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SegNet: A Segmented Deep Learning based
Convolutional Neural Network Approach for
Drones Wildfire Detection

Aditya V. Jonnalagadda and Hashim A. Hashim

Abstract—This research addresses the pressing challenge of en-
hancing processing times and detection capabilities in Unmanned
Aerial Vehicle (UAV)/drone imagery for global wildfire detection,
despite limited datasets. Proposing a Segmented Neural Network
(SegNet) selection approach, we focus on reducing feature maps
to boost both time resolution and accuracy significantly advanc-
ing processing speeds and accuracy in real-time wildfire detection.
This paper contributes to increased processing speeds enabling
real-time detection capabilities for wildfire, increased detection
accuracy of wildfire, and improved detection capabilities of early
wildfire, through proposing a new direction for image classifica-
tion of amorphous objects like fire, water, smoke, etc. Employing
Convolutional Neural Networks (CNNs) for image classification,
emphasizing on the reduction of irrelevant features vital for deep
learning processes, especially in live feed data for fire detection.
Amidst the complexity of live feed data in fire detection, our
study emphasizes on image feed, highlighting the urgency to
enhance real-time processing. Our proposed algorithm combats
feature overload through segmentation, addressing challenges
arising from diverse features like objects, colors, and textures.
Notably, a delicate balance of feature map size and dataset
adequacy is pivotal. Several research papers use smaller image
sizes, compromising feature richness which necessitating a new
approach. We illuminate the critical role of pixel density in
retaining essential details, especially for early wildfire detection.
By carefully selecting number of filters during training, we
underscore the significance of higher pixel density for proper
feature selection. The proposed SegNet approach is rigorously
evaluated using real-world dataset obtained by a drone flight
and compared to state-of-the-art literature.

Index Terms—Segment Neural Network, Machine Learning,
Unmanned Aerial Vehicle, Drones, Convolution Neural Network,
Wildfire, Detection, Computer Vision

Video of the experiment: Click Here

I. INTRODUCTION

UR lives rely heavily on the resources that forests
provide. They are regarded as the planet’s lungs because
they filter the air by adding oxygen (02) and lowering the high
levels of carbon dioxide levels (CO2). They serve as homes for
a variety of animals and can be utilized to shield crops from
the wind. Additionally, they clear the water of the majority of
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pollution-causing agents [1], [2]. Due to the numerous jobs
and higher revenues that forests create, countries’ economies
are improved. Forests have a profound impact on humanity
by providing essential ecosystem services. They purify air,
regulate climate, protect against natural disasters, and support
biodiversity. Additionally, forests offer resources like timber
and medicines, while promoting recreation and cultural her-
itage, highlighting their critical role in sustaining human well-
being and the planet. Forest fires, often exacerbated by factors
like climate change and human activity, have devastating ef-
fects on ecosystems, communities, and the environment. Forest
fires, raging with increasing frequency and intensity, inflict
profound damage. Ecologically, they destroy vital habitats,
decimate wildlife populations, and disrupt ecosystems. Native
flora and fauna struggle to recover, and invasive species often
take hold in the aftermath. Fig. 1.(a) shows the global tree
cover loss occurred between the years 2001 to 2022 [3].
Red dots are the areas effected by forest fires, few of which
are under serious efforts of restoration. Communities near
forests face immediate peril, with lives and homes in jeopardy.
Firefighters risk their lives battling infernos. Smoke and air
pollution pose serious health threats, especially to vulner-
able populations. Evacuations disrupt livelihoods and cause
psychological trauma. Economically, the costs are staggering.
Firefighting expenditures soar, and losses in timber, agricul-
ture, and tourism industries mount. Long-term, diminished soil
fertility hinders agriculture, and reduced water quality impacts
communities downstream. Environmental repercussions extend
globally. Forest fires release vast amounts of carbon dioxide,
contributing to climate change. This, in turn, exacerbates
conditions conducive to more frequent and severe fires in a
vicious cycle. Fig. 1.(b) shows the share of total global forest
area across continents [4].

A. Related Work

Preventing and mitigating forest fires requires concerted ef-
forts. Strategies include controlled burns, firebreaks, and early
warning systems. Additionally, addressing climate change and
promoting sustainable land management are crucial to curbing
the catastrophic effects of these infernos. In recent years, a
lot of forest fires have been taking place and because of
wildfire’s terrifying effects on the economy, human health, and
the environment, forest accidents have emerged as one of the
greatest risks to humanity. Every year, more than 8,000 fires
burn an average of more than 2.1 million hectares in only
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Fig. 1: Wildfires is a global and growing threat: (a) Global tree cover loss due to forest fires, 2001-2022 (courtesy to [3]). (b)
Global distribution of forest land [4]. (c) Number of fires and suppression cost with area burnt along with linear trend lines
from 1991-2015 (National Interagency Fire Center [5]). (d) Wildfire metrics of Canada, USA, Australia, and Brazil [6].

Canada [7]. Wildfire frequency and total burnt area alone in
the western US have surged by 400% during the past ten years
[8]. The wildfire in Australia was the most devastating fire in
2020, resulting in numerous losses, including the destruction
of more than 1,500 homes, the death of around 500,000
animals, and the burning of more than 14 million acres [9].
Other destructive wildfires have occurred, causing enormous
losses. For example, the 2018 California fire and the 2019
Amazon rain forest fire both burned millions of acres of land.
Based on data in the National Forestry Database, over 8,000
fires occur each year, and burn an average of over 2.1 million
hectares in Canada [7]. Looking at the linear trends in Fig.
1.(c), the inclining slope of suppression costs depict an ever-
growing effort to curb forest fires [5]. Although the steep
inclining slope of burnt area does not justify the slow declining
rate in number of fires despite the technological advances
(cost slope). As proved by the wildfire cases stated earlier and
the statistics from Fig. 1.(d) wildfire occurrences have caused
increased damage every passing year throughout the decade.
Canada, USA, Australia, and Brazil [6] are amongst the top
hotspots for frequent wildfires. Accordingly, from Fig. 1 it is
notable that overall wildfires are in a growing uptrend and
novel solutions are of great importance and urgent demand.
Sensors and sensor fusion are standard part for early predic-
tion/detection and therefore risk mitigation and management
[10]-[12]. Typically, sensors like gas, smoke, temperature,
and flame detectors are used to identify wildfires [13]-[17].
However, these detectors have a number of drawbacks, in-
cluding slow response times and limited coverage areas [13].
Traditional fire detection methods are now being superseded

by vision-based models because of their accuracy, wide cov-
erage regions, low error probability. Moreover, vision-based
techniques are distinguished with compatibility with current
camera surveillance systems which can be easily implemented
[18], [19]. In order to create precise fire detection systems,
researchers have proposed numerous cutting-edge computer
vision approaches over the last years, including Infra-Red
(IR) images [19], [20]. As a result, Unmanned Aerial Vehicle
(UAV) or drone systems have recently gained popularity and
been used to combat and find the forest’s deep wildfires.
Additionally, by combining this with Deep Learning (DL)
methods, it has made remarkable progress [21]. The color of
the wildfire and its geometrical characteristics, such as angle,
shape, height, and width, are detected using Deep Learning
(DL)-based fire detection algorithms. Their findings are fed
into models of fire propagation [21], [22]. The effectiveness
of these approaches for identifying and segmenting forest fires
from UAV photos, in a real-life case, is yet unknown and to-
date a challenging open problem. In particular, in the light of
several difficulties that must be addressed, such as the tiny
object size, the complexity of the backdrop, and the image
deterioration and high computational cost [23], [24].

Several research efforts have been established concerning
forest wildfire detection and prediction [25]—[27]. The research
focus and implementation range from fixed to mobile solu-
tions. Although mobile solutions have gained the support of
many researchers as it outweighs its counterpart considering
their advantages. Static solutions often deal with watchtowers
that can be expensive to install [25] and carry the risk of
being damaged by the fire itself, adding unnecessary repair



costs on top. They are also restricted by the field of vision and
obstruction of vision by complete or partial forest canopies.
Mobile solutions such as UAVs can provide data in the form
of images from different angles considering their flexibility
to maneuver in the six degrees-of-freedom (6 DoF) [26].
Nowadays, several researchers consider a similar approach to
solving this problem which go through the following steps: (1)
Data Acquisition System: acquiring data using UAV sensors
and cameras; (2) Data Processing Onboard: processing data
with onboard microchips with learning algorithms; (3) Data
Transmission/Receiving System: data is either transmitted to
or received by on-ground equipment for further studies of data;
and (4) Notifying Concerned Authorities: the wildfire manage-
ment authorities are informed to make accommodations for
further actions required [27].

B. Persisting Challenges

For any real-time wildfire detection algorithm both the space
and time resolutions are important. Stationary imagery has
good time resolution but low spatial resolution. This is because
the satellite body or watch tower can house a heavy, high
performing GPU to process faster decreasing the processing
times. Although, dispersion of light at various different angles,
information in each pixel and environmental factors like fog,
cloud cover, etc, hinder satellite’s vision capabilities resulting
in low spatial resolution. On the contrary, mobile imagery
consists of good spatial resolution but has poor time resolution.
Thus, drone or rover imagery with conventional fire detection
methods (smoke sensors, temperature sensors, etc) are not
practically effective in real-time scenarios. Limitations in this
area of research are plenty, these prove to be an obstacle for
any researcher to fluently conduct their study. One such case
would be the selection of Graphics Processing Units (GPU)
since computational burden is a key element. High powered
GPUs are not feasible as they have higher mass and volume,
which are not preferred due to the limited weight capacity
of drones. One other such limitation that is often overlooked
is the problem of detecting forest fires during the fall season.
Sugar maples in Canada or trees from the Laurel family around
the globe turn orange-red in the fall season rendering any
pixel color-based image classification technique ineffective,
increasing the number of false alarms.

In case of any DL network, density of network is directly
proportional to the delay caused in perceiving an image and
classifying the image as fire or non-fire. Generally, a denser
neural network increases the accuracy of the predictions due
to increased processing of image feature pool. Although, for a
real-time application, the algorithm must contain fewer dense
layers for faster processing speeds and this must be carried
out without having to compromise on the accuracy. Limited
dataset of wildfire images available is one such gap that is
slowing down the development of wildfire detection. With
scarce resources of images available on the internet and real-
life drone footage, capturing the aerial shot of wildfire, re-
quiring government permissions to shoot and use, researchers
have turned their focus on either augmenting the dataset or
increasing the efficiency by using new enhanced algorithms.

Datasets are being appended with newer synthetic images
using Generative Adversarial Networks (GANs) [28], where
a real non-fire image is translated into a modified image
with fire. This also helps with creating wildfire datasets for
YOLOvV3 [29] format with localization and bounding box
coordinates of fire within the image. Frame to frame capture
of images from a wildfire video can produce large number
of images but these lack in diversity of data which could
cause overfitting to occur. Flames and smokes are amorphous
in nature and difficult to label. Thus, to expertly annotate each
image can take huge amounts of time. Therefore, the use
of algorithms such as YOLOvV3 [29] or faster Region-based
Convolutional Neural Network (R-CNN) [30] becomes limited
due to the lack of labeled and formatted data for training and
testing of these algorithms.

C. Modern Machine Learning Approaches

DL techniques have been popular over the past few decades
as alternate strategies for difficult issues, such as the manage-
ment and forecast of wildfires. The work in [22] reported a
comparison research using Artificial Neural Networks (ANN)
and Local Regression (LR) to map fire susceptibility, coming
to the conclusion that ANN outperformed LR. A compari-
son of a deterministic approach and two Machine Learning
(ML) techniques-Radio Frequency (RF) and extreme learn-
ing machine was provided by [5], [31]-[33]. The results of
this investigation showed that the three techniques performed
equally, emphasizing the advantage of both stochastic methods
in that they are data-driven and, as a result, independent of
prior information. Support Vector Machine (SVM), RF, and
Multi-layer Perceptron (MLP), three ML-based approaches,
were evaluated in a further comparison research by [34], with
the MLP achieving the highest accuracy score [35]. Three
techniques were employed by [36] for multi-hazard modeling
(namely snow avalanches, floods, wildfires, landslides and land
subsidence). Generalized Linear Model (GLM), SVM, and
functional discriminant analysis were the approaches used.
GLM produced the best results for predicting the risk of
wildfires, closely followed by the other two. The work in [37]
mapped fire susceptibility using the General Additive Model
(GAM), Multivariate Adaptive Regression Spline (MARS),
SVM, and the ensemble GAM-MARS-SVM. SVM was shown
to be the least accurate approach out of these, whereas
the ensemble had the best predictive accuracy. Most of the
research is dealt with Convolution Neural Networks (CNN)
and its variants, Single Shot Multi-Box Detector (SSD), U-
shaped encoder-decoder network (U-Net), and deep Lab [29].

Some other less popular but effective learning algorithms
include Long Short-Term Memory (LSTM), Deep Belief
Network, and Generative Adversarial Network [28]. These
algorithms are not preferred as they require powerful hardware
which is difficult to house in a mobile UAV. The additional
pieces of hardware add to the weight of the UAV creating
a problem in terms of flight and control [38]. The use of
remote compact cameras on UAVs outweighs the performance
of the images taken by satellites due to their capacity to
capture higher pixel density images from different angles. A



tiny fire spot or extreme dryness of the objects would be almost
impossible to spot using the images by satellites. Hence,
to train the model better and to yield better results, mobile
cameras are used. Additionally, the significance of the dataset
has been consistently stressed to enhance the performance of
the model since neural networks cannot be applied to untrained
scenarios. Because it is difficult to detect smoke during the
night and because the color and texture of smoke during model
verification are too similar to other natural phenomena like
fog, clouds, and water vapor, algorithms that rely on smoke
detection typically have issues like high false alarm rates [39].

D. Contributions

In this paper we address the problem of time resolution for
UAV drone imagery along with limited dataset available on
wildfires around the world using a proposed Segmented Neural
Network (SegNet) selection approach based on DL reducing
the total feature map. This novel SegNet technique contributes
the following to robotic wildfire surveillance systems: (a)
Increased processing speeds enabling real-time detection ca-
pabilities for wildfire in shorter period of time when compared
to the existing cutting-edge solutions (e.g., [40], [41]); (b)
Increased detection accuracy of wildfire which is confirmed
through training, testing, and validation; (c) Introducing a
new direction for image classification of amorphous objects
which can add significant insight to fire, water, smoke, etc; and
(d) Improved detection capabilities which can be potentially
employed for early wildfire detection.

E. Structure

The rest of the paper is organized as follows: Section
Il problem formulation, dataset preparation, data augmenta-
tion, and scaling issues. Section III illustrate the research
methodology and segmentation. Section IV presents workflow,
challenges, and mitigation. Section V illustrate results of the
proposed SegNet approach in comparison to state-of-the-art
literature. Finally, Section VI summarizes the work.

II. PROBLEM FORMULATION

The rapid advancements in Artificial Intelligence (Al) have
catapulted it into one of the most swiftly evolving fields in
applied science. However, amidst this complexity, researchers
striving to emulate the intricacies of the human brain have
crafted algorithms so sophisticated that they present unique
challenges, particularly in their integration into the engineering
sector. In the realm of robotics engineering, these challenges
become evident. One of the significant hurdles stems from
the complexity of machine learning models, which demand
powerful computational processing. The current technological
landscape grapples with a limitation: the lack of powerful, ro-
bust yet lightweight processing systems that can be seamlessly
integrated into mobile robots. Considering drones or rovers, for
instance. Equipping them with hefty, powerful processors is
unfeasible, as these components are often heavy and can ham-
per the mobility and energy efficiency of these autonomous
devices. Moreover, the cost factor amplifies the issue; these

(b)

Fig. 2: Environmental challenges: (a) Images with fog can be
misclassified as smoke caused by wildfire, and (b) Red trees
in the forest could yield undesired false results by model due
to misclassification of the red spots (trees) in the image [42].

potent processing systems are expensive to produce, render-
ing them economically unviable for mass production. This
becomes a critical concern, especially in the context of wildfire
detection across extensive land masses. The application of
complex machine learning algorithms on relatively weaker
processors exacerbates the problem. While using less powerful
processors in an attempt to mitigate the weight issue, the
computational time required for running intricate algorithms
becomes substantial, rendering these processors ineffective in
real-time applications. Consequently, there arises a pressing
need for a novel approach in machine learning—one that can
provide real-time decision-making capabilities in the realm
of wildfire detection. This necessity is steering researchers
towards innovative solutions, emphasizing the urgency to
bridge the gap between the robustness of algorithms and the
limitations of current processing technologies in the pursuit of
efficient and timely wildfire detection systems.

A. Dataset and Preparation

Some images in the dataset might prove to counter the ide-
ology being pursued in this research paper, that is, to subject
the model to select features of fire like smoke, amorphous
shape of the fire, color and brightness, etc (see Fig. 2). Some
images contain environmental factors like fog and mist and
can be misrepresented by the model such as smoke caused
by fire. This eventually yields false positives during testing of
the model. Some images that were acquired in the fall season
often contain trees that have the fall coloring, that is, they turn
into hues of orange, red and maroon. These hues of colors are
similar to the colors of flame which are challenging. Thus, the
model might, when trained with fall season images, classify
an image with fire as non-fire attributing the fire image to be
a fall season colored tree.

B. Segmentation vs Complete Image

Data for this classification problem is often subjected to
limitations in the form of availability and proper labeling of
classes. It is often stated by researchers [43], that lack of
proper dataset for wildfires, unlike some other applications
that include weather forecast, stock market predictions, models
built around NLP like chatbots and smart Al assistants, has
always limited the approach towards addressing this problem
using various different state of the art techniques. Techniques



(a) Complete image. (b) Segmented image.

(c) Normal image.

(d) Augmented image.

(e) No scaling. (f) Rescaling introduced.

Fig. 3: Dataset and preparation: (a) flames in a complete
image, (b) flames in a segmented image, (c) flames in nor-
mal image (courtesy to WXChasing), and (d) flames in an
augmented image, (e) no scaling (courtesy to Bloomberg), (f)
Loss of information when scaling an image’s resolution.

like YOLOvV3, R-CNN require training datasets with prede-
fined bounding boxes around the class being investigated.
Faster R-CNN as stated by [30] has proven to yield faster
speeds in processing with high accuracy although the vari-
ability of training dataset is difficult to achieve due to limited
dataset with bounding boxes available. Thus, in this research
a custom dataset is used to train the model comprising of
both complete images and segmented images (visit Fig. 3.(a)
and 3.(b)). Each complete image can be broken down into 12
different segmented images. It is important to downsize the
complete image from a resolution of 1280 x 720 pixels to
320 x 240 pixels. This is performed by using the PILLOW
library available in the python environment. The combination
of complete images and segmented images allow for the model
to look for features of flame as a complete and incomplete
demonstration.

C. Data Augmentation

To improve dataset accuracy, various techniques were used
to create diverse data. The initial model showed high ac-
curacy in training but struggled during validation, indicat-
ing overfitting. To tackle this, artificial images were made
through augmentation, preventing the model from focusing

too much on specific examples. This helped the model rec-
ognize broader patterns and reduced the risk of memorizing
isolated instances. The augmentation also addressed real-world
challenges like different lighting conditions and viewpoints,
common in practical scenarios throughout the year. Techniques
including rotation, translation, scaling, brightness adjustment,
and the introduction of Gaussian noise were tactically applied
[44], [45]. These methods collectively fortified the model’s
adaptability, enabling it to navigate through various input
scenarios with resilience and precision (visit Fig. 3.(c) and
3.(d)). By incorporating these augmentation strategies, the
model has not only become adept at handling diverse and
nuanced data but also emerged as a robust tool for subsequent
analyses and predictions. The dataset, enriched through these
interventions, provided a solid foundation for the model to
generalize patterns effectively, ensuring its applicability in
real-world situations. This meticulous approach not only el-
evated the model’s training accuracy but also its validation
accuracy.

D. Scaling Issues

In Fig. 3.(e) and 3.(f), two different pixel sizes of the same
shot of wildfire are taken. An image with 320 x 240 pixels
(on the left) and an image with 1280 x 720 pixels (on the
right). Same segments of the both these images are extracted
which have the same area covered. The image with higher
pixel density exhibits sharper image contrary to the image with
lower pixel density which exhibits loss of information. This
can be observed by looking at the trees in the environment.
The shape and texture are dull when a lower pixel size is
considered. This loss of information might result in improper
filter selection during training effecting the accuracy of the
model. Early detection of wildfire contains detection of a small
fire spot and thus having higher pixel density is important and
necessary.

III. METHODOLOGY

CNNs have always been on the forefront when it comes
to image classification problems. This is mainly due to the
fact that CNN works with the use of several different filters
to extract features out of an image [46]. Feature extraction
and engineering is a domain in deep learning processes that
has gained specific interest of lately. Yet, there is still a lot
of development and understanding required about the same.
This paper focuses on introducing a new practice of feature
reduction in an image. In fire detection algorithms developed
for data in the form of live feed data focuses on several features
that cannot be assessed in an image classification algorithm.
The constant flickering and moving pixels in the video data
presents a quick solution for detection. Although this method
falls behind in time resolution. In this paper we focus on image
feed rather than video feed. The field of image classification
has seen a lot of development towards improving the accuracy
of detection. Very little focus has been put towards improving
processing times to make real time detection effective. This
algorithm focuses on reducing the number of features in the
input image. This is done by segmentation of image. Any



image feed when fed into the neural network, especially CNN,
contains numerous features. These features could be anything
ranging from objects and environment. These can be further
divided into distinctions such as shape of the object, color of
the object, texture of the object or how the object interacts
with the environment. When in neural network convolutions
are carried out by the filters, the product received is known as
a feature. The collection of such features produced by various
filters is known as a feature map. Higher number of image
pixels translate to richer information about the image. More
information then translates to higher number of total relevant
features in the image.

Number of pixels in image o information in the image
Image information o< Number of discrete features

For every engineering problem, choice of number of features
in feature map changes. Some applications like anomaly
detection in mechanical parts in a factory requires high pool
of feature map to properly distinguish between different types
of manufacturing defects. Similarly for wildfire detection
problem a larger feature map enables capturing of the fire and
its characteristics but negatively effects the training stage. A
larger feature map requires a larger dataset with highly varying
images of fire and non-fire which is neither easily available nor
can they be effectively procured. An insufficient dataset while
training the algorithm with larger feature map ends up with
underfitting of the model. Data augmentation techniques also
do not provide any better results as it leads to overfitting of
the data. This is one of the main reasons for researchers using
images of 256 x 256 image size which results in significantly
smaller feature map. This also results in loss of information.

A. Segmentation

Thus, in this paper we propose a solution using the segmen-
tation technique of a wildfire image. In this technique, a high
pixel image is broken down into several pieces. These pieces
are equal in pixel size and are considered as different images.
When any image is cut into pieces, that can be concatenated to
form the original image, information is not lost. It is important
to note that several objects in the image may lose their integrity
in terms of their shape. For example, in Fig. 4, a tractor has
lost its integrity of shape as it is segregated into two different
images (body is in one image and the tires are in the other).
This could hinder the algorithm’s capability to detect that
object. Classification problems that involve morphous object’s
detection, for an instance, an image of a person, are hard to
deal with due to the same aforementioned reason. Thus, this
technique is not useful for detection of fixed shaped objects.
Flames, on the contrary, are amorphous in nature, that is, they
do not possess a fixed shape or form. They can be found in
different shapes, forms, color and intensity. This amorphous
nature of fire enables this segmented image approach of this
paper’s algorithm. Number of segments to be made of an
image is dependent on the pixel size of the original image
and the required processing speeds. Smaller the pixel size of
segment of an image, faster is the processing speed involved.
In this paper, original image pixel size of 1280 x 720 is used

in the dataset. These images are segmented into 12 segments
where each segment is 320 x 240 pixels pieces.

Width of original image 1280 .
: = = 320 pixels
Number of vertical segments 4
Height of oiriginal image _ 720 — 240 pixels
Number of horizontal segments 3

Total number of segmented images =4 x 3 = 12

Segmentation of images into smaller pieces cause two positive
outcomes. First, in early wildfire images, flames become a
prominent feature of one of the segmented-images. This,
makes it easier for algorithm to detect flames and smoke
resulting in increased accuracy for early wildfire detection.
Second, processing speeds for these segmented-images will
now increase as number of pixels of input image decreases
(less computations to be performed as compared to when
original image is used as input image). When integrating this
algorithm within a UAV drone equipped with a 720p camera,
the feed recorded would be in the form of a video. This video
feed is broken into frames (images) so it can be compatible
to be fed into the algorithm for classification. A 60 fps, 720p
camera, records 60 frames of 1280 x 720 pixel size every
second. All these 60 frames are not relevant as they are a mere
copy of each other at different angles, considering that UAV is
under motion. Fig. 5 presents the proposed SegNet architecture
for early wildfire detection (needs to be shifted to the end
of SegNet Architecture). These frames prove to be useful for
training of the model but not for execution. Thus, selecting a
frame every 20 frames in a second, helps lower computational
costs and speed up processing. This also provides time for
additional supplemental programs on UAYV, for example, fire
alert signaling process to send results to respective authorities
for any follow up action.

B. SegNet Architecture

This algorithm is based on Convolution Neural Networks
with Support Vector Machine used to draw a hyperplane
among the data-points with ReLu classifier for convolutions
[47]1-[50]. Successful use of linear support vector machines,
for binary classification, was performed by many researchers
[48], [49], [51], [52]. ReLu classifier has proven to be much
faster at convergence compared to tanh and sigmoid [53]. The
optimal hyperplane to separate two classes can be computed
by the following set of equations [54].

flw, ) =w.x+b ()

1 P
min-w " w + C’Zmax(o, 1—yi(wlz; +0))*  (2)
p i=1
w T w refers to the Manhattan norm (also known as £; norm),
C denotes penalty parameter, y; denotes the actual label, and
w'x; + b denotes the predictor function. The differentiable
counterpart, L£o-SVM provides more stable results [6]

1 P
mln;Hng +C Zmax(o, 1 —yi(w'z; + b))%  (3)
i=1



Fig. 4: Segmentation of a complete image into twelve segmented images avoids loss of critical information and enables fire
spots to be the prominent feature in the segmented image for better feature detection and selection. This approach can only
be implemented on objects, under detection, that are amorphous in nature (do not exhibit a consistent shape or form).
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Fig. 5: The proposed SegNet architecture specifically designed to be light on computations. This model can be deployed in
drones with weak processing systems. The input image to this architecture is a segmented image achieved after segmentation
of a complete 1280 x 720 image into 12 smaller 320 x 240 segments.

The model comprises of five layers of convolutions and two
hidden layers separated by a flatten layer with one output layer
that has a single dense node. These, in an order, are outlined
in Table I.

IV. WORKFLOW, CHALLENGES, AND MITIGATION
A. Oveffitting Issue

During the initial algorithm tests, a concerning phenomenon
emerged: the model exhibited signs of overfitting, where it
excessively tailored itself to the training data. To address
this issue, data augmentation techniques were implemented,
intending to introduce variety into the dataset and curb

overfitting. While these methods did alleviate the issue to
some degree, they did not completely eradicate the problem.
Additionally, attempts to mitigate overfitting through early
stopping proved ineffective as the root cause was not solely
over-training. A breakthrough came with the application of £
regularization. This technique proved to be remarkably effec-
tive in addressing the overfitting challenge. Lo regularization
operates by penalizing overly complex models, in particular
in terms of weight values, effectively balancing the weights
associated with different nodes in the neural network. By
doing so, it corrected the bias present in the initial weight
distribution, ensuring that no specific node dominated the
others. This balance in weights significantly improved the



TABLE I: SegNet architecture.

Layer  Description

1 1st Convolution 2D layer: Filters = 32, Activation function =
ReLu, kernel size = 3 x 3, Stride = 2, Input Shape = (240, 320,
3), padding = “SAME”

2 1st Maxpool layer: Pool Size = 2, Stride = 2

3 2nd Convolution 2D layer: Filters = 64, Activation function =
ReLu, kernel size = 3 x 3, Stride = 2, padding = “SAME”

4 2nd Maxpool layer: Pool Size = 2, Stride = 2

W

3rd Convolution 2D layer: Filters = 128, Activation function =
ReLu, kernel size = 3 x 3, Stride = 2, padding = “SAME”

Flatten layer

1st Dense layer: Units = 16, Activation function = ReLu

2nd Dense layer: Units = 16, Activation function = ReLu

O |0 |3

Output layer: Unit = 1, Lo regularization technique, Activation
function = linear

model’s generalization abilities, allowing it to perform better
on unseen data. The implementation of Lo regularization is
pivotal during the training process. It not only highlights
the bias issue within the model but also provides a viable
solution by equalizing the influence of various nodes. This
corrective measure significantly enhances the model’s ability
to generalize, making it more reliable and effective in handling
diverse datasets. Therefore, Lo regularization bolstering the
overall robustness of the algorithm.

B. Workflow

The development of this machine learning algorithm was
meticulously designed with a specific workflow, as shown in
Fig. 6, to achieve accurate classification results. At its core, the
algorithm processes live video feed captured by drones, a cru-
cial component in wildfire surveillance. The process begins by
temporarily storing the video feed in the drone’s memory. This
video stream is then divided into frames, with a specific subset
of frames selected at fixed intervals, precisely one frame after
every 19 frames in a 60 fps camera, translating to 3 frames
per second. This intentional selection provides a buffer period,
facilitated by the model’s swift processing speeds, allowing for
additional secondary tasks to be executed. These tasks include
intricate processes such as segmentation algorithms, real-time
notifications to authorities upon fire detection, control of the
drone’s flight systems, and integration with other sensors
like GPS. One of the algorithm’s remarkable features is its
ability to optimize resource utilization. By incorporating these
secondary tasks within the main onboard processing unit, it
eliminates the necessity for parallel processing units, reducing
both the weight and production costs of surveillance drones
significantly. This streamlined approach ensures the algorithm
operates seamlessly within the drone’s existing framework,
enhancing efficiency without compromising the drone’s overall
functionality.

From an engineering perspective, this design choice not
only minimizes the drone’s weight but also curtails produc-
tion expenses, a critical factor given the need for deploy-
ing a substantial number of drones to cover vast forested

areas effectively. The algorithm achieves this efficiency by
employing a simple yet effective architecture. It utilizes a
minimal number of convolution and dense layers, strategically
balancing computational costs with high detection accuracy
and rapid processing speeds. Upon receiving the segmented
frames, depicted in Fig. 6, the algorithm proceeds to the
segmentation stage. Each frame is dissected into 12 distinct
segments, each maintaining a pixel size of 320 x 240 without
any loss of critical information. These individual segments are
then fed into the machine learning model, meticulously trained
for fire detection. The model’s output, whether it signifies the
presence of fire or absence thereof, is stored in what is termed
a "decision array" within the system. The decision array
serves as a pivotal component in the algorithm’s decision-
making process. If the array contains zero elements classified
as fire, the algorithm accepts a new image from the live
video feed storage, initiating a continuous cycle of assessment.
When the array contains one element categorized as fire,
the corresponding segmented image is reprocessed. Before
reprocessing, this segment is rescaled to match the dimensions
of a complete image. This step is fundamental in validating the
initial classification, preventing potential false positives, and
ensuring precision in the detection process. However, when the
decision array reveals two or more elements marked as fire, the
drone triggers a significant action. The complete image under
examination is promptly forwarded to the relevant authorities
for comprehensive verification and necessary further action.
This approach ensures that potential wildfire incidents are
promptly and accurately reported, allowing authorities to take
swift and informed measures in response to the detected threat.

V. RESULTS
A. SegNet Performance and Test Accuracy

The personal computing hardware used for building this
model are: GPU — GTX 1660 TI MaxQ design (192-bit
memory interface, 1.14 GHz clock speed), CPU — AMD
Ryzen 9 4900HS (3 GHz clock speed, 7 nm process size),
Software — Python 3.11.4, TensorFlow, Keras, numpy, PIL-
LOW. An approach marked by caution was adopted, ensuring
that enhancements were made conservatively to preserve the
algorithm’s processing speed when it came to hyperparameter
tuning and tuning the number of convolution and dense layers.
Please follow this URL for video of the experiment.

In the developmental stages of the model, depicted in
Table II, various configurations of convolution layers (ranging
from 5 to 11 layers) and dense layers (ranging from 1 to 3
layers) were systematically tested. Note that Conv is a short
abbreviation denotes convolution. Prioritizing computational
efficiency, a balance was sought between model speed and
accuracy. Initial experiments with 5 convolution layers and 1
dense layer yielded a suboptimal accuracy of 54.71%, while
an extensive configuration of 11 convolution layers and 3
dense layers resulted in a lower accuracy of 39.31%. The
optimal compromise between accuracy and processing speed
emerged with a configuration of 5 convolution layers and 2
dense layers, achieving an impressive 98.18% accuracy and
a processing time of 240.375 ms. This careful exploration of
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Fig. 6: Workflow of a drone’s detection processing system with a model trained on the proposed SegNet architecture.

TABLE II: Comprehensive performance analysis of the pro-

TABLE IV: SegNet different training consideration and en-

posed SegNet: (a) Processing times of Segmented approach hancements.
model with varying convolution and dense layers, and (b) — —
. . SegNet model accuracies with different training
Test accuracy of Segmented approach model with varying considerations and enhancements
convolution and dense layers. Simple Early Data Lo-
Training Stopping Augmentation  regularization
SegNet number of convolution layers, time, and accuracy —
Training 89.2% 89.3% 97.5% 99.6%
5 Conv 6 Conv 7 Conv 9 Conv 11 Conv
Validation 59.7% 59.3% 76.1% 99.3%
1 Dense Low Acc 389.32 ms 566 ms 812 ms Low Acc Testing 56.7% 56.9% 71.9% 98.9%
Layer 54.71% 97.5% 96.82% 96.14% 48.79%
2 Dense  240.37 ms 1.34 sec 291 sec  3.32sec  Low Acc
Layer 98.18% 98.18% 97.05% 95.23% 51.24% . . .. . . .. .
of images in the training dataset including original images,
3Dense  2.95sec  406sec  647sec Low Acc  Low Acc i omented complete images, and segmented images for the
Layer 97.95% 97.7% 94.78% 72.56% 39.31%

model architecture during development ensures a harmonious
blend of computational efficiency and accuracy in the proposed
research.

TABLE III: SegNet imaging approaches.

Dataset Categorization

Original Augmented Segmented Total
Complete Complete Images
Images Images
Fire 5,195 547 2,266 5,968
Non-Fire 2,117 239 1,918 4,274
Total 7,312 786 2,144 10,242

Throughout the developmental phases, as shown in Table
IIT and Table IV, the algorithm’s performance was carefully
scrutinized, with model test accuracy being systematically
recorded at each stage of improvement. Table III lists number

case of fire and non-fire. Table IV illustrates accuracy im-
provements with different techniques to deal with overfitting.
In its initial iteration, the model exhibited a 56.7% accuracy,
unmitigated by overfitting concerns. Notably, the training
accuracy stood at 89.2%, while the validation accuracy was
slightly higher at 59.7% after 15 epochs. To counter overfit-
ting, the first strategy employed was early stopping. However,
this measure yielded results that were remarkably similar
to the previous state, indicating that it did not substantially
mitigate the overfitting issue. Subsequently, the integration
of augmented images into the dataset emerged as the next
step. This strategic addition led to a significant boost in
training accuracy, elevating it to 97.5%, accompanied by a
substantial rise in validation accuracy to 76.1%. Consequently,
the model’s test accuracy, evaluated using a dataset comprising
441 images, experienced a noteworthy increase from 56.7%
to 71.8%. Recognizing the need for a better solution, Lo
norm regularization was implemented. This technique played
a pivotal role in refining the model by adjusting weights and
mitigating biases towards specific features. The impact was



profound, evident in the substantial increase in training ac-
curacy to 99.6%, with a corresponding validation accuracy of
99.3%. This adjustment resulted in a remarkable enhancement
of the model’s test accuracy, reaching 98.2%. The cautious
integration of techniques, from early stopping to augmented
data, and finally, £, norm regularization, resulted in a finely-
tuned model. By addressing overfitting and refining its gener-
alization capabilities, the algorithm achieved an accuracy rate
that underlines its effectiveness and reliability, making it a
potent tool in the realm of wildfire detection.

B. Comparison Cutting Edge Techniques

To better understand the effectiveness of this proposed
segmentation approach, the results are compared with state-of-
the-art literature algorithms. These algorithms are GoogleNet
[40] and AlexNet [41]. Both the algorithms were trained
with the same dataset excluding the segmented images to
help with proper comparison of results. Fig. 7.(a) shows the
proposed SegNet performance, with train accuracy of 99.6%,
validation accuracy of 99.3%, and test accuracy of 98.2%
with 0.0003 train loss and validation loss of 0.0004. Fig. 7.(b)
presents AlexNet achieved model train accuracy of 100%, test
accuracy of 92.2%, and validation accuracy of 91.3% with
0.0005 training loss and 0.2943 validation loss. Fig. 7.(c)
depicts GoogleNet achieved model train accuracy of 99.9%,
test accuracy of 76.8% and validation accuracy of 77.5%. The
recorded losses for training were 0.24 and an increased loss
10.629.

One of the main points of focus for this research was
to reduce processing times along with the use of minimal
computational power. Please visit Appendix A for comprehen-
sive discussion about performance and time complexities. The
processing speeds for proposed segmentation approach were
observed and recorded at the stage of hyperparameter tuning
and selection of number of convolution and dense layers. For
the segmented approach single batch of 32 segmented images
took an average of 641 milliseconds.

641 ms ms

= 20.031

92
32 Seg Images Seg Images

A complete image consists of 12 Segmented images:

msS

20.0312 x 12 = 240.375

Seg Images complete image

Thus, in the proposed segmented approach, a complete image
of 1280 x 720 pixel resolution was passed through the neural
network within 240.37 milliseconds. The processing speeds of
SegNet approach, GoogleNet and AlexNet were also compared
for better understanding. As all the convolution layers are
interconnected in GoogleNet in the form of inception block,
which results in high number of computations, GoogleNet
architecture was found to be the slowest with 1.487 seconds.
AlexNet performed better than GoogleNet as it was observed
to be faster at 661.54 milliseconds. The proposed SegNet was
observed to be faster than both GoogleNet and AlexNet with
240.375 milliseconds per complete image. The times men-
tioned are the average time observed for one complete image
over 10 trials. As shown on Fig. 8, SegNet algorithm performs

the best among the three models for each value of batch
size. GoogleNet’s curve represents an incline in latency with
increase in batch size. This is due to the interconnections of
various different convolution blocks in the GoogleNet model
architecture. Whereas, both AlexNet and SegNet perform with
a curve close to linearity.

C. SegNet Memory Requirements and Time Complexities

Memory requirements and time complexities calculations
are detailed in Appendix A. The proposed SegNet architec-
ture’s performance metrics are presented in Fig. 9.(a) and
Fig. 9.(b) in terms of accuracy and precision rates. Fig. 9.(a)
shows the number of images that were classified as one of
the mentioned categories by SegNet on test data. Out of the
selected 441 complete images for testing, 235 were categorized
correctly as True Positives (TPs) and 198 were classified
as True Negatives (TNs). This testifies to SegNet model’s
effectiveness. As depicted, 5 False Positives (FPs) and 3 True
Negatives signify the imperfections found in the model. With
Accuracy of 98.18% that exceeds results obtained by AlexNet
and GoogleNet of 92.2% and 76.8% respectively. Fig 9.(b)
shows the different performance metrics of SegNet. With a
high recall, precision and accuracy, SegNet performs on par
with most modern machine learning approaches, along with
the model being computationally faster.

Table V shows the memory consumption of the SegNet
model. The SegNet model consumes 44.17 megabytes or
44,177,408 bytes of memory. Thus, any computational device
on board a drone, with 50 megabytes of additional memory can
perform operations of SegNet model. Table 6 also represents
the total number of operations carried out for every layer.
The total number of operations for SegNet model are 19.275
million. Thus, a drone with a processor with 19.275 MHz
speed is required. For example, a common CPU on board
drones manufactured by Qualcomm, the snapdragon 821 has
the ability to perform at 2.15 GHz which could prove ideal
for both the drone flight and wildfire detection algorithm’s
processes. The data in Table V were collected using the
expressions in Appendix A.

TABLE V: Metrics performance and the related mathematical
formulas.

Layers Parameters ~ Model Operational ~ Total )
space space operations
requirement  requirement  performed
(bytes) (bytes)

Conv2D 1 896 7,168 2,889,856 8,242,560

MaxPool 1 -

Conv2D 1 18,496 147,968 1,322,752 4,095,360

MaxPool 1 -

Conv2D 1 73,856 590,848 636,544 2,021,760

Flatten -

Dense 1 2,457,616 18,530,432 39,322,368 4,915,200

Dense 2 272 2,176 4,864 512

Output 17 136 1,024 32
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VI. CONCLUSION

In conclusion, this research addresses the critical challenges
in wildfire detection, focusing on enhancing time resolution
and optimizing processing speeds while maintaining high
accuracy levels. Leveraging the power of Convolutional Neural
Networks (CNNs), the study introduced a new approach:
Segmented Neural Network (SegNet). This innovative method
involved breaking down high-resolution images into smaller,
manageable segments, allowing for rapid processing without
compromising accuracy. The study meticulously navigated the
complexities of feature reduction, acknowledging the inherent
difficulties in balancing extensive feature maps with limited
datasets. Through a systematic process, various techniques
were applied to mitigate overfitting, enhance generalization,
and achieve outstanding accuracy rates. Early stopping, data
augmentation, and Lo norm regularization were sequentially

implemented, each step refining the algorithm’s capabilities.
The results demonstrated a significant leap in accuracy, with
the final model achieving an impressive 98.2% accuracy on the
test dataset. A pivotal aspect of this research is the comparison
with established algorithms, GoogleNet and AlexNet, which
provided valuable insights. The segmentation approach outper-
formed these models, showcasing not only superior accuracy
but also remarkable processing speeds. The segmentation
technique processed a complete image of 1280 x 720 pixels in
just 240.37 milliseconds, a testament to its efficiency in real-
time applications. Beyond accuracy and speed, this research
emphasized the importance of preserving essential details in
images, especially in early wildfire detection scenarios. By
ensuring the amorphous nature of fire, features were retained
through segmentation, the algorithm excelled in detecting
subtle signs of wildfire, crucial for timely intervention.

Furthermore, this research highlighted the algorithm’s in-
tegration within UAV drone systems. By optimizing resource
utilization and minimizing computational costs, the algorithm
can seamlessly integrate secondary tasks, such as real-time
notifications, segmentation algorithms, and control systems,
without the need for additional processing units. This stream-
lined approach significantly reduces production costs and
drone weight, ensuring practicality and efficiency in real-world
deployments. In summary, this research not only introduces
a new segmentation approach for wildfire detection but also
presents a comprehensive framework that balances accuracy,
speed, and efficiency. By addressing critical challenges in real-
time processing and detection accuracy, this study contributes
significantly to the advancement of wildfire surveillance sys-
tems, promising enhanced safety and rapid response capabili-
ties in the face of wildfire threats.
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Fig. 9: SegNet performance metric: (a) True Positive (TP),
False Positive (FP), False Negative (FN), True Negative (TN);
and (b) False Positive Rate (FPR), False Negative Rate (FNR),
True Negative Rate (TNR), recall, accuracy and precision of
the model.
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Calculation of Performance and Time Complexities

Let us define True Positives (TP) as the number of fire images
correctly classified as fire images by the model, True Negatives
(TN) as the number of non-fire images correctly classified as
non-fire images by the model, False Positives (FP) as number
of non-fire images classified as fire images by the model, and
False Negatives (FN) as number of fire images classified as
non-fire images by the model. The mathematical expressions
for the performance metrics presented in Fig. 9 follows Table
VI

Time complexity: The time complexity analysis for the
proposed SegNet algorithm, AlexNet and GoogleNet have
been performed with Big-O asymptotic notation. Let us start
by defining the following variables: |w| refers to number of
weight elements, ¢ x w x h describes Kernel size and channels,
k denotes number of Kernels, m, denotes number of neurons
in output dense layer, p is the memory size for float64 datatype
element (8 bytes), s denotes strides, M x N denotes the input
image dimensions, n denotes neurons in input layer in dense
layers. Big-O notation O(g(n)) is defined as follows:

f(n) =0(g(n)) iff 3 positive constant ¢ and ng
such that f(n) <c x g(n)vn > ng 4)

n denotes number of inputs, ng denotes a positive integer,
w X h denotes Kernel size, ¢ denotes number of channels [55].

TABLE VI: Metrics performance and the related mathematical
formulas.

Metrics Mathematical Interpretation
performance Formula
False Positive FP};% Measure of how incorrect the
Rate (FPR) model is classifying fire image
. FN .
False Negative TBIFN Measur.e of hqw incorrect the
Rate (FNR) model is classifying non-fire
image
. TN - .
True Negative FPITN Measure of non-fire image
Rate (TNR) correctness of the model
TP S
Recall TPIFN Measure of fire images
correctness of the model
TP+TN . :
Accuracy TPTFNITNTFP Overall effectlyeness of the
model to classify correctly
_TP P ’ it
Precision TPIFP The accuracy of positive

predictions

For change in image size, the total number of operations per
convolution layer (T'OpL) in SegNet model is given by
(cxwxh)(M—-—w+8)(N—h+s)

- 5)
Since the only affected factors with change in image size are

dimensions M and N, the above equation can be simplified
as follows:

TOpL =2

S

f(n) =exg(n)
=G x(M—a)x(N-=1)

G — 9% 181)2 x h ©)
where a = w—s and b = h—s. Thus, the time complexity with
respect to change in image size is linear in two dimensions M
and N. The Big-O notation for this algorithm is O(M, N).

Memory requirements and operational complexity: The
model space complexity is defined as the total amount of
memory utilized by the model in a given computational envi-
ronment. Operational Space complexity presents the amount
of memory being utilized by each layer’s operation. This
metric of performance is used to determine the local efficiency
of the layers in the model in this deep learning algorithm.
Operational compute complexity describes the total number
of operations being carried out in a convolutional neural
network. These metrics can be determined by the following
mathematical expressions. For the SegNet model [56]

|w| = k(c x w x h+ 1) X pbytes (7
The Input Image Memory (/M) is defined by
IIM =cx M x N x pbytes ()

The Generated Output Memory (GOM) is equal to Gradient

of Activation (GoA) and expressed as

k(M —w+s)(N—-h+s)
52

In view of Equation (7), (8), and (9), the Total Operational

Space Complexity (I’'OSC) per layer is defined as

TOSC = ITM + |w| + 2GOM

GOM =

X pbytes  (9)

(10)



During dense layer operations, the space required for weight
matrix and gradient of weights is equal to nm, + m,. The
space occupied by input and output neurons and backpropa-
gation is 2n + 2m,,. The total space occupied by dense layer
(T'SpDL) is defined by

TSpDL = (] v w| + |w| + 2n + 2k) x pbytes (11)

Number of multiplication or addition operations per layer
(NOpL) is expressed as [57]

NOpL =

(exwxh)(M—w+s)(N—h+s)k

12)
S

Total operations per layer (T’OpL) is defined as in (8). This
implies the total number of operations T'OpL do not depend on
the number of inputs n. Hence, the multiplication or addition
operations per output neuron is equal to n, and the total
operations for all output neurons in a layer is equal to 2nmy.
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