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Abstract—This paper undertakes a critical examination of
unsupervised learning within the context of Raven’s Progressive
Matrices (RPMs). We trace the historical trajectory of compu-
tational models for RPMs, from early rule-based approaches to
modern neural networks, and we focus on the innovative work
of Zhuo et al. in introducing semi-supervised learning to RPMs.
Our discussion highlights the nuances of unsupervised learning,
emphasising the role of noisy labels as a form of guidance, albeit
with a trade-off in precision compared to traditional supervised
learning. In this paper, we recognise the challenge in formalising
the distinction between supervised and unsupervised learning,
but we underscore the importance of precision in communi-
cation and nomenclature, especially in regards to facilitating
knowledge transfer and directing future research. We hope
that this contribution enhances the discourse on unsupervised
learning and offers valuable insights towards the challenges and
opportunities in attaining human-level reasoning capabilities in
machine learning and artificial intelligence.

Index Terms—Artificial intelligence, benchmark, critical anal-
ysis, demonstration, relational reasoning, Raven’s progressive
matrices, semi-supervised learning, supervised learning, unsu-
pervised learning.

I. INTRODUCTION

AVEN’S Progressive Matrices (RPMs) have long been a

staple for measuring abstract reasoning and fluid intelli-
gence in humans [1]. As such, it is natural that they would be
subsequently adapted as test domains for artificial intelligence
systems such as neural networks [2].

RPMs require subjects to solve problems in the absence of
physical objects or concrete phenomena, and independent of
their language, reading and writing skills, and arguably their
cultural background [3], [4]. As shown in Fig. 1(a), an RPM
consists of several visual geometric designs with a missing
piece. One has to determine the underlying logical rules in
the problem matrix and select, from an answer set of eight
candidate choices, the most suitable choice that satisfies these
hidden rules [5].

Early computational models for solving RPMs were highly
reliant on pre-determined rules. The first example was intro-
duced by Carpenter et al. [3]. This influential model operated
through a production system that utilised shared memory to
detect matrix patterns, construct rules, and derive answers,
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Fig. 1. Two representations of an RPM problem taken from the I-RAVEN
dataset. Figure (a) illustrates the standard representation (context set above,
answer set below), while figure (b) illustrates the pseudo-label contrasting
representation utilised by Zhuo and colleagues [6]. To complete the problem
matrix, one has to select the best choice amongst the eight panels in the
answer set that follows structural and analogical relations. In this problem,
the positions and colours can vary freely as long as the number, shapes and
sizes of the objects follow their respective underlying rules.

shedding light on the role of working memory in RPM perfor-
mance. In 2003, Bringsjord and Schimanski built a theorem-
prover and demonstrated its ability to solve selected RPM
problems encoded in first-order logic [7]. Although Bringsjord
and Schimanski did not report any specific results or provide
technical details on their model, their work introduced one of
the earliest robotic systems to be used in solving RPMs.

In mid-2010, Lovett et al. presented a model that fo-
cussed on visual processing of RPMs that operated on spatial
relationships and predefined geometric transformation rules
[8]. Meanwhile McGreggor et al. introduced the first fractal
technique for directly operating on visual inputs of RPMs,
without any need to extract propositional representations as in
earlier models [9]. Later in 2010, Cirillo and Strém introduced
a system inspired by Lovett et al. [8] and Carpenter et al.
[3]. Similarly to [8], Cirillo and Strém’s system utilised hand-
drawn vector graphics to generate hierarchical propositional
representations of test problems, while similarly to [3], the
system selected the best-fit pattern from pre-defined patterns,
derived through a priori inspection of the Standard Progressive
Matrices [10].

In 2011, neural networks were first applied to RPMs by
Rasmussen and Eliasmith [11]. Their work introduced the
first spiking model designed for solving RPMs. They man-
ually encoded input images into propositional attribute-value
pairs, and the spiking neuron model identified transformations
among these vectors, generalising them to induce a rule for
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the specific problem. Although the authors claimed success in
solving RPM problems with their model, they did not specify
the particular tests or problems addressed in their results. In
2012, Kunda et al. introduced a model inspired by McGreggor
et al. [9], which also operated purely with visual information.
However, unlike fractals, Kunda et al.’s model utilised affine
and set transformations to map image data between cells in a
given RPM problem [12].

In 2013, Rasmussen and Eliasmith extended their spiking
model and applied it to studying age-related cognitive decline
in humans [13]. They reported a positive correlation between
manipulations in the model and observed human behavioural
data. Much like earlier work in the field, Rasmussen and
Eliasmith emphasised the use of RPMs for demonstration
purposes, especially in their use of computational frameworks
in studying and elucidating factors in human cognition.

In 2018, Barret et al. introduced the first large-scale de-
ployment of RPMs as a machine learning dataset known as
the Procedurally Generated Matrices (PGM) dataset [2]. In
an attempt to simplify the PGM dataset and ease training,
the RAVEN dataset was introduced in 2019 by Zhang et al.
[14]. However the generation mechanism for RAVEN was
later shown by Hu et al. to be compromised [!5]. They
demonstrated that the generation mechanism for the answer
panels resulted in substantially easier RPMs, such that it was
unnecessary for an algorithm to consider the context panels
in order to solve the RPM. To rectify this defect, Hu et al.
introduced the I-RAVEN dataset in 2021 [15]. It should be
noted that RAVEN still remains a valid machine learning
dataset, especially for benchmarking, albeit far simpler than
intended and without the intended correspondence with the
human intelligence tests.

Most work in this area focusses on fully supervised learning,
i.e., where the target classification of all training instances is
made available to the learner. To our knowledge, only two
papers on I-RAVEN, [16] and [6], have considered anything
other than fully supervised learning. The first paper, [16],
describes a semi-supervised learning method for RPMs, which
efficiently trains neural networks with minimal labelled data,
while the latter, [6], describes a highly innovative method as
unsupervised, though there is some acknowledgement that it
is not unsupervised in the strictest sense. The aim of this letter
is to clarify the exact position of [6] in the research literature
and thus alleviate any confusion that may arise in subsequent
research.

To begin, we first discuss the characteristics and categories
of benchmark and demonstrator problems with respect to
RPMs in section II, considering both the presence and absence
of supervision. Next, we carefully delineate the relationship
between strict and broad uses of the term “unsupervised” in
section III. In section IV, we discuss whether the approach
proposed by Zhuo et al. [6] can be generalised across different
classes of conceptual problems, of which RPMs are proxies
or representatives. Finally we conclude the letter also in
section IV, by distilling any insights into the effectiveness and
adaptability of unsupervised methods in the RPM context.

II. DEMONSTRATION AND BENCHMARK PROBLEMS

Problem sets utilised in machine learning research generally
fall into two large classes, i.e., demonstration problems and
benchmark problems. Each class contains unique character-
istics and serves a distinct role in the advancement and
evaluation of machine learning algorithms.

Demonstration problems are primarily employed to elu-
cidate and illustrate concepts, methods, or techniques. In
machine learning research, these problems are primarily used
to determine whether a particular problem class can be solved
and if so, how well (e.g., protein folding [17]). Generally,
the particular problem is not important, but is chosen to
exemplify a general class of important problems that are
likely to require similar techniques. Often, the problems are
additionally chosen to have known solutions, to simplify the
construction of training and testing sets.

Conversely, benchmark problems are primarily used in
evaluation and comparing performance of different systems,
algorithms or models [18], [19]. These problems are designed
to establish a standardised and objective basis for assessing
the capabilities of various solutions within a specific field
(e.g., machine vision [20]). In machine learning, benchmark
problems are commonly employed in testing and gauging the
state-of-the-art within a particular domain (e.g., object recog-
nition [21] or machine translation [22]). They may vary in
complexity, ranging from relatively straightforward to highly
intricate tasks. Importantly, benchmark problems often lack a
single “correct” solution, shifting the focus towards evaluating
the quality and effectiveness of different approaches. Their
primary purpose is to measure progress, spur innovation, and
provide a basis for comparison within a specific domain.

In terms of exemplifying abstract and relational reasoning,
RPM problems clearly fall into the former class. They were
undoubtedly originally introduced into machine learning pre-
cisely because they were well-studied in neuroscience and
psychology as difficult conceptual problems. For machine
learning, RPMs have become increasingly attractive since
large datasets can be readily constructed and potentially be-
cause of their wide use as human tests make them more
compelling for the general public.

III. SUPERVISED AND UNSUPERVISED LEARNING

The concepts of supervised and unsupervised learning have
long existed in psychology [23], [24]. The earliest compu-
tational distinction between the two was first introduced by
Spragins in 1966, albeit without modern terminology, i.e.,
Spragins distinguished the two as learning with or without
a teacher [25]. The modern machine learning distinction was
first introduced by Darling and Raudseps in 1970, with an
emphasis on classification [26].

Since its inception, unsupervised learning has been pur-
sued for two connected reasons, to provide impetus toward
exploratory learning (and thus more completely mimic human
learning), and to reduce the requirement of labelled training
data, which is often prohibitively expensive to obtain [27].
Initially, the small toy training sets then used meant that the
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labelling cost was low, so that the emphasis was on exploratory
learning [28], and the formal definition correspondingly strict.

The expanding capabilities of neural nets has led to a
demand for vast training sets and thus for mechanisms that
reduce, but don’t necessarily eliminate, the need for costly
human-generated labels. This has led to a more relaxed
definition of unsupervised learning, where some ground-truth
labels and/or some noisy labels are permitted [29]. In machine
learning literature, this loose form of unsupervised learning is
sometimes referred to as few-shot learning or more often as
semi-supervised learning [30].

Confusion can arise when contrastive learning is consid-
ered, as this method can be applied to both supervised and
unsupervised settings [31]. When applied in unsupervised
settings, no labels are utilised, noisy or otherwise. In such
settings, a learner is tasked with discovering invariant repre-
sentations of an input (usually an image) from some given
distribution [32]. Generally, the level of supervision can be
questioned in situations where contrastive examples are hand-
crafted or human generated.

In its strictest sense, unsupervised learning refers to a cate-
gory of machine learning algorithms designed to extract mean-
ingful patterns, structures, or representations from unlabelled
data. It is a process of discovering hidden patterns without any
predefined labels or specific guidance from external sources
[33]. The fundamental premise of unsupervised learning is
to let the algorithm explore and identify inherent structures
within the data itself [27].

The work presented by Zhuo et al. [6], as further clarified
in the next section, eliminates this premise of exploration and
discovery by communicating most of the hidden patterns to the
algorithm and guiding its process of learning. Hence their work
falls into the semi-supervised category, or at least in a category
excluding strictly unsupervised learning. The importance of
this exclusion comes from the observation that many (perhaps
most) important conceptual learning problems, to which we
wish to apply machine learning, may not have pre-determined
class labels and so exploratory and strictly unsupervised learn-
ing will continue to be important. This is particularly relevant
to RPMs as neural network demonstrators.

IV. DISCUSSION AND CONCLUSION

As illustrated in Fig. 1(b), the Zhuo et al., method applies
an ingenious transformation to the original RPM problem,
converting the original three-row problem into a ten-row
problem [6]. They replicate the incomplete last row of the
original problem with eight complete rows, one for each
instance from the answer panels. They add pseudo labels to
each row, marking the first two rows validly as correct, and the
rest (not always validly), as contrastingly incorrect. In doing
this, Zhuo et al. encourage a learning algorithm to learn and
identify equal or similar properties between the positive rows
and distinguish them from the negative rows. In practice, the
learning algorithm is encouraged to assign higher estimated
probabilities to the first two rows, while assigning lower values
to dissimilar rows in the remaining eight rows.

Undoubtedly, Zhuo et al.’s transformation of an RPM prob-
lem results in an equivalent problem to the original, in the
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Fig. 2. Illustrative example of an RPM highlighting the interplay between
a first-order and a second-order relation. The second-order relation, ‘less
strict than’, restricts how the first-order relation, ‘identical’, manifests in each
successive row. In the first row, the first-order relation fully manifests. In
the second row, the first-order relation manifests as “all objects are identical,
except some objects are smaller”. In the third row, it manifests as “all objects
are identical, except there are fewer objects and some might be smaller”.
Solving the RPM requires one to consider the successive application of the
second-order relation between and across the rows.

| N ®

sense that there is an automated transformation between the
two. However, is this transformation enough? For a benchmark
problem, the answer is clear: a clever transformation such as
this will be directly incorporated into methods and be applied
across the board. However, for a demonstration problem, the
matter is more nuanced.

First, a critical question is whether this transformation can
be applied across the class of problems for which the original
is a demonstrator. This is clearly not the case here. The method
in [6] depends heavily on the specific structure of the RPM
problem, i.e., a multi-relation problem with multiple-choice
answers. It is not at all clear that the transformation of Zhuo
et al. can be applied outside this restricted class, and equally
unclear how many interesting conceptual learning problems
actually share this structure.

Second, there is the question of the sense in which the origi-
nal and transformed are equivalent. With sufficient knowledge,
the two can be inter-transformed. In the case of RPMs, we the
supervisors or instance constructors have this knowledge. But
the learner does not: it has to learn it. Even if the problems
are equivalent given certain knowledge, it does not imply that
the problems are equivalent from the perspective of a learner.

Formally, the classic representation of an RPM, as in Fig.
I(a) and 2, is most naturally represented as a second-order
logic problem. The content of each row can be represented as
a relation between the three images (i.e., a first order problem).
Thus the content of the whole three rows becomes a second
order assertion, that the relations in the three rows satisfy a
second order relationship ‘same-relation’. The overall problem
is then to discover such a relation and choose which of the
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eight answer panels makes that overall second-order relation
correctly describe the first-order relations of the three rows.
Thus it is in essence a second-order learning problem.

From the perspective of an RPM solver, human or computer,
the second order relation to be discovered could be any second-
order relation, it does not have to be ‘same-relation’. For
example, it could alternatively be the relation ‘less strict than’,
where the relation in the first row is stricter than in the second
and the second is stricter than in the third. That is, an RPM can
be validly constructed such that the first-order relation varies
with each successive row, as opposed to those in traditional
RPMs where they remain constant. Fig. 2 offers a concrete
example of this, where the second-order relation ‘less-strict-
than’ acts on the underlying first-order relation ‘identical’
and varies successively with each row. In this illustrative
example, a learner is tasked with identifying the properties
of the individual elements, i.e., colour, position, shape and
size; the first-order relationships between the elements, i.e.,
‘identical’, and the second-order relationships between these
first-order relationships, i.e., ‘less strict than’.

Comparing Fig. 1(b) and 2, it is clear that the transformed
problem naturally loses the second-order property and be-
comes best represented as a first-order logic problem. Namely,
as in the original RPM, each row has a first order relation be-
tween the three images, however in the transformed problem,
some are labelled as correct or contrastingly incorrect. The
result of this transformation is that the second-order aspect of
the RPM becomes embedded in the underlying assumption of
machine learning, that the rows have something in common.
In the transformed case, the ‘same relation’ predicate becomes
privileged in a way that it was not in the original.

At a formal level, Zhuo et al’s ingenious method in
[6] results in a different problem. That problem seems less
representative of the class of difficult conceptual reasoning
problems RPMs are supposed to represent. Namely, when a
learner is tasked with solving an RPM without guidance, they
are tasked with self-discovering higher-order relations.

For humans, such a task, at its highest level, is often awarded
the special name of “research”. It is also often associated with
abstract reasoning and fluid intelligence. These two cognitive
traits are related to how quickly a human subject is able to
reason with information to solve new, unfamiliar problems,
independent of any prior knowledge [34]. Furthermore, these
traits also include a human subject’s ability to think laterally
and flexibly, to reason logically, and to extrapolate rules or
relationships beyond the most obvious and to other possible
scenarios.

For machine learning algorithms, simulating these traits
offers advantages beyond simply solving RPMs. Fluid intel-
ligence and abstract reasoning are also implicated in action
perception and production, as well as in physical and ob-
servational learning [35]. That is, these traits are implicated
in cognitive processes strongly emulated by reinforcement
learning and autonomous vehicles as reported in machine
learning literature [36]. Furthermore, fluid intelligence, and
by extension observational learning, overlap with key action
representation systems in the human brain, such as the mirror
neuron system [37], as well as domain-general control pro-

cesses that have been associated with the multiple demand
system [38].

It is exactly in relation to these cognitive traits that Raven’s
Progressive Matrices serve as proxies for general conceptual
reasoning problems. It is clear that RPM problems do not
capture all aspects of general conceptual reasoning, but offer
an objective measure of an entity’s ability to reason abstractly,
recognise patterns and draw logical conclusions. The skills
assessed by RPM tasks in a strictly unsupervised setting align
closely with the cognitive abilities required for general con-
ceptual reasoning, making them valuable tools for assessing
and understanding this broader cognitive domain.

While most research has focused on supervised learning,
the application of unsupervised learning to RPMs has added
complexity and innovation to the field. This discussion has
highlighted some of these complexities. Firstly, it has noted
the nuances between demonstration and benchmark problems,
where we have emphasised the need to assess the trans-
ferability of methods across problem classes. Secondly, we
have underscored the critical differences between supervised,
semi-supervised and unsupervised learning, with contrastive
learning taken into account. In doing so we have clarified the
categorisation of Zhuo et al.’s work reported in [6].

Finally, while considering supervised, semi-supervised and
unsupervised learning, this discussion has highlighted the
subtle interaction between guidance and difficulty in solving
RPMs. Zhuo et al’s method introduces a novel perspective
on unsupervised learning and addresses the challenges of
obtaining labelled training data, but careful consideration is
needed to assess its generalisability and its ability to capture
the essence of difficult conceptual reasoning problems.
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