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Abstract

Under the commonalities found in the goals of two areas, neural network compression and feature selection for dimension

reduction, this research focused on finding a new method to address both issues: a method that can lead to easier feature

selection, and an enhancement in the capacity of information flow control of neural network compression techniques, especially

clustering based compression. Specifically, this research focused on creating a novel and effective framework to transform the

weight matrix between the input layer and the first hidden layer in neural networks to be optimal. In other words, a method that

can make the weight matrix’s structure itself optimal for information extraction. By proposing a simple, yet powerful weight

clipping + GMM based method called an In-and-Out Weight Box that can intrinsically act similar to filtering while increasing

the possibility of getting better results in compression, the main aim of research was found to be satisfied. Using Glioma

Grading data from the UCI Repository for checking performance of the In-and-Out Weight box in fitting neural networks, it

was found that significantly better compression results can be achieved in terms of weight sharing via clustering. This research

also suggests a new feature selection method based on the In-and-Out Weight box constraint called IOW-FI, which can lead

to solving limitations or problems of filtering techniques such as setting the number of components to be selected as efficient

features or considering joint distributions of feature space.
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Abstract— Under the commonalities found in the goals of two 

areas, neural network compression and feature selection for 

dimension reduction, this research focused on finding a new 

method to address both issues: a method that can lead to easier 

feature selection, and an enhancement in the capacity of 

information flow control of neural network compression 

techniques, especially clustering based compression. Specifically, 

this research focused on creating a novel and effective framework 

to transform the weight matrix between the input layer and the 

first hidden layer in neural networks to be optimal. In other 

words, a method that can make the weight matrix's structure 

itself optimal for information extraction. By proposing a simple, 

yet powerful weight clipping + GMM based method called an In-

and-Out Weight Box that can intrinsically act similar to filtering 

while increasing the possibility of getting better results in 

compression, the main aim of research was found to be satisfied. 

Using Glioma Grading data from the UCI Repository for 

checking performance of the In-and-Out Weight box in fitting 

neural networks, it was found that significantly better 

compression results can be achieved in terms of weight sharing 

via clustering. This research also suggests a new feature selection 

method based on the In-and-Out Weight box constraint called 

IOW-FI, which can lead to solving limitations or problems of 

filtering techniques such as setting the number of components to 

be selected as efficient features or considering joint distributions 

of feature space. 
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I. INTRODUCTION 

 

hen regarding the architectures and natures of 

recently used neural network compression 

techniques, such as weight clustering or pruning, it is clear 

that the ultimate goal of most weight compressions for 

supervised-deep learning is to decrease total memory usage 

for storing a trained model with preserving performance. 

However, there seems to be another ‘unintended’ goal which 

is undermined when considering the areas of lightening neural 

network: information flow control optimization. Making 

models less overfit and robust to data shifts, it seems that main 

algorithms of network compression techniques not only result 

in preserving performance, but sometimes also result in 

finding better information flow structures than the original 

model or finding the optimal information flow architecture 

which filters out irrelevant information from inputs or feature 

sets, while preserving important feature information for 

accurate predictions on response variables[1][2][3]. 

These characteristics of network compression highly 

overlap with the main task most feature dimension reduction 

studies focus on. Consider, for example, one sub-area: feature 

selection. Filtering techniques such as Mutual Information 

Feature Selection(MIFS, MIFS-U) or minimum redundancy 

maximum relevance (mRMR) algorithms try to find the best 

subset of input vectors using iterative approaches with 

sequentially selecting k number of covariates that can 

maximize the mutual information between explanatory 

variables and the response variable y[4][5]. Meanwhile, 

wrapping techniques such as Harris Hawk Optimization 

(HHO) algorithms or recently introduced algorithms such as 

Salp Swarm Algorithms(SSA) based on Swarm Intelligence or 

Particle Swarm Optimization (PSO) focus on finding the best 

subset of input vectors that maximize the performance of a 

given evaluation function while searching a binarized variable 

plane using meta-heuristic approaches based on non-gradient, 

nature oriented hunting assumptions[6][7]. Both feature 

selection techniques, filtering and wrapping, focus on 

classifying input variables based on the relevance with 

response variable y, which, in a broad sense, is an area of 

finding the optimal information flow control: degrading the 

information of irrelevant covariates, while emphasizing the 

information from important covariate sets. 

Under the commonalities found in goals of two areas, 

compression and feature selection, this research focused on 

finding a new method to address both issues: a method that 

W 



2 

 

 

can lead to easier feature selection, and an enhancement in the 

capacity of information flow control of neural network 

compression techniques, especially layer wise weight 

clustering. Focusing on the first weight matrix(let us denoted 

it as W1) between input layer and the first hidden layer, this 

research assumed that information in W1 has a dominant 

ability to supply information in both directions of the neural 

network. For backwards, fitted W1’s absolute sum or rank of 

weight values per input variable node can be an evaluation 

criteria for each input feature, whereas in forwards, fitted W1 

can work as the most powerful component when controlling 

information flows, which directly affect the performance of 

neural network prediction and network compression results. 

This implies that optimizing W1 and extracting maximum 

information from W1 with validity is a key to conduct high-

performing deep learning architectures. 

This research focused on creating a novel and effective 

framework to transform W1 to be optimal, specifically, a 

method that can make W1’s structure itself optimal for 

information extraction. By proposing a simple, yet powerful 

weight clipping based method called an In-and-Out Weight 

Box that can intrinsically act similar to filtering while 

increasing the possibility of getting better results in 

compression, the main aim of research was found to be 

satisfied. Throughout construction and applications of the In-

and-Out Weight box, this study ultimately aims to practically 

alleviate difficulties for finding an optimal subset of input 

information or optimal compressed network structures when 

fitting a valid supervised-deep learning model. 

 

 

II. PRELIMINARIES 

 

A. Gaussian Mixture Models(GMM) 

 

Gaussian Mixture Model (GMM) is a probabilistic 

distribution-based approach used in fields where data can be 

clustered or classified to two or more groups. Using a mixture 

of normal distributions, the GMM architecture is constructed 

as in (1).  

 

                      [𝐺𝑀𝑀 𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒(𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)] 

𝜋𝑖: 𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝𝑠′ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, ∑ 𝜋𝑖

𝐾

𝑖=1

= 1  

𝛾𝑖(𝑥) =  
𝜋𝑖𝑓𝑖(𝑥; 𝜇𝑖 , Σ𝑖)

Σ𝑗𝜋𝑗𝑓𝑗(𝑥; 𝜇𝑗 , Σ𝑗)
= 𝑝(𝑧 = 𝑖 |𝑥),   𝑓𝑖~𝑁(𝜇𝑖 , Σ𝑖) 

𝑃(𝑋) =  ∑ 𝜋𝑖 ×  𝑁𝑜𝑟𝑚𝑎𝑙(𝑋; 𝜇𝑖, Σ𝑖)

𝐾

𝑖=1

 , 𝜽 =< 𝜇, 𝜋, Σ > 

𝐸𝑀 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 ⟹ 𝑓𝑖𝑛𝑑 𝜽 𝑡ℎ𝑎𝑡 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 log (𝑃(𝑿))    (1) 

 

With 𝜋𝑖 ,   𝜇𝑖 and Σ𝑖 each denoting the prior probability 

(weight, mixture coefficient) of 𝑖𝑡ℎ  group, mean of 𝑖𝑡ℎ group 

and the covariance of 𝑖𝑡ℎ group, GMM fits the model by using 

Expectation Maximization (EM) algorithm. Through running 

the iterative process of EM algorithms, parameters 

compromising the distribution of each group are updated until 

convergence. With the result of GMMs, one can compute the 

allocation probability function of a group ( 𝛾𝑖(𝑥)= p( Z = ‘i’ | 

x), Z: latent variable which denotes clusters) when some data 

x is given, which can lead to analysis or predictions on 

classification possibilities for individual samples. Due to its 

flexibility and high performance in extracting existing clusters 

from data, currently GMM is used not only in fields for 

classification analysis but also in anomaly detection areas. By 

connecting with other deep learning architectures such as 

Generative Adversarial Networks (GAN), Autoencoders or 

Long-Short-Term-Memory(LSTM) cells, GMM is currently 

contributing in improving the ability to find anomalies in 

massive big data[8][9]. 

 

B. Compression: weight clustering based compression 

 

Fig. 1. Weight clustering example on 4 x 4 weight matrix 

 

Along with pruning techniques, weight clustering is a 

popular network compression method in various research 

fields. Weight clustering is a neural network compression 

technique which starts from the idea of sharing weights to 

have lower memory cost while preserving information in the 

original structure[10]. In compression via weight clustering, 

each value in the weight matrix between layers is considered 

as a sample. These samples are then clustered by algorithms 

such as k-means clustering, which leads to the process of 

weight allocation to generated groups(clusters). By using the 

centroids of each group(cluster), methods such as weight 

quantization transforms individual weights to the centroid 

values based on previous allocation. Thus, the overall 

complexity in the original weight matrix is decreased, while 

resulting dimension reduction in the codebooks for neural 

networks by using methods such as Huffman Coding. Figure 

1 is an example of weight clustering. By using the centroids of 

0.25, -0.25, 0.025 and -0.025 based on clustering, the 4 by 4 

initial weight matrix is reduced to only four quantities in the 

final codebook. 
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III. METHODOLOGY 

 

A. Process of the In-and-Out Weight Box 

 

The In-and-Out Weight Box is a margin creator that uses 

weight clipping under various conditioning. Figure 2 briefly 

summarizes the main process of In-and-Out weight box 

application. Based on the spread of trained weights between 

the input layer and the first hidden layer, this method finds the 

optimal clipping values(boundaries) to make a certain margin 

which can lead to clearer compression of neural networks with 

minimization of information from input features that are 

irrelevant in predicting response variable y. 

 

Fig. 2. The In-and-Out Weight Box constraint process 

assuming weight vector with two components. The first row is 

an example of original weight space W(= <w1, w2>)  The 

second row in this figure shows the process of the original 

weight space being clipped by two in and out boxes creating a 

margin space to divide informative and non-informative 

weights. 

 

This process starts by lightly fitting a pre-defined neural 

network on training data. After light fitting through methods 

such as early stopping algorithms, the first weight matrix(will 

denote as 'W1') linking the input layer and the first hidden 

layer is analyzed using GMMs. As weights in W1 control the 

information flows regarding the importance of each input 

features, finding weight clusters in W1 can not only result in 

extracting the importance of each edge but also practically 

result in classifying input features based on relevance.  

When applying GMM analysis, the focus is not on the 

directionality of the effects of features but on the importance 

each input feature has. Therefore, absolute values of weights 

in W1 are used to generate clusters while ignoring signs of 

each weight. The number of clusters is set as two: one for 

effective weights which are far from 0(group 1) and another 

for ineffective weights close to 0(group 2). After convergence 

on the fitting procedure of GMM is guaranteed, this research 

uses location probabilities for each cluster to find appropriate 

clipping values(boundaries: p1, p2) that construct the In-and-

Out Weight Box.  

 

𝑝1 = 𝛾1
−1(𝛽), 𝑝2 = 𝛾2

−1(𝛼),   𝛼, 𝛽 > 0.5  
 

𝛾1(2): 𝑔𝑟𝑜𝑢𝑝 1(2)′𝑠  𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑎𝑠𝑑 𝑜𝑛 𝐺𝑀𝑀 

𝛽: ℎ𝑦𝑝𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 50% 

                             𝛼: ℎ𝑦𝑝𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 100%           (2) 

 

 

Fig. 3. Visualization of finding appropriate p1 and p2 by 

equation (1) 

 

Let p1 and p2 (p1 > p2) each denote clipping values for the 

outer and inner weight box depicted in Figure 2. In the In-

and-Out Weight Box process, p1 is used as a boundary to 

gather and extract effective weights found in fitted W1, 

whereas p2 is used to gather ineffective weights in W1. To 

filter out only highly unimportant information flows in W1, p2 

should be a small value that guarantees substantially high 

location probability for group 2 under a GMM approach. On 

the other hand, to extract effective information flows as much 

as possible, p1 should be some low value while preserving the 

location probability for group 1 to be greater than probability 

for group 2. This can be rewritten in a mathematical form as 

(2), which can be visualized as in Figure 3. 

In this research, the problem of setting optimal p1 and p2 

was considered solvable using two different thresholds(alpha, 

beta) for boundaries. For example, an alpha of 80%, and a beta 

of 60% can be a candidate for a feasible solution when finding 

appropriate values of p1 and p2 that satisfy the conditions 

above. After setting valid values for p1 and p2, the main 

process of the In-and-Out Weight Box is computed: the weight 

clipping procedure (Algorithm 1). For absolute weight values 

below p2 or over p1, weights are preserved, as an absolute 

weight value below p2 can be considered as an 'almost 

definite' non-informative weight, while absolute value over p1 

can be considered as an 'almost definite' high-informative 

weight based on the results of GMM analysis. For absolute 

values between p1 and p2, weights are clipped based on the 

euclidean distance between p1 and p2. This leads to a clipping 

procedure based on arithmetic mean of p1 and p2. If absolute 
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weight value is under (p1+p2)/2, it is clipped to p2 or -p2, 

whereas values over (p1+p2)/2 are clipped to p1 or -p1. As a 

result, a margin space with a width of (p1-p2) is created in the 

weight dimension.  

Creating a void in weight space based on clipping 

controversial weights, the In-and-Out Weight Box can 

reinforce non-significant input features to have smaller 

impacts on the predicted response value, which can lead to 

enhancements in original network performance and 

compression results due to a better starting. Furthermore, in an 

opposite directional approach, this clipping procedure can lead 

to better feature selection. As important features will have 

higher sum of absolute weights in W1, whereas unimportant 

features will have lower sum of absolute weights in W1, the 

gap between each feature importance in terms of weights 

would have larger gaps, which can lead to higher confidence 

on selecting stopping points for filtering techniques or higher 

possibilities of directly finding an optimal feature subset in 

terms of feature selection. After construction of the In-and-Out 

Weight Box, the box is then applied as a weight constraint 

condition only for the weight matrix between input layer and 

first hidden layer in the original structure of the network. This 

way, by re-fitting with the box constraint under identical 

network structure, it is possible to optimize information flows 

when fitting deep learning models with the same train data on 

hand. 

 

Algorithm 1 In-and-Out Weight Box constraint 

[STEP 1] Find p1 and p2 by fitting GMM 

       I. Lightly fit a deep neural network with more than 

one hidden layer. 

              Extract W1 from the fitted neural network 

 

II. Fit GMM with number of clusters = 2 

             Input: absolute weights from weight matrix W1 

             Output: Estimates of 𝜋1(2), 𝑓1(2)~𝑁(𝜇1(2), 𝜎1(2)
2)  

             Compute location probability 𝛾1(2) 

 

        III. Find p1 and p2 using Newtons-method 

             Set parameters 𝛼, 𝛽, 𝜀(threshold) 

             Define 𝑔1(𝑥) = 𝛾1(𝑥) − 𝛽, 𝑔2(𝑥) = 𝛾2(𝑥) − 𝛼 

               While 𝜀 < |𝑔1(𝑥) − 0|: 

                     𝑥𝑛+1  ⟵  𝑥𝑛 −  
𝑔1(𝑥𝑛)

𝑔1
′(𝑥𝑛)

 

                     if 𝜀 ≥ |𝑔1(𝑥𝑛+1) − 0|:  
Set p1 = 𝑥𝑛+1 ; break 

               return p1 

 

              While 𝜀 < |𝑔2(𝑥) − 0|: 

                     𝑥𝑛+1  ⟵  𝑥𝑛 −  
𝑔2(𝑥𝑛)

𝑔2
′(𝑥𝑛)

 

                     if 𝜀 ≥ |𝑔2(𝑥𝑛+1) − 0|:  
Set p2 = 𝑥𝑛+1 ; break 

               return p2 

 

[STEP 2] Create the In-and-Out Weight Box 

     I . Create the In-and-Out Weight box constraint 

          For ∀ weights(w) in W1: 

 

                 if |w| > (p1+p2)/2: 

                    if sign(w) ==  positive: 

                       clip_value(min_value= p1, max_value= K) 

                    else: 

                       clip_value(min_value= -K, max_value= -p1) 

                    (K: sufficiently large value that can replace ∞) 

                 else: 

 clip_value(min_value= -p2, max_value = p2) 

                  

return transformed weights 

 

     II. Transform and apply the above constraint as a 

tensorflow subclass constraint using the function:  

tensorflow keras. constraints. Constraint.  

 

 

This research used Python's scikit-learn package to compute 

GMM analysis. Specifically, the function of GaussianMixture 

in sklearn.mixture was implemented with maximum iteration 

set as 100 under random initial point setting. For fitting and 

checking convergence of the model, .fit( ) function 

and .converged_( ) function in GaussianMixture were used. 

Meanwhile, finding values p1 and p2 that satisfy two different 

thresholds was computed using newtons-method, and the In-

and-Out Weight box constraint was built based on using 

tensorflow keras.constraints.Constraint instance and 

tf.clip_by_value function. Check the appendix for more 

detailed explanation about constraint-related codes. 

 

B. Experiments for evaluation 

 

To check performance, practical implementation of the In-

and-Out Weight Box was computed. By comparing 

performance of a weight box based network with the 

originally fitted neural network and checking the existence of 

improvements in network compression when using a weight 

box constraint were executed. For training data and test data, 

'Glioma Grading Clinical and Mutation Features' dataset from 

the UCI Machine Learning Repository was implemented. 

Glioma Grading data is an open access dataset based on 

TCGA-LGG and TCGA-GBM brain glioma projects, which 

contains basic information of glioma patients such as current 

glioma grade level(binarized target), isocitrate dehydrogenase 

mutation status, neurofibromin type 1 status and epidemal 

growth factors. Based on 23 covariates(3 clinical features and 

20 genes) and one target variable, this dataset aims to find an 

optimal subset of mutation genes and clinical features for 

better prediction of glioma levels with low cost[11]. 

This research divided the total Glioma dataset into a 

proportion of 80(training data) : 20(test data). The former was 

used to train a simple neural network structure comprised of 

three hidden layers with 30, 20, 10 nodes sequentially, and an 
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output layer of one node with the activation function set as 

sigmoid. Activation functions for each hidden layer was set as 

ReLU, with Glorot weight initialization based on normal 

distribution and l2-kernel regularization attached to every 

hidden layer[12]. Under a full batch gradient descent update 

method, the original baseline neural network used binary cross 

entropy loss function and an Adam compiler with learning rate 

of 0.005 for fitting. Finally, for light training, a total of 500 

epochs with an early stopping algorithm(patience=200) based 

on loss value was used, and the fitting result of each epoch 

was checked via an accuracy metric. The prediction accuracy 

of the original model was checked and compared with other 

variants of the model by test data after fitting. (Each 

components or structures of the model was constructed using 

Python tensorflow.keras tools in a jupyter notebook 

environment). After light fitting, the process of building the 

In-and-Out Weight box and its application to the original 

model was implemented (hyperparameter alpha, beta and 

threshold value set as 80%, 60% and 5*1e-2, with value K set 

as 1e+4). Using test data, the final step of comparing the 

performance of box-constraint based network with the original 

network and comparing the performance between compressed 

networks from each model was driven(As this research 

focused on improving the results of clustering based weight 

compression, weight clustering algorithms based on functions 

in tensorflow_model_optimization package were implemented 

with number of clusters set as 20 for high compression (initial 

spacing method was set as LINEAR [5])). Moreover, after 

significance of using the In-and-Out Weight box being 

checked, a novel feature selection method using the results of 

the weight box was suggested for better dimension reductions 

of input feature space. The procedure of the suggested feature 

selection(FS) is as follows (Algorithm 2):  

 

Algorithm 2 In-and-Out Weight Box based FS 

[STEP 1] Compute IOW-FI statistic 

     I. Calculate IOW-FI statistic values for each feature 

        (M: number of nodes in first hidden layer.) 

 
𝐼𝑂𝑊 − 𝐹𝐼(𝑋𝑖) ≡ (1 − 𝜆)𝜓𝑖 − 𝜆𝜙𝑖  ,   (𝑤𝑖𝑗 ∈ 𝑊1) 

    𝜓𝑖 =
∑ 𝐼{|𝑤𝑖𝑗| ≥ 𝑝1}𝑀

𝑗=1

𝑀
 ,   𝜙𝑖 =

∑ 𝐼{|𝑤𝑖𝑗| ≤ 𝑝2}𝑀
𝑗=1

𝑀
 

 𝜆: 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

 

II. Re-arrange the order of features according to the 

results of sorting IOW-FI stat in descending order. 

 

 

[STEP 2] Find optimal feature set S 

         I. Using Bayesian switch point modelling and MCMC 

sampling, find filtering point k that divides values 

of sorted IOW-FI stats. 

        
       [𝑆𝑤𝑖𝑡𝑐ℎ 𝑃𝑜𝑖𝑛𝑡(= 𝜏)  𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡] 

𝑋~𝑓(𝑥𝑡) =  {
𝑁(𝜇1, 𝜎1

2)   (𝑡 < 𝜏)

𝑁(𝜇2, 𝜎2
2)   (𝑡 ≥ 𝜏)

 

         𝐹𝑖𝑛𝑑 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝜃 =< 𝜇, 𝜎, 𝜏 > 𝑏𝑦 𝑀𝐶𝑀𝐶 𝑖𝑛 𝑃𝑦𝑀𝐶 

         

II. Filter out relatively unimportant features by only 

selecting k features before switch point. 

 

III. Define selected k features as set S. 

      Return S; End of algorithm 

 

By introducing a new statistic called ‘In-and-Out Weight 

based Feature Importance’(IOW-FI), which uses absolute 

weights over p1 as an importance factor while using values 

under p2 as a degrading factor with interpolation parameter 𝜆, 

and using bayesian switch point modelling using Python’s 

PyMC package, this research aims to make filtering 

techniques more convenient in finding optimal values for 

setting k: the number of selected features, while indirectly 

addressing the importance of each feature under the joint 

distribution of feature space. Though some feature filtering 

techniques such as JMIM use joint distributions of features in 

iterative feature selection, many mutual information-based 

filtering methods (for example, NMIFS, mRMR, MIFS-U) 

rely on the distributions based on only the currently searched 

individual feature X and response value Y[13]. In this 

research, IOW-FI is expected to work as a solution to this 

limitation. Checking improvements in test accuracy when 

using IOW-FI on the original model based on W1 from the 

fitted box-constrained model, this paper ultimately aims to 

validify the effects of using In-and-Out Weight Box for better 

FS.(To check the use of PyMC codes, see Appendix). 

 

 

IV. EXPERIMENTAL RESULTS 

 

A. In-and-Out Weight Box Construction for Glioma Data 

 

 
 

Fig. 4. Results in GMM analysis on W1 of the original 

baseline DNN. Figures on the left side show the pdf(green) of 

group 2 and the allocation probability graph of 𝛾1(2)(𝑥)  in 
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interval [0.0007, 0.01]. Figure in right is a focused version of 

the pdf(red) of group 1 by setting the x interval as [0.005, 

0.08]. When visualizing the fitted GMM, clear difference in 

the centers of each group can be recognized. 

 

After lightly fitting the original baseline deep neural network 

depicted in III.B, using the absolute values of fitted W1, the 

GMM fitting was converged as in Figure 4 and Table I. 

Visualization and parameter fitting results show that group 1 

has a substantially large centroid value compared to group 2, 

whereas group 2’s values are highly focused to the center 

compared to group 1. This implies that separation of weights 

based on relevance with the response variable(Glioma level) 

was successful in the aspect of distance and density. The 

crossover point for allocation probabilities of groups were 

found in interval [0.004, 0.006]. Thus, initial points for 

running newtons-method to find p1 and p2 were set as the 

arithmetic mean of 0.005. Under threshold of 𝜀=0.05, values 

p1 and p2 were computed as 0.00600964 and 0.00462994 with 

newtons-method, which led to a margin box space with length 

of 0.0013797. Based on these values, the In-and-Out Weight 

Box constraint was constructed as in III.A. 

 

TABLE I 

GMM FITTING RESULTS: ESTIMATES FOR EACH GROUP 

 

Results 𝜋 𝜇 Σ 

Group 1 0.53 0.0494 3.749e-03 

Group 2 0.47 0.0007 3.159e-06 

 

 

B. Model performance comparison based on test data 

 

TABLE II 

MODEL PERFORMANCE ON GLIOMA DATA 

 OM IOWB OM-C IOWB-C 

Train data 

(accuracy) 

0.8838 0.8838 0.8644 0.8793 

Train data 

(Loss) 

0.3465 0.3456 0.3463 0.3474 

Test data 

(accuracy) 

0.6726 0.7143 0.5536 0.6964 

Test data 

(Loss) 

0.8047 0.7371 0.9409 0.7687 

*OM: Original Model, IOWB: In-and-Out Weight Box 

constraint based Model, OM-C: Compressed OM, IOWB-C: 

Compressed IOWB. Best results written in bold type(Epochs, 

Learning rate were all equally conditioned). 

 

  After finding values p1, p2 and constructing the In-and-Out 

Weight Box, comparison of models OM, IOWB, OM-C and 

IOWB-C were implemented to check performance of the box 

constraint. Numerical results based on accuracy and binary 

cross entropy loss were computed as in TABLE II. Results 

show the IOWB model outperforms OM in the aspect of 

overfitting issues or robustness in data shifts. While having 

identical or better results in training, IOWB model’s accuracy 

 

 
Fig. 5. Visualization of the training process(epochs=500) of 

four models: In all models, convergence in accuracy metric 

and binary cross entropy loss was found. 

 

dropped 0.1695 for test data while OM’s accuracy dropped 

0.2112. This implies using the In-and-Out Weight box 

constraint itself is a better way of constructing baseline neural 

networks for further enhancements. The advantages of using 

the box constraint is more vivid when checking the results of 

compressed networks via clustering. Though same 

compression described in III.B was implemented, there was 

significant difference in the loss of performance between OM-

C and IOWB-C. While the accuracy of OM-C on training data 

dropped from 0.8838 to 0.8644, the accuracy of IOWB 

dropped from the same value of 0.8838 to 0.8793. This 

implies when using the box-constraint, the amount of 

information loss by compression is less than using the original 

model, which can validify the expectation that the margin of 

boxes will work as a mean to provide clearer guidance for 

clustering based compression techniques.  

This characteristic is more amplified in analyzing non-

observed data: test data. In terms of test data, for the OM-C 

model, there has been a dramatic decrease in accuracy after 

compression(from train data to test data: 0.8644 to 0.5536, test 

data performance difference after compression: 0.6726 to 

0.5536). On the other hand, IOWB-C model had minor 

reduction in accuracy(from train data to test data: 0.8793 to 
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0.6964, test data performance difference after compression: 

0.7143 to 0.6964). Furthermore, when considering the 

performance in terms of loss value for test data, the gaps 

between the compressed model and the original model were 

substantially different(OM-C: 0.1362(0.8047 to 0.9409), IO 

WB-C: 0.0316 (0.7371 to 0.7687)). Thus, overall results 

deduced using Glioma data support the initial thought of this 

research that making W1 optimal with the In-and-Out Weight 

Box leads to the construction of better information flow 

architecture in supervised-deep learning. In other words, 

former expectations of the IOWB to enhance original network 

performance and network compression results were found to 

be satisfied. 

 

 

C. Suggestion of a Novel FS method: IOW-FI 

 

Based on the significance of using the In-and-Out Weight 

box, this research suggested a novel feature selection method 

using the results of In-and-Out Weight Box: the IOW-FI 

algorithm. Using IOWB’s W1 as sample data, IOW-FI stat 

was calculated for each feature with 𝜆 set as 0.5 for balance. 

After computation, Algorithm 2’s Step2 was implemented 

under 5000 iterative sampling and 1000 tuning(per chain) 

based on the Metropolis-Hastings Markov Chain Monte 

Carlo(MCMC) sampler of PyMC (used parallel computing for 

two chains). Uniform distributions and exponential 

distributions were used as priors for 𝜇1(2)  and 𝜎1(2) , 

each(*values for prior were selected based on descriptive 

statistics of IOW-FI stats such as min, max, standard 

deviations). Results of the MCMC were visualized as in 

Figure 6 and Figure 7.(*Used python’s arviz package). 

 

 

 
 

Fig. 6. Visualization of MCMC results for Glioma Data-based 

IOW-FI stats values. From top to bottom, 𝜏, 𝜇1, 𝜇2, 𝜎1, 𝜎2. 

 

 
 

Fig. 7. Summary of MCMC for each parameters: From top to 

bottom, 𝜏, 𝜇1, 𝜇2, 𝜎1, 𝜎2  ‘s summary statistic. As 𝑅̂  values are 

all below 1.05, convergence of MCMC chains is checked. 

 

When comparing the posterior means of each 𝜇1(2) , 

significant difference between two estimates implies 

classification based on switch point could be valid. Based on 

this conclusion, this research used the posterior mean value of 

switch point MCMC samples for finding the optimal estimate 

for 𝜏(𝜏̂=18). Therefore, by selecting 18 features based on the 

descending order of IOW-FI stat values, features 

'Age_at_diagnosis', 'IDH1', 'NOTCH1', 'IDH2', 'PTEN', 

'EGFR', 'GRIN2A', 'RB1', 'CIC', 'MUC16', 'CSMD3', 

'PIK3R1', 'NF1', 'PIK3CA', 'TP53', 'BCOR', 'SMARCA4', 

'FUBP1' were selected as important feature set S with IOW-FI 

values of 0.26666667, 0.2, 0.2, 0.16666667, 0.16666667, 

0.16666667, 0.13333333, 0.13333333, 0.13333333, 0.1, 0.1, 

0.1, 0.06666667, 0.06666667, 0.06666667, 0.06666667, 

0.03333333, 0.03333333, sequentially. 

Based on set S, this research fitted a new model with 

identical structures of the original baseline neural network. 

(Same parameters such as learning rates, weight initialization 

methods or kernel constraints were adopted). Performance 

results compared to OM and IOWB were deduced as in Table 

III. Using 78% of given features, the IOW-FI FS method 

 

TABLE III 

PERFORMANCE OF IOW-FI BASED MODEL 

Results OM IOWB IOW-FI 

Train Data 

(accuracy) 

0.8838 0.8838 0.8748 

Train Data 

(Loss) 

0.3465 0.3456 0.3693 

Test Data 

(accuracy) 

0.6726 0.7143 0.7143 

Test Dat 

(Loss) 

0.8047 0.7371 0.7707 

*IOW-FI refers to the model fitted based on IOW-FI feature 

selection and MCMC. Best values in bold type. 

 

succeeded in building a better model than the original model: 

OM, which used the entire feature set. Though performance in 

training data is slightly lower than the former model, for test 

data, IOW-FI shows substantially high performance than OM 

in terms of prediction accuracy and cross entropy loss while 

reducing the total dimension of input features. This result 

implies that the In-and-Out Weight Box not only contributes 

in enhancing network compression via clustering, but also can 

contribute in finding better feature subsets in the aspect of 

feature selection, which leads to the fact that expectations in 
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Introduction, which stated the possibilities of the In-and-Out 

Weight Box working as means to alleviate difficulties for 

finding an optimal subset of input information or optimal 

compressed network structures when fitting a valid 

supervised-deep learning model, are found valid. 

  Apart from the comparison between OM and IOW-FI, when 

comparing IOWB and IOW-FI, it is found that IOWB works 

better in predicting both train and test data. This implies that 

the In-and-Out Weight Box constraint’s ability can expand to 

the area of replacing FS procedures, which can lead to large 

savings in computational cost. 

 

 

V. CONCLUSION 

 

This research suggested a novel approach called an In-and-

Out Weight Box constraint which can enhance network 

compression results and alleviate difficulties for finding an 

optimal subset of input features. Results show that the new 

constraint can work as a mean to address these goals by 

making the model more robust and optimizing weight matrix 

W1 for better information extractions. Although there are 

limitations in considering methods to optimize hyper -

parameters such as 𝛼, 𝛽, 𝜆 , it is expected that this novel 

constraint can work as means to enhance both network 

compression and feature dimension reduction in terms of 

providing efficient starting points or baselines. For further 

research, comparing IOW-SI with other feature selection 

techniques and improving the IOW-SI statistic in the aspects 

of finding optimal lambda or reducing information redundancy 

for advancements are currently planned. Please check briefly 

explained code procedures of the IOWB and Algorithm 2 in 

Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

*Below are partial codes used in this paper. 

 

Please check documents of tensorflow and pymc.io for 

thorough explanations of packages or functions. Especially, 

switch point modelling codes using pymc were based on the 

skeletons introduced in the presentation of Chris Fonnesbeck 

for PyData’s London 2019 Conference. 

 

 

(Brief Explanations) 

1 . In-and-Out Weight Box Constraint Python code 

#p1, p2: values from GMM analysis and Newtons-method. 

 

 

 

 

 

 

 

2. IOW-FI algorithm Python codes 

*W_new : Matrix W1 of fitted IOWB network. 

(Re-shaped to 23 x 30) 
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