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Abstract

The electromagnetic fields of point sources with time varying charges moving in the vacuum are derived using the Liénard-

Wiechert potentials. The properties of the propagation velocities and the Doppler effect are discussed based on their far fields.

The results show that the velocity of the electromagnetic waves and the velocity of the sources cannot be added like vectors; the

velocity of electromagnetic waves of moving sources are anisotropic in the vacuum; the transverse Doppler shift is intrinsically

included in the fields of the moving sources and is not a pure relativity effect caused by time dilation. Since the fields are

rigorous solutions of the Maxwell’s equations, the findings can help us to abort the long-standing misinterpretations concerning

about the classic mechanics and the classic electromagnetic theory. Although it may violate the theory of the special relativity,

we show mathematically that, when the sources move faster than the light in the vacuum, the electromagnetic barriers and the

electromagnetic shock waves can be clearly predicted using the exact solutions. Since they cannot be detected by observers in

the region outside their shock wave zones, an intuitive and reasonable hypothesis can be made that the superluminal sources

may be considered as a kind of electromagnetic blackholes.
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Abstract--The electromagnetic fields of point sources with time varying charges moving in the vacuum 

are derived using the Liénard-Wiechert potentials. The properties of the propagation velocities and the 
Doppler effect are discussed based on their far fields. The results show that the velocity of the electromagnetic 
waves and the velocity of the sources cannot be added like vectors; the velocity of electromagnetic waves of 
moving sources are anisotropic in the vacuum; the transverse Doppler shift is intrinsically included in the 
fields of the moving sources and is not a pure relativity effect caused by time dilation. Since the fields are 
rigorous solutions of the Maxwell’s equations, the findings can help us to abort the long-standing 
misinterpretations concerning about the classic mechanics and the classic electromagnetic theory. Although 
it may violate the theory of the special relativity, we show mathematically that, when the sources move faster 
than the light in the vacuum, the electromagnetic barriers and the electromagnetic shock waves can be clearly 
predicted using the exact solutions. Since they cannot be detected by observers in the region outside their 
shock wave zones, an intuitive and reasonable hypothesis can be made that the superluminal sources may be 
considered as a kind of electromagnetic blackholes.   

I. Introduction 

Maxwell’s theory is the foundation for handling all electromagnetic problems. In the coordinate 
system  ,O tr , the Maxwell’s equations in the vacuum can be expressed by [1-3] 
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where  , tE r  is the electric field intensity,  , tH r  is the magnetic field intensity,    0, ,t tD Er r  

and    0, ,t tB Hr r  are respectively the corresponding flux densities. 0 and 0  are respectively the 

permittivity and the permeability of the vacuum. The fields are generated by the charge density  , t r  

and the related current density  , tJ r . In the vacuum, the current density is caused by the motion of the 

charge density, i.e.,  

      , , ,t t tJ vr r r   (2) 

 , tv r  is the velocity of  , t r . In this paper, we consider non-relativistic electromagnetic problems, 

and ignore the constraints from the theory of special relativity (SR). In the analysis, we are supposed to 
stay in the same coordinate system  ,O tr  and do not care about the observers in other inertial frames.  

In the Maxwell’s equations, 0 and 0  are constants in the vacuum, hence, 0 0 01c    is also a 

constant. However, it is obvious that the Maxwell’s theory does not state that the velocity of the 
electromagnetic waves in the vacuum is always 0c . Therefore, we temporarily forget the relativity rule 

that all objects cannot move faster than the light in the vacuum, and consider that all causal solutions to 
the Maxwell’s equations are physically reasonable. 

The electromagnetic fields generated by point charges in the vacuum are very useful because they 
usually have explicit expressions that can be used to illustrate the main characteristics of the 
electromagnetic fields. Liénard-Wiechert potentials [1, 4, 5] are widely used in analyzing the 
electromagnetic fields of a moving charge. They are derived by Liénard in 1898 and Wiechert in 1900. 
The same techniques can be applied for deriving the fields generated by moving sources with time-
varying charges, like the Hertzian dipole [3, 6, 7, 8]. However, most of the published results for moving 



Hertzian dipoles are relativistic ones that were used to check the relativistic behaviors. In this paper, the 
rigorous solutions of a moving point source with time-varying charge and that of a moving Hertzian 
dipole are derived based on the Liénard-Wiechert potentials. The behaviors of the far fields are analyzed 
and illustrated with figures. In particular, the exact relationship between the wave velocity and the 
velocity of the sources are provided, based on which the anisotropic property of the wave velocity and 
the Doppler effect are demonstrated. These findings are very important because they have broken the 
three long-standing misinterpretations concerning about the classic physics. Statements can be found in 
most of the related textbooks and Journal papers that, according to the classic physics, the light velocity 
is isotropic in the vacuum; the wave velocity and the velocity of the source can be added like vectors; 
the transverse Doppler shift is a pure relativistic effect due to the time dilation. We show that all these 
statements are not true. Furthermore, without the velocity limit imposed by SR, when the sources move 
faster than the light in the vacuum, the electromagnetic barriers and electromagnetic shock waves can be 
clearly predicted from the exact solutions. 

II. Fields of Moving Point Sources 

Assume that a particle with harmonic charge 0 0 1cos t   moves along a trajectory  1tx , as shown 

in Fig. 1. 0   is the oscillating angular frequency of the charge. At the time 1t  , the velocity is 

   1 1t tv x , and the acceleration is    1 1t ta v . For the sake of brevity, we use the dot on top of a 

vector to denote the derivation with respect to time 1t . Denote  1t R r x  as the radius vector from 

the source position to the observation point, and  1R t r x . The fields generated by the charge at 

time 1t  propagate to the observation point r  with a time delay of 1t t . In this paper, we generally use 

 , tr  for the fields and potentials, and  1 1, tr  for the sources if not specified otherwise.  

 
Fig.1. Trajectory of a moving point source with time-varying charge. 

The charge density and the corresponding current density can be expressed by  

      0 0 11 1 1 cos, tt    r r x   (3) 

      0 0 11 1 1 cos, tt    J vr r x   (4) 

where  1t  in  1tv  and  1tx  is suspended for the sake of simplicity. Following exactly the same way 

in deriving the Liénard-Wiechert potentials for a moving charge [4, 5], we can derive the Liénard-
Wiechert potentials for the moving point source with harmonic time varying charges, 
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From the potentials, we can derive the fields of the moving source as [4, 5] 
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0

1
ˆ, ,har hart t

c
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In the expressions, we denote 0cβ v , 0cβ v  , ˆ Rn R , and 0c  is the light velocity in the vacuum. 

According to the solutions of the Maxwell’s equations, the field at  , tr  generated by the pulse source 

at  1tx  travels with velocity 0c .  Hence, we have 

    0 1 1R c t t t   r x   (9) 

When 0 0  , it is straightforward to check that (7) and  (8) are simplified to the fields of the moving 

point source with a constant charge. 

When the source moves uniformly,   11 tt x v  and  1 0t β . Denote ˆβ β , ˆrr r  . β̂  and r̂  

are the corresponding unit vectors, and ˆ ˆ cos β r . Solving 1t  from (9) yields  
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Note that 1t   must be real, and 1t t   must hold according to the causality principle. For a uniformly 

moving source, we can check that there is at most one solution for 1t  that satisfies these conditions if 

1  . In other words, the fields at the position r  and the time instant t  comes only from the source at 

the time instant 1t  when it moves to the position 1tv . We may consider the field generated at a point 

 1 1,tr  as a pulse of electromagnetic fields. The fields generated at each time instant 1t  will propagate 

with constant velocity 0c  . However, a continuously moving point source generates continuous 

electromagnetic fields when it moves on. All the field pulses by the moving point source are superposed 
to form the continuous field distributions in the vacuum. However, we can see that the behaviors of the 
composed fields may become quite different from that of a single electromagnetic pulse: both the wave 
velocity and the frequency of the composed fields will change.  

At places far away from the sources, r vt  and R vt , we have 
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Consequently, 
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Substituting (11) into (7) and discarding the term with respect to  21 R , we obtain the approximate 

expression for the electric far field 
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where the velocity c  and the angular frequency   of the composed far field are, respectively, 
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Obviously, (12) represents a spherical wave. The wave velocity c  and the angular frequency   of the  
composed far fields are both functions of three variables: the velocity   of the source, the oscillating 

frequency 0  of the source, and the angle   between the propagation direction of the fields and the 

moving direction of the source. 

A. Wave velocity 

The wave velocity of the electromagnetic far fields is dependent on the propagation direction. It is 

obvious that 0c c   for all   . The velocity reaches its maximum of 2
0 1c    at 2    . It is 

exactly 0c  at 0   or  , in which the observer is on the path of the source. The wave velocity of the 

far field is isotropic only in the case that 0  , i.e., the source is motionless or moves within a bounded 

region. To state that the wave velocity in the vacuum is constant according to the classic physics rules is 
a misinterpretation.  

A typical plot of the velocity is shown in Fig.2. When 0.1  , the largest wave velocity is only 

01.005c  by (13). It would be 01.1c  if the two velocities are added directly. Equation (13) clearly shows 

that the propagation velocity of the electromagnetic waves and the moving velocity of the sources do not 
satisfy the vector addition rule. To state that the two velocities are added like vectors according to the 
classic physics rules is another misinterpretation. 

 
Fig. 2. The velocity of a uniformly moving source. 

B. Doppler effect 

The angular frequency   of the far fields is also dependent on the propagation direction. This is the 
Doppler effect. We denote the normalized angular frequency as 

  
2 2 2 2

0

1 cos

1 1 1 sin
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The relative Doppler shift is   1s   .  The Doppler shift is zero at the angle d  that satisfies  
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  (16) 

For slowly moving sources,   is small.  s   can be expanded to the power series with respect to  , 

   21 coss          (17) 

We can check that    1 110s       and    1 11s       .  They agree with the 

classic mechanics results and the results based on SR to the first order of  . 

Particularly, (14) shows that transverse Doppler effect clearly exists at 2   , 
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The Doppler effect is explicitly included in the wave solutions of the Maxwell’s equations at places 
far away from the sources. It is caused by the superposition of the fields radiated by the moving source 
at different times. It is directly solved in the laboratory frame without necessity to apply any invariant 
principles related to coordinate transformations. We have to note that the coefficient of the second-order 
Doppler shift is different from that predicted using SR, which is  0.5  [4]. 

Conventionally, the transverse doppler effect is considered as a pure relativistic effect that is directly 
related to time dilation [4, 9]. It has been used as a strong support to the theory of special relativity. Now 
we have shown that this is once again a misinterpretation concerning about the classic physics. The 
transverse Doppler effect is definitely included in the exact solution (14) obtained using the principles of 
the classical physics.  

C. Field patterns 

The point source with harmonic charge is the simplest example for illustrating the radiation property. 
It can be treated as an imaginary source because it is not a constant and may violate the conventional 
charge conservation law. However, this is not fatal because we can combine two of them with opposite 
charges together to form a Hertzian dipole, the charge in which is conserved. Although the expressions 
for the wave velocity (13) and the frequency (14) are derived from a uniformly moving point source with 
harmonic time-varying charge, they can be used for predicting the propagation properties of the far fields 
of general sources in uniform motions. For general sources, the patterns of their fields may have much 
more complex directivities. However, the propagation velocity and the Doppler effect of their far fields 
are the same and can be respectively described by (13) and (14).   

As an example, we have derived the far fields of a moving Hertzian dipole. It is composed of two 
anti-phase harmonic charges with small distance l  , as shown in Fig.3. The electric momentum is 
expressed by  0 0 1

ˆcosl t  p , where p̂  is the polarization unit vector. The fields of the uniformly moving 

Hertzian dipole can be derived using exactly the same techniques in deriving the fields of the single 
harmonic charge.  

 
Fig. 3. Trajectory of a moving Hertzian dipole. r  is not depicted. 

We here consider the case that the dipole moves in a path perpendicular to its polarization direction, 
ˆ 0 v p , as shown in Fig.3. The scalar potential of the two charges is of the same form as (5), 
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where R , ˆ n , and 1t   are respectively related to the charge  0 0 1cos t  . The total scalar potential is 

then obtained by 
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We let 0l   but keep 0l  constant. By applying the vector identities in deriving  (7) [5], we get the 

final scalar potential for the moving Hertzian dipole,  
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The vector potential for the Hertzian dipole is derived in a similar way, 
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Note that the vector potential includes the contributions not only from the two moving charges but also 
from the moving dipole momentum. The fields can be derived from them rigorously with the same 
formulae as those in [4, 5]. Keeping the main terms that include the first order of  1 R , the far fields of 

the uniformly moving Hertzian dipole can be approximately expressed by 
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where  2
0 0 0 02E l c   is a source-related constant.  The propagation property is exactly the same as 

the uniformly moving single harmonic charge, except that there is a directivity factor related to the 
polarization of the dipole. For 0v , we can check that (23) turns into 
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which is the far electric field of a fixed Hertzian dipole.  

We will use three types of sources to illustrate the properties of the fields at 0  , 0.5, and 0.9. The 

electric fields for the time invariant charge, harmonic time varying charge are calculated with  (7). The 
fields of the Hertzian dipole are calculated with (23), but only keep the term with respect to 2

0  since we 

focus on high frequency cases.  For motionless sources, the results are shown in Fig.4. The static charge 
simply generates a static field, as shown in Fig.4(a). For the sources with time varying charges, the wave 
velocity is 0c  in all directions, as shown in Fig.4(b) and (c).  

 
Fig.4. The field patterns of the motionless sources. (a) Static charge. (b) Harmonic charge. (c) 

Hertzian dipole. 

The electric fields of the moving sources are shown in Fig.5 and Fig.6, in which red arrows indicate 
the moving directions. When the static charge moves, it generates a time-varying field in the space with 
a spectrum dependent on the moving velocity. Its field patterns contract along the moving direction. For 
moving sources with time varying charges, the anisotropic property of the wave velocity and the Doppler 
effect are clearly demonstrated in their fields. 

(a) (c) (b) 



 
Fig.5. The field patterns of the moving sources at 0.5  . (a) Time invariant charge. (b) Harmonic 

time varying charge. (c) Hertzian dipole. 

 
Fig.6. The field patterns of the moving sources at 0.9  . (a) Time invariant charge. (b) 

Harmonic time varying charge. (c) Hertzian dipole. 

The radiation directivity of the Hertzian dipole is obviously different from that of the single moving 
harmonic charge. When the source velocity is close to 0c  , very strong radiations with very high 

frequencies can be observed in the moving direction of the Hertzian dipole, while radiations with lower 
frequencies can be observed in the opposite direction of the dipole.   

For 0.9  , the wave velocity is shown in Fig.7(a). It is exactly 0c , at 0,  ,  and is about 02.3c  

at 2   . The normalized frequency is plotted in Fig. 7(b).  In this case, 132d    and 228 . The 

red-shift area is much smaller than the blue-shift area.  

              
                                             (a)                                                              (b) 

Fig. 7. Moving Hertzian dipole for 0.9  . (a) Wave velocity. (b) Normalized angular frequency.  

The normalized electric field is plotted in Fig.8(a). The radiation pattern is quite different from that 
of the motionless Hertzian dipole shown in Fig.8(b). Obviously, these results show that both the radiation 
pattern and the signal frequency of an antenna implemented on a fast-moving platform may suffer sever 
distortions and need to be carefully compensated.   

(a) (c) (b) 

(a) (c) (b) 



                  
                                             (a)                                                                    (b)  

Fig. 8. Radiation patterns of Hertzian dipole. (a) Moving at 0.9  . (b) Motionless. 

III. Cherenkov Radiation and Electromagnetic Shock Waves 

As we can see, the fields we obtained are the exact solutions to the Maxwell’s equations. Since the 
Maxwell’s theory itself does not put any restrictions on the velocity of the electromagnetic waves, the 
formulae (7)-(14) are valid for all  ,  including 1  . Therefore, we temporarily put aside the velocity 

limitation and analyze the properties of the causal solutions to the Maxwell’s equations when the sources 
move faster than light in the vacuum. However, we must observe the causality principle that the fields 
cannot be generated by the sources in the future. Explicitly, it is required that 1t  should be real and 1t t . 

Without loss of generality, we choose the position of the source at time t   as the origin of the 
coordinate for the sake of simplicity, that is, we choose 0t  . In order to guarantee that 1t  is real for 

0t  , we derive from (10) that the range of the angle should satisfy 

 2 2sin 1     (25) 

To meet the causality condition 1 0t  , we check from (10) that 

 cos 0    (26) 

Denote the critical angle as 

  1sin 1c      (27) 

It is obvious that the electromagnetic fields only exist in the conical region of 2c c       . In 

particular, at the edge of the conical zone,  ˆ 01  n β , the amplitude of the fields tends to become 

infinitely large for point sources. For general sources, the amplitude is finite but may be unusually large. 
The electromagnetic fields at the edge form a kind of electromagnetic barrier of very large amplitude.  

For a moving source with a constant charge, Cherenkov radiation occurs when 1    [10]. It is 
considered that Cherenkov radiation cannot occur in the vacuum since sources cannot move faster than 
the light in the vacuum. However, it can occur in a medium because sources can move faster than the 
light in that medium. Cherenkov radiation was discovered in 1934 in the experiment of bombarding the 
water with  -rays. Bluish light was clearly observed in the experiment.  

When the velocity of the sources with harmonic time varying charges increase to 0c , then 1  , 

and 2c  , the wave fronts of the electromagnetic waves are in the same plane of the source. The 

source crosses the electromagnetic barrier [4, 10], similar to that of the sonic barrier that supersonic 
planes may encounter when they cross the sound speed. The patterns of the electric fields are shown in 
Fig.9. It is reasonable to predict that the electromagnetic shock waves may be observed in media. 



 
Fig.9. Electromagnetic barriers generated by moving sources at 1  . (a) Time invariant 

charge. (b) Harmonic time varying charge. (c) Hertzian dipole.  

For superluminal sources, 1  , 2c  . The wave fronts lag behind the source. The fields are 

confined in the conical zone and cannot surpass the source. The solutions describe electromagnetic shock 
waves, just like the sonic shock waves. For point sources, at the edges of the shock waves, the fields tend 
to be infinitely large and form conical-shaped electromagnetic barriers. 

The electric field distributions for the uniformly moving point sources of the three types are shown 
in Fig.10. 

 
Fig.10.   Electromagnetic fields at 1.5  . (a) Cherenkov radiation of a moving time-

invariant charge. (b) Shock wave of a moving point source with harmonic charge. (c) Shock 
wave of a moving Hertzian dipole.  

At the electromagnetic barriers, not only the amplitudes of the fields  are very large, the frequencies 
and the velocities of the fields also tend to become very large, as we can check that 

  
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2 2 2 2
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1 1 1 sin
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The superluminal sources radiate high energy rays with velocity much larger than 0c   at the 

electromagnetic barriers. The observer will experience an electrmagnetic boom when he is swept by the 
electromagnetic barriers of the superluminal sources. However, for an observer outside the shock wave 
zone of a superluminal source, the superluminal source is invisible to the observer. We may consider the 
superluminal source as an electromagnetic blackhole to the observer. 

The wave velocity, the normalized frequency, and the amplitude of the fields in the shock wave 
region in the far region for 0.9   are plotted in Fig.11. As can be seen, the fields in the middle area of 
the shock wave conical region have the largest red-shift and propagate with velocities slightly larger than 

0c . 

(a) (c) (b) 

(a) (c) (b) 



 
Fig. 11. The velocity, the normalized frequency, and the normalized field amplitude in the shock 

wave region for 0.9  . 

IV. Conclusions 

It is often stated in textbooks that, according to the rules of the classic physics, the wave velocity 
and the velocity of the sources are added like vectors; the light velocity in the vacuum is constant in all 
directions and is independent upon the light sources; the transverse Doppler shift is a pure relativity effect. 
These are three longstanding misinterpretations concerning about the classic physics. The exact solutions 
of the electromagnetic fields of uniformly moving point sources in the vacuum reveal that the far fields 
are spherical waves with velocity depending on the propagation direction.  The wave velocity and the 

moving velocity of the source satisfies 2 2
0 1 sinc c    . This relationship clearly demonstrates that 

the two velocities cannot be added like vectors under the principles of the classic physics. Moreover, 
transverse Doppler effect is intrinsically included in the solutions. 

Although superluminal sources have not been officially confirmed [11, 12, 13], it does not discourage 
us from performing mathematical analysis on the causal solutions of the fields of sources moving faster 
than the light in the vacuum. The electromagnetic shock waves are naturally introduced according to the 
solutions, together with a reasonable hypothesis that the superluminal sources can be considered as 
electromagnetic blackholes to observers staying in regions outside the shock wave zone. 
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