Current Transducer Based on Thermoformed Piezo-magnetic-electrets

Amélia Moreira Santos¹, Rui A Moreira¹, Tagleor M Silveira¹, Ruy A P Altafim¹, Elvio P Silva¹, Polyane A Santo¹, Ronaldo M Lima¹, and Ruy A C Altafim¹

¹Affiliation not available

March 29, 2024

Abstract

Thermoformed tubular channels piezoelectrets exhibiting piezoelectric-magnetic behaviors were recently presented as Thermoformed Magnetic-Piezoelectrets (TMPs). This alternative sensor was suitable for detecting external magnetic fields from distant magnets. In this contribution, TMPs transducer was investigated as current sensor, where the magnetic field produced by an electrical current passing through a energized wire, mechanically stimulate the TMP and consequently disrupt the electrical charge equilibrium providing an proportional electrical signal. The charge variation was correlated with the magnetic field intensity providing a piezo-magnetic coefficient, similar to those noted in traditional piezoelectrets. It has been noticed that under certain conditions TMP could present coefficients up to 498×10^5 pC/T. From these results, it was concluded that such a polymer-based device is suitable for monitoring electrical currents in live wires, providing an interesting solution for non-invasive current transducers with a reduced footprint.

Current Transducer Based on Thermoformed Piezo-magnetic-electrets

AMELIA M. SANTOS ^(a) ¹, RUI A. MOREIRA ^(a) ², TAGLEORGE M. SILVEIRA ^(a) ³, RUY A. P. ALTAFIM ^(a) ⁴, ELVIO P. SILVA ^(b) ⁶, POLYANE A. SANTOS ^(a) ⁷, RONALDO M. LIMA ^(a) ⁸, and RUY A. C. ALTAFIM ^(b) ⁵, Seniors Member IEEE

Abstract—Thermoformed tubular channels piezoelectrets exhibiting piezoelectric-magnetic behaviors were recently presented as Thermoformed Magnetic-Piezoelectrets (TMPs). This alternative sensor was suitable for detecting external magnetic fields from distant magnets. In this contribution, TMPs transducer was investigated as current sensor, where the magnetic field produced by an electrical current passing through a energized wire, mechanically stimulate the TMP and consequently disrupt the electrical charge equilibrium providing an proportional electrical signal. The charge variation was correlated with the magnetic field intensity providing a piezo-magnetic coefficient, similar to those noted in traditional piezoelectrets. It has been noticed that under certain conditions

piezoelectrets. It has been noticed that under certain conditions TMP could present coefficients up to $498 \times 10^5 \text{ pC/T}$. From these results, it was concluded that such a polymer-based device is suitable for monitoring electrical currents in live wires, providing an interesting solution for non-invasive current transducers with a reduced footprint.

Index Terms— Electrets, Polymers, Piezoelectricity, Magnetic-electrical effect.

I. INTRODUCTION

Ferroelectrets, also referred to as electromechanical films, have garnered significant attention due to their remarkable ability to exhibit a strong piezoelectric effect. Consisting mainly of electrically charged polymer foams, these materials exhibit internal positive and negative electrical charges, leading to the occurrence of an electric polarization phenomenon. Such materials, when exposed to the influence of perpendicular mechanical stresses, reacts with an electrical signal that is proportional to the applied stress [1]–[3].

The notable combination of considerable charge trapping capability and the inherent low density of these electrically charged polymeric foams consistently engenders piezoelectric coefficients (d_{33}) that surpass those observed in conventional piezoelectric polymers like polyvinylidene fluoride (PVDF). As a result, they are increasingly finding applicability across a broad spectrum of mechanical stimulus scenarios [4], [5].

However, propelled by the wave of technological advancements encompassing equipment refinement, novel materials, and innovative processing techniques, a distinct path emerged for amplifying piezoelectricity within ferroelectrets. This novel route involved molding and fusing polymers layers. This layered association ushered in an alternative means of enhancing thermal stability within ferroelectrets [4], [6]–[10].

In these composite formations, polymers capable of charge trapping capabilities, such as polytetrafluoroethylene (PTFE) and its copolymer fluoroethylene propylene (FEP), were seamlessly integrated with structures of minimal density, culminating in an higher thermal-electromechanical responsiveness [11].

Through the molding and fusing approach, ferroelectrets with different geometric configuration and distribution of their internal cavities were fabricated [6-9]. And various methodologies for fabricating optimized polymeric structures have been recently described in the literature [11,12]. Furthermore, regularly shaped air cavities impacted uniformity of electrical charging, thereby intricately enhancing the piezoelectric characteristics of the material, as scholarly highlighted in [12], [13].

A successful paradigm for fabricating fluoropolymer matrices featuring precisely arranged tubular cavities was introduced by Altafim [12]. In this innovative approach, the arrangement of open tubular channels was achieved through the lamination of FEP films alongside a precisely aligned PTFE rectangular template, creating a parallel configuration. This methodology not only offers the capability to fine-tune the geometric attributes of internal cavities for meticulous characterization but also demonstrated its prowess in engineering multi-layered structures with systematically organized channels, thereby further amplifying the piezoelectric potential [14], [15].

In a recent stride of advancement, this lamination technique was extended to incorporate overlapping polymer strata, resulting in the creation of a ferroelectret exhibiting not only piezoelectric properties but also endowed with magnetic response. This innovative step resulted in the discovery of a concept where a piezoelectret material demonstrates a significant magnetic-electric response. This achievement was made possible by adding a magnetic polymer layer on top of the tubular channel structure. The resultant phenomenon observed on these "magnetic-piezoelectrets" does not resembles traditional magnetoelectricity, wherein the interplay between materials possessing ferroelectric or magnetic attributes gives rise to a characteristic effect through hysteresis, what is known as the magnetoelectric effect [16], [17].

It is known that magnetoelectric effect can manifest either as direct or inverse in nature, since magnetic polarization can be modified through electric fields [16]. In magneticpiezoelectrets, only the direct effect is observed, i.e. when a magnetic field initiates a mechanical stress that interacts synergistically with the piezoelectric layer, thereby engendering a mechanical deformation effect, which culminates in the emergence of an electric field (E) response [17], [18].

In the literature, there are various MEMS sensor prototypes designed for monitoring AC current in residential and commercial settings. One such sensor features a piezoelectric MEMS cantilever with a mounted permanent magnet, generating voltage proportional to the current being measured. Fabrication involves a four-mask process and integration of microscale composite permanent magnets, providing a compact solution for electricity end-use monitoring or piezoelectric energy harvesting from AC current-carrying wires [19], [20]. Additionally, a study explores a zero-power multifunctional device combining piezoelectric technology and a magnet mass for current monitoring and energy harvesting in power lines. This device's performance is influenced by wire type, cantilever stiffness, and magnet characteristics, showing potential for smart grid applications [21], [22]. Conversely, the thermoformed magnetic-piezoelectrets (TMPs) differs from these sensors in terms of assembly, characterization, and physical principles.

Therefore, the configuration devised by Altafim et al. [23], incorporates ferroelectrets in lieu of conventional piezoelectric materials, thereby yielding a material of enhanced direct magnetic sensitivity. And in the current investigation, these TMPs were undertaken, subjecting them as non-invasive electric current sensors under magnetic fields of varying intensities.

II. PIEZOELECTRETS WITH MAGNETIC BEHAVIOR

For a proper understanding of the piezo-magnetic behavior observed on thermoformed magnetic-piezoelectrets, one must consider the simplified structure presented in Fig. 1:

From this, one can observe that the presence of an external magnetic field attracts or repels the magnetic layer, represented here as the black layer above the channel and attached to the channel surface. The result of this magnetic force's influence is a deformation in the channel thickness (d), which leads to an electric charged variation on the ferroelectret electrodes. This magnetic-mechanical deformation is therefore responsible for producing an electrical response, proportional to the external magnetic field.

For a better description of the relation between electrical charge variation on ferroelectrets and the external magnetic

Fig. 1. Schematic representation of the magnetic-piezoelectret and how their macroscopic dipoles, changes under the influence of an external magnetic field.

field, a piezoelectric-magnetic coefficient (d_{p-m}) is proposed. This coefficient derives from those observed in traditional piezoelectric materials, where the polarization may be observed in different orthogonal axes and are represented by a three-dimensional tensor (d_{ij}) [11], [24].

In ferroelectrets the electric polarization \vec{P} results from the electrical charging, which occurs in the direction of the external electrical field, in this case the out-plane direction, referred as the third axis. Since the mechanical deformation or electrical stimulation is applied in this direction the d_{33} tensor is generally used to define the piezoelectric coefficient in ferroelectrets [25].

The d_{33} coefficient is expressed in (1), representing the relation between a mechanical stress variation (Δ_p) that is applied perpendicular to the ferroelectret thickness (out-ofplane direction), and the variation in the electrical charge densities (Δ_{σ}) that is induced on the ferroelectret electrodes [11], [24], [25].

$$d_{33} = \frac{\Delta_{\sigma}}{\Delta_p}.\tag{1}$$

In the thermoformed magnetic-piezoelectrets, the same concept is employed, however the mechanical stress is now resulted from the presence of an external magnetic field, and it was redefined in (2) as the external magnetic field variation (Δ_m) , which provide the magnetic-piezoelectric effect (d_{p-m}) .

$$d_{p-m} = \frac{\Delta_{\sigma}}{\Delta_m}.$$
 (2)

III. FABRICATION AND CHARACTERIZATION METHODS A. Thermoformed Magnetic-piezoelectrets (TMPs)

The Thermoformed Magnetic-piezoelectrets (TMP) examined within this study adhered to the preparation methodology elucidated in [20]. In accordance with this approach, two sheets of FEP, each measuring 50 μm in thickness, were meticulously fused at a temperature of $300^{\circ}C$ using a lamination apparatus, resulting in the formation of a stratified structure. Preceding the lamination process, a PTFE template of 100 μm thickness, featuring precisely incised rectangular patterns, was intercalated between the layers of FEP. This

Fig. 2. (a) Fabrication procedure for Thermoformed Magneto-Piezoelectret (TMP) with open tubular channels and magnetic layer. (b) top-view of one TMP with aluminum electrodes.

strategic placement facilitated the fusion of the FEP layers in alignment with the prescribed template. Notably, the template implemented in this investigation was strategically designed to engender four distinct channels, each exhibiting a width of 2 mm, arranged equidistantly and parallel.

Subsequently, in the ensuing processing phase, the channels were superimposed by an arrangement of magnetic tape strips. These tape strips, possessing a rectangular configuration (1.5 $mm \times 15 mm$), were precision-cut via laser technology from a magnetic adhesive mat with a thickness of 300 μm , procured from Fermag-BR. The inherent magnetic layer introduced a surface irregularity incompatible with the formation of electrodes, therefore a supplementary FEP film measuring 50 μm in thickness was adeptly laminated over the stratum of magnetic strips, utilizing a temperature of $300^{\circ}C$ to ensure its effective integration.

After the secondary lamination step, the PTFE template was carefully removed, exposing the unobstructed channels integrated within the FEP matrix. Aluminum electrodes of approximately 50 nm of thickness, were then deposited onto the outer layers through a vacuum assisted evaporation process, and an electrical charging was applied for 10 seconds using a direct current (DC) voltage of 3.5 kV. A schematic representation of the production process is provided in Fig. 2:

B. Assembly of the Current Transducer

An electrically charged TMP, was used as sensing element in the Electro-magnetic current transducer. Therefore, the TMP was assembled into an aluminum casing, equipped with a BNC connector and insulating materials as shown in Fig. 3:

The insulating material was made from Polyvinyl chloride (PVC), and two aluminum planar electrodes were fabricated to provide electrical contact to the TMP. A sealing ring was used to avoid sensor mechanical vibrations. Notice that the front part of the transducer (Figure 3b) is open to provide direct access to the TMP if necessary. A Keithley 6517 Digital Electrometer, was used in this study to measure the electrical charge generated during the experiments.

C. Electrical current sensitivity test

Fig. 3. (a) Schematic representation of the TMP current sensor assembling. (b) Image of the front of the metal casing. (c) Image of the back of the metal enclosure.

To verify the influence of magnetic fields in the TMP transducer a setup according to Fig. 4 was mounted. This experiment consisted in stimulate the wire with different electrical currents in amperes (A), to produce magnetic field with several magnitudes.

The TMP transducer shown in Fig. 4(a), was initially placed above a variable alternate current (AC) power supply and later positioned at several distances from the live wire, Fig. 4(b).

However, before conducting any tests with the TMP, the currents were calibrated to 2, 10, 20, 30, 40, 50, 60, 70, and 80 A. For each current, the TMP was positioned at distances of 1, 5, 10, and $20 \ cm$ away from the wire.

IV. RESULTS AND DISCUSSION

The magnetic layer, placed above the piezoelectret channels, under the influence of an oscillating external magnetic field is, reacts as a vibrating loading onto the piezoelectret. This dynamic load is then responsible for deforming the electrically charged channels, disturbing the TMP electrical field, which results in an electrical charge flow.

The graph depicted in Fig. 5 presents the electrical charge values measured at different positions and current intensities, while the results presented in Table I, represent these values converted into magnetic-piezoelectric coefficients (d_{p-m}) .

From these, one may observe that when TMP is fixed at a certain position the electrical charge output increases linearly with the current intensity (I). And that the transducer sensibility is much affected by its position, since a charge decay is observed when the TMP is moved away from the wire.

The material behavior becomes thus non-linear, and the transducer response loses the direct linear relation to the measured electrical field intensity. This behavior is graphically represented in Fig. 6, where the distribution of the piezoelectric-magnetic coefficient is plotted for different values of electrical current passing through the electrical wire. From this, one can observe that:

• When measuring low levels of the electrical current (below 10 A), the distance between the transducer and the observed electrical wire has a significant effect on the piezoelectric-magnetic coefficient.

Fig. 4. (a) Alternate current (AC) power supply (1.a), Schematic drawing of TMP (2.a) and live wire with current flow and magnetic field orientation (3.a). (b) Current Transformer (CT) (1.b), Secondary wire of the CT (2.b) and Variac (3.b).

Fig. 5. Electrical charge produced by the TMP when placed at different distances from the electrical wire under several electrical currents.

TABLE I MEASURED PIEZOELECTRIC-MAGNETIC COEFFICIENTS

	$d_{p-m} \left[pC/T \right] \times 10^4$			
Electrical Current [A]	1 cm	5 cm	10 cm	20 cm
2	195.95	990.00	1350.00	4980.00
10	38.80	145.00	324.12	631.25
20	24.50	98.10	168.18	321.88
30	14.10	57.71	113.88	181.03
40	11.12	43.24	76.49	148.61
50	8.27	35.66	56.37	128.81
60	7.12	25.94	50.26	96.14
70	6.12	24.83	46.90	75.89
80	5.33	21.68	42.17	71.01

Fig. 6. Piezoelectric-magnetic coefficients (d_{p-m}) measure for different electrical current values and for the four distances between the transducer and the electrical wire considered in this study (1, 5, 10 and 20 cm).

- The higher value for this coefficient, $498 \times 10^5 \ pC/T$, is reached for the lowest electrical current applied to the observed electrical wire (2 A) when the transducer is located at 20 cm from that wire.
- For higher values of electrical current (> 10 *A*) the effect of the distance between the transducer and the electrical wire becomes less significant.

Representing this graph in a logarithmic scale, as depicted in Fig. 7, two major observations can be drawn:

- The distribution of the piezoelectric-magnetic coefficients for each distance assumes a linear shape parallel to the diagonal lines in the Log-Log graph.
- The vertical distances between the piezoelectric-magnetic values for the four distances herein considered (1, 5, 10 and 20 cm) are practically constant and independent from the value of the electrical current under observation.

From the first observation one can conclude, as expected, that there is an inversely proportional relation between the piezoelectric-magnetic coefficient and the value of the electrical current that is passing through the wire. According to Equation (2), this coefficient varies inversely to the magnetic field, whereas there is a direct relation between the electrical current value and the resulting magnetic field.

The second observation suggests a direct relation between the distance (from the transducer to the live wire) and the piezoelectric-magnetic coefficient. To better understand and assess this last observation, Fig. 8 shows the piezoelectricmagnetic coefficient distribution against the transducer-wire distance (again, using a logarithmic scale).

As depicted, the values assume a linear distribution parallel to the diagonal lines indicating a proportional direct relation between the piezoelectric-magnetic coefficient and the distance between the transducer and the wire. Once again, this can be justified using Equation (2) because the magnetic field created by an electrical wire is inversely proportional to the distance between the observed magnetic field and the wire that

Fig. 7. Piezoelectric-magnetic coefficients (d_{p-m}) versus electrical current – Logarithmic representation.

Fig. 8. Piezoelectric-magnetic coefficients (d_{p-m}) versus transducerwire distance.

is producing it. It is also observed that this linearity is more evident for higher values of the electrical current.

V. CONCLUSIONS

A novel characterization procedure for the biphasic material named thermoformed magnetic-piezoelectret (TMP) was presented in this study. The piezoelectrets constructed with an extra magnetic layer were able to exhibit a magnetoelectric effect when subjected to an external magnetic field, suffering an elastic deformation in the soft and electrically charged component. The electromagnetic field was created by an electrical current passing along an electrical conductor (live wire). By changing the TMP position and the current intensity it was possible to better understand the TMP behavior and more accurate piezo-magnetic coefficients (d_{p-m}) were calculated. Results presented here revealed that under certain conditions (i.e., at a distance of 20 cm and an applied current of 2 A), d_{p-m} up to $498 \times 10^5 \ pC/T$ were obtained. Although there is very little research with TMP, it is difficult to make a comparison with these results. Nevertheless, the method presented here indicates another direction to measure TMP sensitivity and validates their use as non-invasive electrical current transducers.

Based on the results obtained in this study it was possible to demonstrate that the use of TMP devices as electrical current transducers is feasible, providing a set of interesting characteristics that justify further research and validation studies. The linearity of the relation between the electrical current (observed parameter) and the measured response in TMP is one of these interesting features. But what really justifies the potential of these polymer structures is that they provide non-invasive and reduced size current transducers, being more interesting than the conventional invasive and large coils typically used for this purpose.

REFERENCES

- D. N. Nguyen and W. Moon, "Piezoelectric polymer microfiber-based composite for the flexible ultra-sensitive pressure sensor," *Journal of Applied Polymer Science*, 2019.
- [2] F. Ünsal, Y. Altın, and A. Çelik Bedeloğlu, "Poly(vinylidene fluoride) nanofiber-based piezoelectric nanogenerators using reduced graphene oxide/polyaniline," *Journal of Applied Polymer Science*, 2020.
- [3] J. Tichý, J. Erhart, E. Kittinger, and J. Přívratská, Fundamentals of piezoelectric sensorics: Mechanical, dielectric, and thermodynamical properties of piezoelectric materials, 2010.
- [4] R. A. Altafim, H. C. Basso, L. G. Neto, L. Lima, R. A. Altafim, and C. V. De Aquino, "Piezoelectricity in multi-air voids electrets," in *Annual Report - Conference on Electrical Insulation and Dielectric Phenomena*, *CEIDP*, vol. 2005, 2005, pp. 669–672.
- [5] F. J. De Carvalho, R. A. C. Altafim, Y. A. O. Assagra, B. H. V. Borges, and R. A. P. Altafim, "Electric circuit model for simulating ferroelectrets with open-tubular channels," in *Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP*, vol. 2016-December. Institute of Electrical and Electronics Engineers Inc., 12 2016, pp. 315– 318.
- [6] D. R. Falconi, "Sensor piezelétrico baseado na tecnologia dos eletretos termo-formados: aprimoramentos dos processos de produção," Ph.D. dissertation, Escola de Engenharia de São Carlos, Universidade de São Paulo, 2010. [Online]. Available: https://www.teses.usp.br/teses/ disponiveis/18/18152/tde-20042010-095926/pt-br.php
- [7] Z. Sun, X. Zhang, Z. Xia, X. Qiu, W. Wirges, R. Gerhard, C. Zeng, C. Zhang, and B. Wang, "Investigation into polarization and piezoelectricity in polymer films with artificial void structure," in *Proceedings -International Symposium on Electrets*, 2011, pp. 23–24.

- [8] D. Rychkov and R. A. P. Altafim, "Template-based fluoroethylenepropylene ferroelectrets with enhanced thermal stability of piezoelectricity," *Journal of Applied Physics*, vol. 124, no. 17, 11 2018.
- [9] A. Mellinger, M. Wegener, W. Wirges, and R. Gerhard-Multhaupt, "Thermally stable dynamic piezoelectricity in sandwich films of porous and nonporous amorphous fluoropolymer," *Applied Physics Letters*, vol. 79, no. 12, pp. 1852–1854, 9 2001.
- [10] P. Fang, W. Wirges, R. Gerhard, and L. Zirkel, "Charging conditions for cellular-polymer ferroelectrets with enhanced thermal stability," in *Proceedings - International Symposium on Electrets*, 2008.
- [11] F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L. Q. Chen, T. R. Shrout, and S. Zhang, "Ultrahigh piezoelectricity in ferroelectric ceramics by design," *Nature Materials*, 2018.
- [12] R. A. P. Altafim, "Novos piezoeletretos: desenvolvimento e caracterização," Ph.D. dissertation, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2010. [Online]. Available: http://www.teses.usp.br/teses/disponiveis/18/18154/ tde-10082010-135056/pt-br.php
- [13] R. A. Altafim, H. C. Basso, R. A. Altafim, L. Lima, C. V. De Aquino, L. Gonçalves Neto, and R. Gerhard-Multhaupt, "Piezoelectrets from thermo-formed bubble structures of fluoropolymer- electret films," in *IEEE Transactions on Dielectrics and Electrical Insulation*, 2006.
- [14] R. A. P. Altafim, R. A. C. Altafim, X. Qiu, S. Raabe, W. Wirges, H. C. Basso, and R. Gerhard, "Fluoropolymer piezoelectrets with tubular channels: Resonance behavior controlled by channel geometry," *Applied Physics A: Materials Science and Processing*, vol. 107, no. 4, pp. 965– 970, 6 2012.
- [15] R. A. Altafim, R. A. Altafim, H. C. Basso, X. Qiu, W. Wirges, and R. Gerhard, "Fluoroethylenepropylene ferroelectrets with superimposed multi-layer tubular void channels," in *Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP*, 2011, pp. 133– 136.
- [16] S. M. Jang, M. I. Bichurin, and S. C. Yang, "Hydrothermal synthesis of Bi-magnetic clusters for magnetoelectric composites," *Materials Research Bulletin*, vol. 91, pp. 197–202, 7 2017.
- [17] C. W. Nan, "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases," *Physical Review B*, 1994.
- [18] K. Tan, X. Wen, Q. Deng, S. Shen, L. Liu, and P. Sharma, "Soft rubber as a magnetoelectric material—Generating electricity from the remote action of a magnetic field," *Materials Today*, vol. 43, 2021.
- [19] O. Z. Olszewski, R. Houlihan, A. Blake, A. Mathewson, and N. Jackson, "Evaluation of vibrational PiezoMEMS harvester that scavenges energy from a magnetic field surrounding an AC current-carrying wire," *Journal* of *Microelectromechanical Systems*, vol. 26, no. 6, 2017.
- [20] E. S. Leland, P. K. Wright, and R. M. White, "A MEMS AC current sensor for residential and commercial electricity end-use monitoring," *Journal of Micromechanics and Microengineering*, vol. 19, no. 9, 2009.
- [21] C. T. Sherman, P. K. Wright, and R. M. White, "Validation and testing of a MEMS piezoelectric permanent magnet current sensor with vibration canceling," *Sensors and Actuators, A: Physical*, vol. 248, 2016.
- [22] O. Aragonez and N. Jackson, "A zero power current and frequency sensor for smart grid applications," *Smart Materials and Structures*, vol. 31, no. 9, 2022.
- [23] R. A. Altafim, Y. A. Assagra, R. A. Altafim, J. P. Carmo, T. T. Palitó, A. M. Santos, and D. Rychkov, "Piezoelectric-magnetic behavior of ferroelectrets coated with magnetic layer," *Applied Physics Letters*, vol. 119, no. 24, 2021.
- [24] J. Yang, "Piezoelectric transformer structural modeling A review," *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, vol. 54, no. 6, pp. 1154–1170, 6 2007.
- [25] J. Hillenbrand and G. M. Sessler, "Piezoelectricity in cellular electret films," *IEEE Transactions on Dielectrics and Electrical Insulation*, vol. 7, no. 4, 2000.

A. M. Santos was born in Minas Gerais, Brazil. Currently, she is a professor at the Coimbra Superior Institute of Engineering – ISEC/IPC and a researcher at the University of Aveiro, Department of Mechanical Engineering. She was a Level II Professor of Electrical and Computer Engineering at the University of São Paulo – EESC/USP, and an Associate Professor of Electrical and Computer Engineering at the Central Paulista University Center - UNICEP. Additionally, she served as a guest researcher at the

University of Coimbra and the Institute of Systems and Robotics of the Department of Electrical Engineering and Computing, focusing on industrial product development, industry digitization, 4G industry, and zero defects. She holds an M.Sc. and D.Sc. in Electrical Engineering from the University of São Paulo – USP, with expertise in Electrical Systems of High Voltage, Industrial Product Development, and Magnetopiezoelectric Sensors. She also obtained an MBA in People and Project Management from ESALQ – USP, and completed Specializations in Teaching in Higher Education from São Luís University, and in Pedagogical Training for Vocational Education at the Paula Souza Center. She earned her B.Sc. in Electrical Engineering from the Federal Institute of Education, Science, and Technology of Bahia – IFBA.

R. A. S. Moreira completed his Ph.D. in Mechanical Engineering in 2005 at the University of Porto, Faculty of Engineering. He also holds a Ph.D. in Mechanical Engineering in 1997 from the University of Porto, Faculty of Engineering. In addition, he earned a Master's degree in Mechanical Engineering with a specialization in Structures in 1997 and another Master's degree in Mechanical Engineering in 2005, both from the University of Porto, Faculty of Engineering. Dr. Moreira obtained his Bachelor's degree in

Mechanical Engineering in 1995 and another Bachelor's degree in Mechanical Engineering in 1994, both from the University of Porto, Faculty of Engineering. He is currently an Associate Professor at the University of Aveiro, Department of Mechanical Engineering. Dr. Moreira has authored 9 books and has supervised 1 doctoral thesis and 9 master's dissertations. He has received 2 awards and honors for his work. In his professional activities, he has collaborated with 2 colleagues on co-authored scientific papers. In his Curriculum Vitae, the most frequent terms in the context of his scientific, technological, and artisticcultural production are Engineering and technology.

T. M. Silveira was born in Bahia, Brazil, in 1991. Engineer, Project Manager, and Professor in ISTEC Porto - Instituto Superior de Tecnologias Avançadas, PhD Electrical Engineering at the University of Aveiro, Portugal, (2023), Master's in Electrical Engineering with emphasis in Telecommunications at UFCG (2018), Graduated in Energy Engineering (2015) and Bachelor of Science and Technology (2013) - UFERSA. He is IEEE Member - MTTS / APS / EMB / RAS. He was Chairman Foundation: MTTS Student

Chapter UFCG Brazil - 2018. He is currently Professor Advisor: EMBS Student Chapter UA - since April 2022. He has experience in the area of Antennas, RFID, Energy Harvesting, Electrical Power, Electronics, Robotics and Telecommunications. It stands out for its excellent dynamism, high leadership capacity and teamwork, always focused on technical quality and cost reduction. He is the inventor of Four Patents

R. A. P. Altafim was born in Ribeirão Preto—SP, Brazil in 1982. He received a B.Sc. degree in informatics in 2003, from the Computer Science and Mathematical Institute (ICMC), University of São Paulo (USP). In 2006, he received his master degree in electrical engineering from the Electrical Engineering Department of USP, working on the development of measurement systems for thin piezoelectric films, such as ferroelectrets. In 2010, he obtained a Ph.D. degree in electrical engineering also from USP, where he

worked on the development of piezoelectrets with well-controlled voids made from fused polymer films. He also worked for one year (2009) at the Applied Condensed-Matter Physics at University of Potsdam, Germany, improving his research. After his Ph.D. (October 2010) he performed a post-doc back again in Potsdam, working on piezoelectrets. Since 2012, Altafim is Adjunct Professor at the Computer System Department from Federal University of Paraíba – PB, Brazil, where he was one of those responsible for creating the Laboratory of Measurements and Instrumentation (LMI). In 2018, he worked as post-doc researcher at the Electrical and Computer Engineering Department at the University of São Paulo, Brazil, doing research on 3D printed piezoelectrets and applications.

R. M. Lima was born at Vitória da Conquista and has a bachelor's degree in Physics from the State University of Southwest Bahia (2007), a master's degree in Physics from the Federal University of ABC (2009), and is currently pursuing a PhD in Mechanical Engineering from the University of Aveiro. Was a permanent faculty member at the Federal Institute of Education, Science, and Technology of Bahia - IFBA (2010 -2020) and is currently a professor at the Federal Institute of Education, Science, and Technology

of Sergipe, focusing mainly on the following topics: Electromagnetism, Particle Physics, Antineutrinos, Reactor Monitoring, and Piezoelectrets, as well as being a member of the SHAMAN research group - Science for High Availability and Performance, Certified by CNPQ."

E. P. Silva is an Electrical Engineer and a professor at the IFBA - Federal Institute of Bahia, Vitória da Conquista campus. He holds a degree in Electrical Engineering from the Federal University of Uberlândia, Brasil (2006), and a Master's degree in Mechatronics from the Federal University of Bahia, Brasil (2014). He is currently a Ph.D. student at the University of Aveiro, Portugal, where he is developing a research project at the TEMA Laboratory. He has been a member of the IEEE (Institute of Electrical and Electronic

Engineers) since 2009, and is associated with the IEEE-RAS (Robotics and Automation Society) and the IEEE-MTT-S (Microwave Theory and Techniques Society). He is the founding professor and current Counselor/Adviser of the IEEE-IFBA-VDC Branch. He has experience in the field of Electrical Engineering, mainly in the following areas: Robotics, Mechatronics, Data Acquisition Systems, Embedded Systems, Analysis and Diagnosis of Power Electrical Systems, Energy Quality, Electrical Machines, and Photovoltaic Solar System."

R. A. C. Altafim was born at Agudos, Brazil on 4 January 1957. He received the Ph.D. degree in electrical engineering from the University of São Paulo, Brazil in 1991. In 1994, he worked as a guest researcher for the National Institute of Standards and Technology-NIST in the USA, with liquid dielectrics. In 1995, he was promoted to Associate Professor, and in 1997 he got a university position as Full Professor of Electrical Engineering at the University of São Paulo. He also served as vice-dean at Engineering School

of São Carlos, and as Pro-rector of Culture and University Extension during 2008-2010. In 2001, he was nominated member of CEIDP/IEEE board, and he also served as member at DEIS AdCom for 2014-2016. His special fields of interest are solid and liquid dielectrics, liquid crystal, electrets, piezoelectric sensors and high voltage engineering. Dr. Altafim has also worked as Leader of Applied Electrical Metrology and High Voltage Group at Electrical Engineering Department – EESC-USP. Since 2017 he has being working as Senior Professor at the Electrical and Computer Engineering Department, EESC-USP.

P. A. Santos is Adjunct Professor IV at the Federal Institute of Education, Science and Technology of Bahia - IFBA, Vitória da Conquista since 2009. She has a Bachelor's degree in Mathematics from the State University of Santa Cruz-UESC (2003). Obtained a master's degree in Electrical Engineering from the State University of Campinas-UNICAMP (2008). She is currently a PhD student in Mechanical Engineering at the University of Aveiro, Portugal, where she carries out research at the Center for Mechanical Tech-

nology and Automation. She has been a member of the IEEE (Institute of Electrical and Electronic Engineers) since 2021 and also associated with the MTT-S-IEEE (Microwave Theory and Techniques Society) and the WIE (Women in Engineering), of which she is an Advisor/Counselor Professor.