats with their featuring
challenges. Then we summarize the potential of LLM for
video streaming to tackle the challenges.
LLMs for Bandwidth Prediction. The future bandwidth
prediction is a fundamental issue for improving video trans-
mission. Bandwidth data is temporal; currently, a significant
amount of work relies on deep learning methods like LSTM
and RNN. Large-scale forecasting models can offer substantial
advantages in predicting time series, enabling better anticipa-
tion of future network conditions and serving as a cornerstone
for video transmission. Moreover, in new environments where
sample scarcity is a concern, effective utilization of LLMs
and transfer learning techniques can produce promising re-
sults even with limited samples. For example, Azmin et al.
[47] presented a transformer-based model designed for 5G
datasets, demonstrating significant enhancements compared
to schemes relying solely on LSTM. They introduced novel
feature analysis techniques, including LASSO and Random
Forest with updated hyper-parameters, alongside the existing
Random Forest with Informer.
LLMs for Viewport Prediction. One critical aspect of the
VR/360° and other immersive video systems is viewport
prediction, which involves accurately anticipating the user’s
next viewpoint within the virtual environment [48], [49].
This prediction is crucial for ensuring a seamless and re-
sponsive viewing experience. To enhance viewport prediction,

1Note that occasionally only part of this system is considered in a specific
work.

we can leverage the capabilities of LLMs like the GPT-
4, which have shown exceptional performance in NLP and
generation tasks. By adapting such language models to handle
video-related data, we can significantly improve view angle
prediction accuracy. The process involves training the LLM
on vast datasets containing video sequences, user interaction
patterns, and positional data to learn complex patterns and
dependencies in user behavior, resulting in better predictions
for the user’s next view angle. For instance, the work by
[50] introduces a transformer-based approach for predicting
viewports in 360° videos. This technique focuses solely on
analyzing past viewport scanpaths to achieve precise long-term
viewport predictions while maintaining low computational
complexity. In the study conducted by [51], transformers are
incorporated to evaluate their efficacy in gaze estimation.
By retaining convolutional layers and combining CNNs with
transformers, the transformer functions as a complementary
component to enhance the overall performance of CNNs, re-
sulting in excellent performance. Additionally, [52] combines
gaze features with scene contexts and the visual characteristics
of human–object pairs, through a spatiotemporal transformer
to forecast human–object interactions in videos.

Optimized Video Compression. LLMs can optimize video
coding and compression, reducing file sizes and improv-
ing transmission efficiency. For instance, [53] put forward
a masked image modeling transformer designed for deep
video compression. Following the concept of a proxy task in
pretrained language/image models, the transformer undergoes
training to fully exploit temporal correlation among frames and
spatial tokens within a few autoregressive steps. Meanwhile,
[54] introduced a transformer-based approach to neural video
compression that is elegantly simple, surpassing previous
methods in performance without relying on architectural priors
such as explicit motion prediction or warping.

Resource Allocation. In wireless communication networks,
resource allocation is a critical task that involves efficiently
distributing limited network resources such as bandwidth,
power, and time slots among various users and applications.
Video streaming, being one of the most data-intensive and
popular applications, demands careful resource allocation to
ensure smooth and high-quality video delivery to users.

LLMs can process and analyze various textual inputs related
to video streaming, including user preferences, video content
descriptions, network conditions, and other contextual data.
Using this information, LLMs can better understand user
demands, video characteristics, and network requirements,
to propose optimized resource allocation strategies. These
strategies aim to prioritize and allocate resources in a way that
maximizes the quality of video streaming, minimizes buffering
or latency issues, and enhances the overall user experience.

Moreover, LLMs can continuously learn from vast amounts
of data, adapting their resource allocation decisions over time
based on changing network conditions and user behavior.
This adaptability allows the resource allocation process to be
dynamic and responsive to real-time changes, leading to more
efficient and adaptive video streaming services.
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scene of
interest camera servers

backbone
network

base station terminals

Fig. 4. Illustration of a typical video transmission system. The scene of interest is captured by multiple cameras and the compressed video is conveyed to
servers. The videos are distributed through the backbone network and directly received by mobile users from the corresponding wireless base station.

“A cat is walking on grass.”

Model

Model

Future Frames

Model

Video Synthesis

Video Prediction

Video Editing

“Sunset”Input Video

Input Text

Input Video

Generated Videos

Edited Video

Input Image and Audio
Or

Input Motion and Text
Or

Clothes: pink skirt, …
Face: a girl, ……
Location: on seaside

Fig. 5. Video Generation Applications.

V. APPLICATIONS

A. Generation

Video Synthesis. Generative AI models can be used to syn-
thesize novel video content, enabling the creation of realistic
scenes and special effects without manual intervention. Due
to the inherent training instability of GANs, relatively fewer
explorations have been conducted on GAN-based models
for cross-modal video synthesis. TGAN [55], as an early
attempt, utilizes GAN for video generation by first gener-
ating a latent representation using a temporal generator and
decoding it into pixels using an image generator. NUWA [56],
a transformer-based model, proposes a unified cross-modal
generative model capable of accommodating various gener-
ative scenarios such as text-to-video, sketch-to-video, video
prediction, and more. CogVideo [17] extends the text-to-
image model CogView [57] by implementing a multi-frame-
rate hierarchical training strategy to better align the text and
video clips. Recent diffusion-based models such as Imagen-
Video [13] and Make-a-Video [14] have pushed the boundaries
of video generation to a new level. However, these diffusion
models suffer from a large number of parameters and complex
cascaded networks, which greatly limit the community’s abil-
ity to develop them further. Compared to other approaches,
Video LDM [18] exhibits both efficiency and expressiveness.
It achieves this by fine-tuning the publicly available Stable
Diffusion (SD) Image LDM model using a vast dataset of

10.7 million video-caption pairs from the WebVid dataset [58].
Text2Video-Zero [59] takes this a step further by proposing a
method that does not rely on video data. Instead, it employs
pre-defined global translation parameters to warp the latent
code and utilizes cross-attention with the start frame to obtain
consistent and denoised frames. Video LDM and Text2Video-
Zero have also emerged with the capability of personalized
video generation. Users can customize the concepts within the
video using methods like Dreambooth [60].

There are also works for domain-specific video synthe-
sis tasks, such as audio-based video generation and human
dancing video generation [20]. SadTalker [16] leverages a
conditional VAE to synthesize head motion and realize stylized
audio-driven talking face animation. DreamTalk [19] utilizes
a diffusion model to generate highly diverse talking heads
based on the provided source audio or video. For human
dancing video generation, the GAN-based pose-guided video
generation model, EDN [15], is fine-tuned on image-pose
pairs extracted from a specific human dancing video. It
is capable of generating a person’s image conditioned on
any open-set pose image. However, EDN faces challenges
in efficiently and accurately reconstructing human attribute
details without extensive pre-training. Discro [21] addresses
this issue by leveraging the current state-of-the-art pre-trained
diffusion model and a structural conditioning technique. To en-
hance attribute details during inference, it employs Grounded-
SAM [61] for foreground extraction and pre-trains the model
on an extensive human-attribute dataset, achieving improved
compositional aspects in dance synthesis.

Another line of research focuses on enhancing the smooth-
ness of text-guided video generation by integrating current
Large Language Models (LLMs). In order to better align visual
tokenization with the learning process of LLMs, MAGVIT-
v2 [62] is proposed as a concise and expressive video tok-
enizer. This enables improved video generation performance
of LLMs compared to diffusion-based models. VideoPoet [63],
functioning as a versatile video generation model, utilizes a
range of modal input tokenizers, including MAGVIT-v2, to
facilitate video tokenization. It is capable of handling various
video generation scenarios, involving the seamless conversion
between video and other modalities such as text and audio.
Video Editing allows users to customize edits for a given
video. Such applications are not limited to the capabilities
of limited synthesis models, allowing the model to focus
on editing specific scenes for improved temporal consistency.
For instance, DiffVideoAE [64] achieves fine-grained editing
of face-based speech videos by modifying face attributes or
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utilizing CLIP signals. Tune-a-Video [65] inflates the image
diffusion model and finetunes only on the given video to
enable text-based editing. Pix2Video [66] on the other hand,
achieves training-free and consistent text-edited videos by
injecting self-attention features from the previous frame into
the current frame, implicitly aggregating temporal information.
Layered neural representation [67], [68] is another promising
video editing method that aims to decompose video into
different layers. Text2Live [69] combines such a representation
with text guidance to show compelling video editing results.

With the ongoing advancements in generative AI techniques,
a multitude of video generation platforms have surfaced. One
notable example is the renowned Pika platform2, which serves
as an idea-to-video platform, leveraging AI to create and edit
videos seamlessly.
Video Prediction refers to the task of predicting future frames
in a video sequence based on the observed past frames. Video
prediction tasks have broad social implications, enhancing
entertainment, improving security, aiding in understanding
human behavior, and advancing autonomous systems. For ex-
ample, it can be deployed to autonomous systems to plan and
navigate their environment more effectively. Early recurrent-
based works like FRNN [70] functionalize by recurrently
inputting previous predictions to generate subsequent frames.
To address the fact that RNNs tend to lead to blurry results,
Hier-vRNN [71] increases the expressiveness of the latent dis-
tributions using a hierarchy of latent variables. Most recently,
conditional diffusion models also exhibit impressive results
in video prediction. By conditioning on previous frames,
RaMViD [72] incorporates random conditioning masking to
enable diffusion models to simultaneously perform prediction,
infilling, and prediction tasks. MVCD [73] also finds that
randomly and independently making out all the past frames
or all the future frames in the training tends to generate high-
quality predicted frames. FDM [74], on the other hand, found
that selective sparse and long-range conditioning on previous
frames is effective for generating long videos.

B. Video Scene Understanding

Human Action and Behavior Recognition is one of the core
tasks in video scene understanding, which aims to estimate hu-
man motion and behavior for online videos [75], [76], [77]. In
this context, it is required to analyze the motion and behavior
considering the diversity of human body sizes, postures, view
directions, lighting conditions, and camera movements, etc.
For this task, the major challenge is how to leverage the pre-
trained LLMs to learn a strong representation of human motion
from the video sequences [78]. LLMs have been recently
applied to diverse human action and recognition tasks. An
illustration of LLM-guided action recognition is shown in
Fig. 6. For example, Kaneko et al. [79] proposed a method
using LLMs to obtain new features for human activities based
on the text prompt design. Zhou et al. [80] proposed an
approach to connect the signals, such as camera video, Lidar,
and mmWave from the internet-of-things (IoT) sensors with
LLMs to achieve the goal of human action recognition. By

2https://github.com/pika/pika
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Fig. 6. An illustration of VLMs for human action recognition. The input
example is taken from the kinetics human action video dataset [82].

aligning the visual and language representation space, it is
possible to directly map the visual features with the linguistic
features. As such, the learned models are equipped with the
zero-shot learning capacity to recognize unseen objects by
imitating how humans recognize the objects. Wu et al. [81]
introduced a video-text recognition framework that uses the
natural language of vision-language models (VLMs), such
as CLIP [25] to bridge the video domain for cross-modal
knowledge extraction.

With LLMs or VLMs as guidance, human action and
object recognition methods have been widely applied to video
surveillance [86], robotic navigation [78], [87], [88], medical
diagnosis and healthcare [89], sports [86]. For instance, LLMs
with vision sensors enable robots with stronger NLP capacity
based on the video sequences. This enables more intensive
integration between the human and robot by imitating human
reasoning and conversations. In sports, the zero-shot recogni-
tion capacity and semantic richness of LLMs are used to guide
the action recognition models for diverse sports activities, such
as football and basketball.

In summary, the fusion of LLMs with videos for human
action and object recognition heralds an exciting epoch for
video scene understanding. With active research being made,
it enjoys a great benefit for a broader range of video-based
applications.
Video-based Dialogue and Conversation. LLMs are able to
provide semantic information and generate symbolic spatial
signals, which can serve as guidance for video scene under-
standing. Recently this has been demonstrated for interactive
video-based dialogue and conversation [42], [41], [83], [90],
[46], [91]. In this context, Video-ChatGPT [42] is designed
for video understanding and conversation by capturing the
spatial-temporal relationships between video frames based on
LLMs. It demonstrates strong conversation and contextual
understanding capabilities on diverse benchmark datasets.
VideoChat [83], on the other hand, introduces a video-centric
multi-modal dialogue system that integrates the video founda-
tion models and LLMs. Moreover, Liu et al. [41] extended the
LLMs to the video domain and incorporated a spatial-temporal
module for temporal modeling for the video conversation
tasks, as depicted in Fig. 7.
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TABLE III
THE REPRESENTATIVE METHODS FOR VIDEO SCENE UNDERSTANDING.

Method Input modalities Highlight
Human Action and Behavior Recognition

Kaneko et al. [79] Text, video Designing text prompts to obtain new features.
Zhou et al. [80] Text, video, Lidar, nnMave Aligning visual and language representation space for human action recognition.
Kaneko et al. [79] Video, text Using VLMs to bridge video domain for cross-modal knowledge extraction.

Video-based Dialogue and Conversation
Video-ChatGPT [8] Text, video Capturing spatial-temporal relationships between video frames with LLM.
VideoChat [83] Text, video Video-centric dialogue system based on video foundation models and LLM.
Liu et al. [41] Text, video temporal modeling for video conversation tasks.

Human-Robot/Machine Interaction
PaLM-E [84] Text, image, video A single large embodied multimodal model to tackle diverse embodied reasoning tasks.
LM-Nav [85] Text, video A robot-dialogue system for seamless interaction with humans based on video inputs.

Fig. 7. A representative pipeline of video conversation based on LLMs [41].

To summarize, recent progress in video-based dialogue and
conversation has been primarily demonstrated by the integra-
tion of video/image-based models with LLMs. With LLMs, it
is possible to achieve zero-shot conservation by exploring the
temporal relationship with video-centered dialogue modeling.

Human-Robot/Machine Interaction. With the popularity of
LLMs, many research endeavors have been devoted to the
application of LLMs in the field of human-robot/machine
interaction, as exemplified by the visual illustration in Fig. 8.
On one hand, with pre-trained LLMs, robots are endowed with
the capacity to understand human needs and queries [84]. On
the other hand, LLMs enable robots to articulate fluent and
human-like natural language via interaction with LLMs [85].
However, applying LLMs for human-robot/machine interac-
tion needs to deal with the inaccurate reasoning provided by
the LLMs. To this end, robot-dialogue systems are developed
for more seamless interaction with humans based on camera
video inputs.

As an emerging area, this direction exhibits great po-
tential and it provides new paradigms for robot navigation
and human-robot interaction. LLMs help enhance learning
efficiency and performance, and meanwhile, strengthen the
interaction between humans and robots.

Fig. 8. An example of navigation instructions based on the large language
model (LLM) for landmark extraction, a vision-and-language model (VLM)
for grounding, and a visual navigation model (VNM) for execution [85].

C. Streaming

While the use of LLMs in video streaming is still in
its infancy, the potential applications in areas such as user
viewing angle prediction, network condition prediction, and
video content encoding and processing suggest significant de-
velopment opportunities. Ongoing research and innovation are
poised to propel the application of LLMs in video streaming,
ultimately offering users more intelligent and personalized
viewing experiences. In this context, we delve into several
classic applications of transformer-based LLMs within the
realm of video streaming.
360° and Volumetric Video Streaming. 360° in general is
one spherical video stitching multiple videos recorded by a
set of cameras or lenses filming different angles of a view
simultaneously. Once the videos are merged into one, the
different shots are synchronized in terms of color and contrast
by either the camera or video editing software. In order to
compress the 360° videos using a standard codec (such as
H.264 [92] and HEVC [93]), the video is projected into 2D
domain. 360° video is much larger (4× to 6×) than conven-
tional videos under the same perceived quality due to their
panoramic nature. The ultimate 360° video with single-eye 8K
resolution requires the bandwidth to reach multiple Gigabits-
per-second (Gbps), posing a great challenge on the network
and a huge burden on the cost [94], [95]. The mainstream
industry believes that the motion-to-photons latency (MTP)
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should not exceed 20 ms3, or otherwise would cause dizziness
to users.

Volumetric video (or hologram video), the medium for
representing natural content in VR/ AR/MR, is presumably
the next generation of video technology and a typical use
case for 5G and beyond wireless communications [96], [97].
Volumetric video provides users with six degrees of freedom
(6DoF) immersive viewing experience, that is, users can
freely move forward/backward (surging), up/down (heaving),
or left/right (swaying) to select their favorite viewing angle of
the 3D scene, and hence enjoy three more degrees of freedom
in comparison with 3DoF VR video users. As the most popular
and favored representation of volumetric media, point clouds
consist of 3D points, each with multiple attributes, such as
coordinates and color.

For both 360° and volumetric videos, each time, a user
perceives part of the 360° scene, namely field-of-view (FoV).
As the user rotates his/her head, correspondingly different FoV
of the 360° scene is rendered for observation. By allowing
users to freely select any viewing angles inside the video
sphere, 360° and volumetric videos bring the immersive view-
ing experience to a new level compared to traditional video
and multi-view video.

Compared with traditional video streaming, the technical
challenges of 360° and volumetric videos include:

• Viewport prediction: Each user each time only observes
a portion of the 360° scene and may switch FoVs
during the video playback. Also, addressing inevitable
wrong viewpoint predictions is important to guarantee
the quality of video services.

• Strict latency requirement: MTP needs to be under 20
ms.

• Tiling-based resource allocation: 360° and volumetric
video streaming resource allocation is conducted at the
tile level and has to consider the quality switches.

The technologies backed by LLMs mentioned in Sec-
tion IV-C, including viewport prediction, bandwidth predic-
tion, compression, and resource allocation can jointly opti-
mize the challenging streaming tasks for 360° and volumetric
Videos.
Short Video Recommendation. Short Videos have become
increasingly popular in recent years, with platforms such as
TikTok and YouTube Shorts providing platforms for users to
create and share content. These videos typically range from
a few seconds to a minute in length and cover a wide range
of topics. The rise of short videos has revolutionized the way
we consume and create content, making it easier than ever for
anyone to share their ideas and creativity with the world.

From a technical standpoint, the transmission of these
videos is quite different from that of regular videos [98].
Typically, servers recommend a set of videos to the user (e.g.
5), and all of these videos are pushed to the user. The user
then selects which videos to watch and discards the ones
they don’t like, resulting in wasted transmission resources.
However, if not all the videos are transmitted, the user may

3Huawei-iLab. 2018. Cloud VR Network Solution White Paper. Retrieved
from http://www.huawei.com/
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Fig. 9. Illustration of the application of LLM in video streaming.

experience buffering or a decrease in video quality, which
can significantly impact their viewing experience. This issue
involves how to recommend videos to the user, whether to
transmit all or part of the videos, and how to allocate video
resources, among other challenges. Furthermore, there is a
lack of available video libraries for research, which presents
a significant obstacle. Accurate recommendations are crucial
to minimize the waste of bandwidth. Video recommendation
systems incorporated with LLMs can better comprehend user
preferences and context, leading to more accurate and per-
sonalized video recommendations. LLMs can analyze user
queries, video descriptions, and other textual information asso-
ciated with videos to grasp the semantic meaning, sentiment,
and other important factors that impact the user’s preferences.
This approach has the potential to significantly enhance user
satisfaction, engagement, and retention within video plat-
forms. As these language models continuously learn from vast
amounts of textual data, they become increasingly adept at
understanding user intent and preferences, resulting in more
relevant and appealing video recommendations. Ultimately,
this improvement in video recommendation can lead to a more
enjoyable and immersive user experience, benefiting both users
and video content providers.
Video Service Enhancement. Transformer-based LLMs can
be applied to image super-resolution, enhancing video quality
by predicting and generating higher-resolution images, or
removing artifacts from a lossy compressed video and the
improvement of the visual properties by a photo-realistic
restoration of the video contents. For instance, Liu et al.
introduced a pioneering trajectory-aware Transformer in [99],
marking one of the initial attempts to integrate Transformer
architectures into video super-resolution tasks. The proposed
model demonstrates excellent performance. Geng et al. pre-
sented a unified spatial-temporal transformer that integrates
temporal interpolation and spatial super-resolution modules
for space-time video super-resolution [100]. This innovative
approach results in a significantly smaller network compared
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to existing methods, enabling real-time inference without
substantial performance compromise. [101] introduced a real-
time online video enhancement transformer characterized by
low latency, utilizing spatial and temporal attention mech-
anisms. The proposed model demonstrates quantitative and
qualitative advancements over state-of-the-art methods with
minimal inference time.

Video service enhancement with LLMs and Generative AI
has also shown notable advancements recently. [102] presented
an innovative approach to automatically generate streaming
commentary during the game League of Legends. This system
adeptly identifies key events and utilizes generative AI ser-
vices to craft voice output. Additionally, [103] introduced a
comprehensive transformer-based model for video captioning,
an important service in streaming. The authors propose the
sparse attention mask as a regularization technique to improve
long-range video sequence modeling. They also provide quan-
titative validation, affirming the efficacy of the learnable sparse
attention mask in the realm of caption generation.

VI. CHALLENGES

In this section, we discuss the major challenges faced by
Generative AI and LLMs when employed for video generation,
understanding, and streaming services.

A. Generation

Temporal Consistency. One of the main challenges in Gen-
erative AI for video content creation is ensuring temporal
consistency between the generated frames. Generated video
sequences should exhibit smooth and realistic motion patterns,
and maintaining these patterns across frames can be challeng-
ing for generative models. In addition to the amount of video,
the training strategy choice also plays a pivotal role in terms of
consistency. Modeling the video generation as a discrete image
generation task will easily lead to poor temporal consistency
and suffer from temporal flickering [106], [107]. Implicit
neural representations (INRs) based methods [108] by treating
the time axis as a continual signal could be easily deployed
to generate arbitrary long videos. TGANv2 [109] addresses
the problem by introducing a hierarchical discriminator to
guarantee smoothness in the levels from coarse to fine. Recent
image pretrained models [18] find that interplacing multiple
temporal attention layers and fully finetuned on video datasets
is another effective way.
High Computational Requirements. Video generation re-
quires processing high-dimensional data, which significantly
increases the computational requirements for training and
inference. Developing efficient algorithms and parallelization
techniques for video generation remains an ongoing challenge.
Works like NUWA [56] and Imagen-Video [13], which belong
to the text-video generator category, are trained on millions
of text-video pairs, making them challenging to replicate for
most research groups. However, certain editing-based video
generation approaches address the computational burden by
utilizing a small amount of video dataset or even none at all
to achieve specific tasks. Tune-a-Video [65] is an example
of such a method, where fine-tuning a video is accomplished

by leveraging an image generator to accomplish targeted
editing tasks. These specific task-driven videos, due to their
constrained sample space and lower requirement for model
temporal modeling capabilities, constitute a direction that can
be widely explored.
Lack Large-Scale Video Datasets. While large-scale im-
age datasets are widely available, video datasets of similar
scale and diversity are scarce. The lack of large-scale video
datasets hinders the development of Generative AI models
for video content creation, as they rely on large amounts of
data to learn the underlying data distribution. Annotated video
datasets are relatively scarce, yet they play a crucial role in
controllable video generation. Due to the highly redundant
nature of video content, some recent studies [13], [110], [18]
have leveraged powerful pretrained text-image generators to
initialize the spatial modeling network layers, resulting in
improved quality in a single-frame generation. This allows the
temporal modules to focus more on modeling the dynamics of
the sequential signals. Additionally, certain approaches [12],
[73] have addressed the data scarcity issue by employing
image-video joint training techniques, which exhibit a trade-
off between temporal consistency and frame fidelity at the
same time.

B. Understanding
Temporal Reasoning. Video scene understanding involves
reasoning over temporal information, including the dynamics,
actions, and interactions within a video. However, LLMs
often struggle with effectively capturing and modeling long-
range temporal dependencies. Temporal reasoning in videos is
challenging due to the varying lengths of videos and the need
to recognize and contextualize actions over time. Developing
LLM architectures that can effectively reason over long-term
dependencies, capture temporal context, and understand the
dynamics of video scenes is a significant research challenge.
Techniques such as temporal convolutions, recurrent neural
networks, or attention mechanisms need to be explored to
improve the temporal reasoning capabilities of LLMs.
Multimodal Understanding. Videos consist of both visual
and audio information, and understanding videos comprehen-
sively requires multimodal understanding [33]. LLMs need to
effectively integrate visual and auditory modalities to capture
the full context and meaning of video scenes. However,
aligning and connecting the visual and audio information in
videos is an intricate task. Therefore, it is imperative to explore
network architectures and methods for effectively modeling
audio-visual interactions, capturing the cross-modal depen-
dencies, and fusing multimodal information in LLMs [111].
Moreover, developing methods for training LLMs on large-
scale multimodal video datasets that cover a wide range of
scenes and languages is crucial for enhancing their multimodal
understanding capabilities.
Real-Time Video Processing. Processing videos together with
LLMs in real-time poses a significant challenge. Real-time
video scene understanding is crucial for various applications
such as autonomous vehicles, surveillance systems, and video
analytics [112]. However, the large model size and computa-
tional requirements of LLMs hinder their real-time processing
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TABLE IV
THE REVIEWED LLM METHODS FOR VIDEO STREAMING.

Method Input information Task
Viewport prediction

transformer-based approach [50] past viewing angle scanpaths long-term viewing angle predictions
with low complexity.

transformers-based approach [51] face images eye-gaze information.
spatio-temporal transformer [52] gaze features, scene contexts and the forecast human–object interactions in videos

visual characteristics of human–object pairs.
Bandwidth prediction

transformer-based model [47] previous bandwidth info. future bandwidth condition.
GAN-based solution [104] actual video traces synthesizing video streaming data, with a

focus on 360°/normal video classification.
Video compression

masked image modeling transformer [53] video deep video compression.
transformer-based approach [54] video neural video compression.

Video enhancement
video Enhancement transformer [101] original video video with enhanced quality.
transformer-based method [99] video video super-resolution.
unified spatial-temporal transformer [100] video space-time video super-resolution.
GAN model [105] video real-time super-resolution.
transformer-based model [103] video to be watched video captioning.

capabilities. Therefore, further research is required to develop
efficient networks, model compression approaches, and hard-
ware optimizations to accelerate the inference of LLMs for
video scene understanding. Techniques, such as knowledge
distillation [113], [114], pruning, and quantization can be
explored to reduce the computational burden and enable real-
time processing of videos with LLMs. Furthermore, exploring
distributed computing and hardware accelerators can further
enhance the real-time capabilities of LLMs for video scene
understanding [111].
Limited Performance of Zero-shot. Although LLMs deliver
exceptional zero-shot learning capacity, however, it is hardly
possible to enable the LLM-guided video scene understanding
models to have the same capacity. Similar to video generation,
the major challenge is the lack of large-scale paired video-
text datasets due to the difficulty of generating rich textual
descriptions for the video clips. Thus, it is difficult to learn
strong representations for the target tasks. Another reason is
that, for the long-form videos, the text annotations are either
sparse or not sufficient to illustrate the happening event or
activities. Therefore, future research might explore how to
leverage LLMs to impose more effective supervision given the
limited or sparse text descriptions. Another direction is how
to leverage LLMs to further generate high-quality video-text
pairs with more semantic richness.

C. Streaming

Varied Environments and Demands. Considerable variations
exist in the computational capabilities, resolutions, and net-
work conditions of devices used by users to watch videos.
Additionally, diverse video transmission ways (such as live
streaming and video-on-demand) and video types (such as
VR videos and short videos) impose varying bandwidth,
experimental, and computational requirements on transmis-
sion. Designing or learning an algorithm to adapt to these
heterogeneous scenarios is a formidable task. LLMs have the
capacity to encompass these situations and provide solutions to
the problem. However, when employing LLMs for video trans-

mission scheduling, effectively addressing these challenges
and providing answers within a short timeframe (given the
strong demands of video on algorithm complexity) is a non-
trivial and substantial challenge, necessitating further research
in the future.
A Unified Framework or Standard. Traditional video trans-
mission methods have reached a high level of maturity, giving
rise to widely used applications like YouTube and Zoom. A
significant contributing factor in this domain is the introduction
of the MPEG-DASH video transmission standard [115], which
laid the foundation for video transmission strategies. Compa-
nies and research groups have since been able to innovate and
establish new applications based on this framework. However,
there is currently no unified video transmission framework
or standard in the context of LLM-based video transmission.
Divergent technical approaches hinder the development of this
field. Establishing a unified video transmission framework or
standard is a challenging task, requiring the participation of
numerous entities.
Lack of Large-Scale Video Datasets. Similar to the preceding
discussions on generation and understanding, when leverag-
ing LLM for optimization and scheduling in the realm of
transmission, learning is imperative. This naturally leads to
the need for datasets. Presently, there are publicly available
datasets for individual aspects such as network bandwidth
[116], video data, and user data for VR videos, such as
those provided by MPEG 4. However, in comparison to the
requirements for LLM learning, these datasets are relatively
small, and datasets possessed by major corporations are not
open-source. Furthermore, comprehensive datasets annotat-
ing communication states, user devices, user viewing data,
user satisfaction, etc., are currently lacking. Generative AI
may contribute to generating datasets for training models for
bandwidth prediction. [104] introduced an innovative GAN
solution for synthesizing video streaming data, with a focus on
360°/normal video classification. This approach demonstrated
an improvement in accuracy compared to relying solely on

4https://www.mpeg.org/standards/
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Fig. 10. Concerns faced by GAI- and LLM- based solutions.

actual traces.

VII. CONCERNS

Aside from attractive potentials, Generative AI and LLMs
also raise considerable concerns that should be addressed
properly. Noticeable concerns include misleading information
dissemination via video forgery and intellectual property
rights violations, among others.

Misinformation The improving GAI’s ability to generate
seemingly authentic video footage can be misused for creating
false narratives, propagating fake news, impersonating indi-
viduals without their consent, or manipulating public opinion,
resulting in severe impacts on society in terms of politics,
security, and trustworthiness. The increasing number of re-
ported events in this direction has raised wide corners from
the society 5.
Intellectual property right violation. Generative AI has been
continuously improved to edit and revise the style and details
of existing videos, infringing copyright and using proprietary
content without authorization.
Security. Generative AI can make deepfake videos to mimic
legitimate videos from trusted sources or individuals, facilitat-
ing fraud and cybercrime. There has also been an increasing
number of relevant cases reported in recent years 6.
Privacy leakage. LLMs, if employed in already-everywhere
surveillance systems, can not only identify individuals but also
infer their activities and routines. This could lead to a serious
privacy concern where people are constantly monitored, violat-
ing the right to privacy. Further, when deployed with monitors
equipped with audio receivers, LLM can potentially eavesdrop
on private conversations.

5https://www.nbcnews.com/tech/tech-news/
deepfake-scams-arrived-fake-videos-spread-facebook-tiktok-youtube-rcna101415

6https://www.bbc.com/news/technology-66993651

Content censorship. LLM-driven streaming services, while
providing the potential to improve user experience, can also
result in the over-filtering of the content, which might amount
to censorship. Determining what content reaches the audience
without clear guidelines can lead to arbitrary content suppres-
sion.
Bias. The existing bias issues such as stereotypes could
worsen with the use of Generative AI and LLM. Personalized
streaming recommendations can reinforce existing biases and
isolate users from diverse perspectives. The risk also applies
to the generation stage of videos.
Addictive content design. Generative AI can be used to
generate certain types of videos optimized for maximum
engagement, potentially leading to addictive content exploiting
human psychology to increase screen time.

Overall, integrating Generative AI and LLM into the video
industries introduces a multitude of concerns that span privacy,
ethics, and societal impact, among others. In video generation,
the ability to create hyper-realistic deepfakes poses significant
risks for misinformation, privacy violations, and intellectual
property infringements. The improving understanding capabil-
ities of LLMs on videos raise alarms about privacy intrusions,
such as sensitive data mining for personalized profiling and
behavioral prediction that could be exploited for targeted
manipulation. In streaming, opaque recommendation systems
can create content bubbles and potentially skew the cultural
narrative. Additionally, the personalization of content raises
ethical concerns about data privacy, the psychological impact
of addictive content designs, and equitable resource distribu-
tion.

To address these concerns, proactive and cautious actions
are required. Regulators should craft robust privacy protec-
tions and transparency mandates that compel video services
to disclose how user data informs content delivery. Ethical
AI frameworks should be set up to guide the creation and
use of video service algorithms to avoid bias and make
sure that the content available is diverse and fair. Video
platforms must prioritize user consent and data security by
implementing best practices for data handling and providing
users with clear choices regarding their data. There’s also
a need for an industry-wide commitment to ethical content
design, avoiding manipulative practices, and promoting mental
well-being. Finally, video services must ensure compliance
with international regulations through adaptive AI systems
that can meet local standards while respecting global norms.
Through these concerted efforts, the industry can harness the
benefits of AI for video services while safeguarding individual
rights and societal values.

VIII. CONCLUSION

In this paper, we conduct a comprehensive examination of
how generative artificial intelligence (Generative AI) and large
language models (LLMs) are revolutionizing the video tech-
nology sector, focusing on video generation, understanding,
and streaming. The innovative integration of these technolo-
gies results in highly realistic digital creation, enhanced video
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understanding by extracting meaningful information from vi-
sual content, and more efficient and personalized streaming
experiences, thus improving user interaction with videos and
user preference-tailored experience provision.

The paper navigates through current achievements, ongoing
challenges, and future possibilities in applying Generative AI
and LLMs to video-related tasks. It underscores the immense
potential these technologies hold for advancing video technol-
ogy across multimedia, networking, and AI communities. It
also highlights the challenges and concerns that require further
exploration.

Observed from the reviewed works, we can see that, overall,
advanced AI technologies like GAI and LLMs are making
profound impacts on several key sectors of video-related
research fields. The biggest advantage of AI-based methods is
their automation capability with lower manual costs. However,
it comes at the price of challenges uniquely faced by AI,
such as lack of large-scale datasets, high computational cost,
consistency issues, and concerns such as misinformation and
security, etc. Therefore, academia and industry should be
cautious during the rapid development to ensure a sustainable
market.
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