
P
os
te
d
on

18
A
p
r
20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
19
82
4
3.
32
74
87
80
/v

2
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

DaeYoung Kim1

1Affiliation not available

April 18, 2024

Abstract

Under the commonalities found in the goals of two areas, neural network compression and feature selection for dimension

reduction, this research focused on finding a new method to address both issues: a method that can lead to easier feature

selection, and an enhancement in the capacity of information flow control of neural network compression techniques, especially

clustering based compression. Specifically, this research focused on creating a novel and effective framework to transform the

weight matrix between the input layer and the first hidden layer in neural networks to be optimal. In other words, a method that

can make the weight matrix’s structure itself optimal for information extraction. By proposing a simple, yet powerful weight

clipping + GMM based method called an In-and-Out Weight Box that can intrinsically act similar to filtering while increasing

the possibility of getting better results in compression, the main aim of research was found to be satisfied. Using Glioma

Grading data from the UCI Repository for checking performance of the In-and-Out Weight box in fitting neural networks, it

was found that significantly better compression results can be achieved in terms of weight sharing via clustering. This research

also suggests a new feature selection method based on the In-and-Out Weight box constraint called IOW-FI, which can lead

to solving limitations or problems of filtering techniques such as setting the number of components to be selected as efficient

features or considering joint distributions of feature space.

1

1

In-and-Out Weight Box: A novel approach for better

network compression and feature selection

*Daeyoung Kim

Abstract— Under the commonalities found in the goals of two

areas, neural network compression and feature selection for

dimension reduction, this research focused on finding a new

method to address both issues: a method that can lead to easier

feature selection, and an enhancement in the capacity of

information flow control of neural network compression

techniques, especially clustering based compression. Specifically,

this research focused on creating a novel and effective framework

to transform the weight matrix between the input layer and the

first hidden layer in neural networks to be optimal. In other

words, a method that can make the weight matrix's structure

itself optimal for information extraction. By proposing a simple,

yet powerful weight clipping + GMM based method called an In-

and-Out Weight Box that can intrinsically act similar to filtering

while increasing the possibility of getting better results in

compression, the main aim of research was found to be satisfied.

Using Glioma Grading data from the UCI Repository for

checking performance of the In-and-Out Weight box in fitting

neural networks, it was found that significantly better

compression results can be achieved in terms of weight sharing

via clustering. This research also suggests a new feature selection

method based on the In-and-Out Weight box constraint called

IOW-FI, which can lead to solving limitations or problems of

filtering techniques such as setting the number of components to

be selected as efficient features or considering joint distributions

of feature space.

Index Terms—Feature Selection, Filtering, Gaussian Mixture

Models, Information Flow, MCMC, Neural Network

Compression, Weight Clipping, Weight Clustering, Weight

Constraint.

This article is a preprint submitted to TechRxiv, powered by IEEE.

Submission Date: March 31, 2024 (GMT).
Daeyoung, Kim. is a undergraduate student in Yonsei University,

Department of Applied Statistics, Seoul, Korea (Corresponding author and

First Author) (e-mail: lgtlsafg@yonsei.ac.kr).
Data(Glioma Grading Clinical and Mutation Features) used in this research

is based on UCI Repository. Check the link below for further explanations

(https://archive.ics.uci.edu/dataset/759/glioma+grading+clinical+and+mutatio
n+features+dataset).

The overall process of this research used Python’s scikit-learn mixture

package, tensorflow package and PyMC(PyMC3) package. Brief explanations
of main procedures in Appendix.

I. INTRODUCTION

hen regarding the architectures and natures of

recently used neural network compression

techniques, such as weight clustering or pruning, it is clear

that the ultimate goal of most weight compressions for

supervised-deep learning is to decrease total memory usage

for storing a trained model with preserving performance.

However, there seems to be another ‘unintended’ goal which

is undermined when considering the areas of lightening neural

network: information flow control optimization. Making

models less overfit and robust to data shifts, it seems that main

algorithms of network compression techniques not only result

in preserving performance, but sometimes also result in

finding better information flow structures than the original

model or finding the optimal information flow architecture

which filters out irrelevant information from inputs or feature

sets, while preserving important feature information for

accurate predictions on response variables[1][2][3].

These characteristics of network compression highly

overlap with the main task most feature dimension reduction

studies focus on. Consider, for example, one sub-area: feature

selection. Filtering techniques such as Mutual Information

Feature Selection(MIFS, MIFS-U) or minimum redundancy

maximum relevance (mRMR) algorithms try to find the best

subset of input vectors using iterative approaches with

sequentially selecting k number of covariates that can

maximize the mutual information between explanatory

variables and the response variable y[4][5]. Meanwhile,

wrapping techniques such as Harris Hawk Optimization

(HHO) algorithms or recently introduced algorithms such as

Salp Swarm Algorithms(SSA) based on Swarm Intelligence or

Particle Swarm Optimization (PSO) focus on finding the best

subset of input vectors that maximize the performance of a

given evaluation function while searching a binarized variable

plane using meta-heuristic approaches based on non-gradient,

nature oriented hunting assumptions[6][7]. Both feature

selection techniques, filtering and wrapping, focus on

classifying input variables based on the relevance with

response variable y, which, in a broad sense, is an area of

finding the optimal information flow control: degrading the

information of irrelevant covariates, while emphasizing the

information from important covariate sets.

Under the commonalities found in goals of two areas,

compression and feature selection, this research focused on

finding a new method to address both issues: a method that

W

2

can lead to easier feature selection, and an enhancement in the

capacity of information flow control of neural network

compression techniques, especially layer wise weight

clustering. Focusing on the first weight matrix(let us denoted

it as W1) between input layer and the first hidden layer, this

research assumed that information in W1 has a dominant

ability to supply information in both directions of the neural

network. For backwards, fitted W1’s absolute sum or rank of

weight values per input variable node can be an evaluation

criteria for each input feature, whereas in forwards, fitted W1

can work as the most powerful component when controlling

information flows, which directly affect the performance of

neural network prediction and network compression results.

This implies that optimizing W1 and extracting maximum

information from W1 with validity is a key to conduct high-

performing deep learning architectures.

This research focused on creating a novel and effective

framework to transform W1 to be optimal, specifically, a

method that can make W1’s structure itself optimal for

information extraction. By proposing a simple, yet powerful

weight clipping based method called an In-and-Out Weight

Box that can intrinsically act similar to filtering while

increasing the possibility of getting better results in

compression, the main aim of research was found to be

satisfied. Throughout construction and applications of the In-

and-Out Weight box, this study ultimately aims to practically

alleviate difficulties for finding an optimal subset of input

information or optimal compressed network structures when

fitting a valid supervised-deep learning model.

II. PRELIMINARIES

A. Gaussian Mixture Models(GMM)

Gaussian Mixture Model (GMM) is a probabilistic

distribution-based approach used in fields where data can be

clustered or classified to two or more groups. Using a mixture

of normal distributions, the GMM architecture is constructed

as in (1).

 [𝐺𝑀𝑀 𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒(𝐾 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)]

𝜋𝑖: 𝑖𝑡ℎ 𝑔𝑟𝑜𝑢𝑝𝑠′ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, ∑ 𝜋𝑖

𝐾

𝑖=1

= 1

𝛾𝑖(𝑥) =
𝜋𝑖𝑓𝑖(𝑥; 𝜇𝑖 , Σ𝑖)

Σ𝑗𝜋𝑗𝑓𝑗(𝑥; 𝜇𝑗 , Σ𝑗)
= 𝑝(𝑧 = 𝑖 |𝑥), 𝑓𝑖~𝑁(𝜇𝑖 , Σ𝑖)

𝑃(𝑋) = ∑ 𝜋𝑖 × 𝑁𝑜𝑟𝑚𝑎𝑙(𝑋; 𝜇𝑖, Σ𝑖)

𝐾

𝑖=1

 , 𝜽 =< 𝜇, 𝜋, Σ >

𝐸𝑀 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 ⟹ 𝑓𝑖𝑛𝑑 𝜽 𝑡ℎ𝑎𝑡 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 log (𝑃(𝑿)) (1)

With 𝜋𝑖 , 𝜇𝑖 and Σ𝑖 each denoting the prior probability

(weight, mixture coefficient) of 𝑖𝑡ℎ group, mean of 𝑖𝑡ℎ group

and the covariance of 𝑖𝑡ℎ group, GMM fits the model by using

Expectation Maximization (EM) algorithm. Through running

the iterative process of EM algorithms, parameters

compromising the distribution of each group are updated until

convergence. With the result of GMMs, one can compute the

allocation probability function of a group (𝛾𝑖(𝑥)= p(Z = ‘i’ |

x), Z: latent variable which denotes clusters) when some data

x is given, which can lead to analysis or predictions on

classification possibilities for individual samples. Due to its

flexibility and high performance in extracting existing clusters

from data, currently GMM is used not only in fields for

classification analysis but also in anomaly detection areas. By

connecting with other deep learning architectures such as

Generative Adversarial Networks (GAN), Autoencoders or

Long-Short-Term-Memory(LSTM) cells, GMM is currently

contributing in improving the ability to find anomalies in

massive big data[8][9].

B. Compression: weight clustering based compression

Fig. 1. Weight clustering example on 4 x 4 weight matrix

Along with pruning techniques, weight clustering is a

popular network compression method in various research

fields. Weight clustering is a neural network compression

technique which starts from the idea of sharing weights to

have lower memory cost while preserving information in the

original structure[10]. In compression via weight clustering,

each value in the weight matrix between layers is considered

as a sample. These samples are then clustered by algorithms

such as k-means clustering, which leads to the process of

weight allocation to generated groups(clusters). By using the

centroids of each group(cluster), methods such as weight

quantization transforms individual weights to the centroid

values based on previous allocation. Thus, the overall

complexity in the original weight matrix is decreased, while

resulting dimension reduction in the codebooks for neural

networks by using methods such as Huffman Coding. Figure

1 is an example of weight clustering. By using the centroids of

0.25, -0.25, 0.025 and -0.025 based on clustering, the 4 by 4

initial weight matrix is reduced to only four quantities in the

final codebook.

3

III. METHODOLOGY

A. Process of the In-and-Out Weight Box

The In-and-Out Weight Box is a margin creator that uses

weight clipping under various conditioning. Figure 2 briefly

summarizes the main process of In-and-Out weight box

application. Based on the spread of trained weights between

the input layer and the first hidden layer, this method finds the

optimal clipping values(boundaries) to make a certain margin

which can lead to clearer compression of neural networks with

minimization of information from input features that are

irrelevant in predicting response variable y.

Fig. 2. The In-and-Out Weight Box constraint process

assuming weight vector with two components. The first row is

an example of original weight space W(= <w1, w2>) The

second row in this figure shows the process of the original

weight space being clipped by two in and out boxes creating a

margin space to divide informative and non-informative

weights.

This process starts by lightly fitting a pre-defined neural

network on training data. After light fitting through methods

such as early stopping algorithms, the first weight matrix(will

denote as 'W1') linking the input layer and the first hidden

layer is analyzed using GMMs. As weights in W1 control the

information flows regarding the importance of each input

features, finding weight clusters in W1 can not only result in

extracting the importance of each edge but also practically

result in classifying input features based on relevance.

When applying GMM analysis, the focus is not on the

directionality of the effects of features but on the importance

each input feature has. Therefore, absolute values of weights

in W1 are used to generate clusters while ignoring signs of

each weight. The number of clusters is set as two: one for

effective weights which are far from 0(group 1) and another

for ineffective weights close to 0(group 2). After convergence

on the fitting procedure of GMM is guaranteed, this research

uses location probabilities for each cluster to find appropriate

clipping values(boundaries: p1, p2) that construct the In-and-

Out Weight Box.

𝑝1 = 𝛾1
−1(𝛽), 𝑝2 = 𝛾2

−1(𝛼), 𝛼, 𝛽 > 0.5

𝛾1(2): 𝑔𝑟𝑜𝑢𝑝 1(2)′𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑏𝑎𝑠𝑑 𝑜𝑛 𝐺𝑀𝑀

𝛽: ℎ𝑦𝑝𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 50%

 𝛼: ℎ𝑦𝑝𝑒𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑐𝑙𝑜𝑠𝑒 𝑡𝑜 100% (2)

Fig. 3. Visualization of finding appropriate p1 and p2 by

equation (1)

Let p1 and p2 (p1 > p2) each denote clipping values for the

outer and inner weight box depicted in Figure 2. In the In-

and-Out Weight Box process, p1 is used as a boundary to

gather and extract effective weights found in fitted W1,

whereas p2 is used to gather ineffective weights in W1. To

filter out only highly unimportant information flows in W1, p2

should be a small value that guarantees substantially high

location probability for group 2 under a GMM approach. On

the other hand, to extract effective information flows as much

as possible, p1 should be some low value while preserving the

location probability for group 1 to be greater than probability

for group 2. This can be rewritten in a mathematical form as

(2), which can be visualized as in Figure 3.

In this research, the problem of setting optimal p1 and p2

was considered solvable using two different thresholds(alpha,

beta) for boundaries. For example, an alpha of 80%, and a beta

of 60% can be a candidate for a feasible solution when finding

appropriate values of p1 and p2 that satisfy the conditions

above. After setting valid values for p1 and p2, the main

process of the In-and-Out Weight Box is computed: the weight

clipping procedure (Algorithm 1). For absolute weight values

below p2 or over p1, weights are preserved, as an absolute

weight value below p2 can be considered as an 'almost

definite' non-informative weight, while absolute value over p1

can be considered as an 'almost definite' high-informative

weight based on the results of GMM analysis. For absolute

values between p1 and p2, weights are clipped based on the

euclidean distance between p1 and p2. This leads to a clipping

procedure based on arithmetic mean of p1 and p2. If absolute

4

weight value is under (p1+p2)/2, it is clipped to p2 or -p2,

whereas values over (p1+p2)/2 are clipped to p1 or -p1. As a

result, a margin space with a width of (p1-p2) is created in the

weight dimension.

Creating a void in weight space based on clipping

controversial weights, the In-and-Out Weight Box can

reinforce non-significant input features to have smaller

impacts on the predicted response value, which can lead to

enhancements in original network performance and

compression results due to a better starting. Furthermore, in an

opposite directional approach, this clipping procedure can lead

to better feature selection. As important features will have

higher sum of absolute weights in W1, whereas unimportant

features will have lower sum of absolute weights in W1, the

gap between each feature importance in terms of weights

would have larger gaps, which can lead to higher confidence

on selecting stopping points for filtering techniques or higher

possibilities of directly finding an optimal feature subset in

terms of feature selection. After construction of the In-and-Out

Weight Box, the box is then applied as a weight constraint

condition only for the weight matrix between input layer and

first hidden layer in the original structure of the network. This

way, by re-fitting with the box constraint under identical

network structure, it is possible to optimize information flows

when fitting deep learning models with the same train data on

hand.

Algorithm 1 In-and-Out Weight Box constraint

[STEP 1] Find p1 and p2 by fitting GMM

 I. Lightly fit a deep neural network with more than

one hidden layer.

 Extract W1 from the fitted neural network

II. Fit GMM with number of clusters = 2

 Input: absolute weights from weight matrix W1

 Output: Estimates of 𝜋1(2), 𝑓1(2)~𝑁(𝜇1(2), 𝜎1(2)
2)

 Compute location probability 𝛾1(2)

 III. Find p1 and p2 using Newtons-method

 Set parameters 𝛼, 𝛽, 𝜀(threshold)

 Define 𝑔1(𝑥) = 𝛾1(𝑥) − 𝛽, 𝑔2(𝑥) = 𝛾2(𝑥) − 𝛼

 While 𝜀 < |𝑔1(𝑥) − 0|:

 𝑥𝑛+1 ⟵ 𝑥𝑛 −
𝑔1(𝑥𝑛)

𝑔1
′(𝑥𝑛)

 if 𝜀 ≥ |𝑔1(𝑥𝑛+1) − 0|:
Set p1 = 𝑥𝑛+1 ; break

 return p1

 While 𝜀 < |𝑔2(𝑥) − 0|:

 𝑥𝑛+1 ⟵ 𝑥𝑛 −
𝑔2(𝑥𝑛)

𝑔2
′(𝑥𝑛)

 if 𝜀 ≥ |𝑔2(𝑥𝑛+1) − 0|:
Set p2 = 𝑥𝑛+1 ; break

 return p2

[STEP 2] Create the In-and-Out Weight Box

 I . Create the In-and-Out Weight box constraint

 For ∀ weights(w) in W1:

 if |w| > (p1+p2)/2:

 if sign(w) == positive:

 clip_value(min_value= p1, max_value= K)

 else:

 clip_value(min_value= -K, max_value= -p1)

 (K: sufficiently large value that can replace ∞)

 else:

 clip_value(min_value= -p2, max_value = p2)

return transformed weights

 II. Transform and apply the above constraint as a

tensorflow subclass constraint using the function:

tensorflow keras. constraints. Constraint.

This research used Python's scikit-learn package to compute

GMM analysis. Specifically, the function of GaussianMixture

in sklearn.mixture was implemented with maximum iteration

set as 100 under random initial point setting. For fitting and

checking convergence of the model, .fit() function

and .converged_() function in GaussianMixture were used.

Meanwhile, finding values p1 and p2 that satisfy two different

thresholds was computed using newtons-method, and the In-

and-Out Weight box constraint was built based on using

tensorflow keras.constraints.Constraint instance and

tf.clip_by_value function. Check the appendix for more

detailed explanation about constraint-related codes.

B. Experiments for evaluation

To check performance, practical implementation of the In-

and-Out Weight Box was computed. By comparing

performance of a weight box based network with the

originally fitted neural network and checking the existence of

improvements in network compression when using a weight

box constraint were executed. For training data and test data,

'Glioma Grading Clinical and Mutation Features' dataset from

the UCI Machine Learning Repository was implemented.

Glioma Grading data is an open access dataset based on

TCGA-LGG and TCGA-GBM brain glioma projects, which

contains basic information of glioma patients such as current

glioma grade level(binarized target), isocitrate dehydrogenase

mutation status, neurofibromin type 1 status and epidemal

growth factors. Based on 23 covariates(3 clinical features and

20 genes) and one target variable, this dataset aims to find an

optimal subset of mutation genes and clinical features for

better prediction of glioma levels with low cost[11].

This research divided the total Glioma dataset into a

proportion of 80(training data) : 20(test data). The former was

used to train a simple neural network structure comprised of

three hidden layers with 30, 20, 10 nodes sequentially, and an

5

output layer of one node with the activation function set as

sigmoid. Activation functions for each hidden layer was set as

ReLU, with Glorot weight initialization based on normal

distribution and l2-kernel regularization attached to every

hidden layer[12]. Under a full batch gradient descent update

method, the original baseline neural network used binary cross

entropy loss function and an Adam compiler with learning rate

of 0.005 for fitting. Finally, for light training, a total of 500

epochs with an early stopping algorithm(patience=200) based

on loss value was used, and the fitting result of each epoch

was checked via an accuracy metric. The prediction accuracy

of the original model was checked and compared with other

variants of the model by test data after fitting. (Each

components or structures of the model was constructed using

Python tensorflow.keras tools in a jupyter notebook

environment). After light fitting, the process of building the

In-and-Out Weight box and its application to the original

model was implemented (hyperparameter alpha, beta and

threshold value set as 80%, 60% and 5*1e-2, with value K set

as 1e+4). Using test data, the final step of comparing the

performance of box-constraint based network with the original

network and comparing the performance between compressed

networks from each model was driven(As this research

focused on improving the results of clustering based weight

compression, weight clustering algorithms based on functions

in tensorflow_model_optimization package were implemented

with number of clusters set as 20 for high compression (initial

spacing method was set as LINEAR [5])). Moreover, after

significance of using the In-and-Out Weight box being

checked, a novel feature selection method using the results of

the weight box was suggested for better dimension reductions

of input feature space. The procedure of the suggested feature

selection(FS) is as follows (Algorithm 2):

Algorithm 2 In-and-Out Weight Box based FS

[STEP 1] Compute IOW-FI statistic

 I. Calculate IOW-FI statistic values for each feature

 (M: number of nodes in first hidden layer.)

𝐼𝑂𝑊 − 𝐹𝐼(𝑋𝑖) ≡ (1 − 𝜆)𝜓𝑖 − 𝜆𝜙𝑖 , (𝑤𝑖𝑗 ∈ 𝑊1)

 𝜓𝑖 =
∑ 𝐼{|𝑤𝑖𝑗| ≥ 𝑝1}𝑀

𝑗=1

𝑀
 , 𝜙𝑖 =

∑ 𝐼{|𝑤𝑖𝑗| ≤ 𝑝2}𝑀
𝑗=1

𝑀

 𝜆: 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

II. Re-arrange the order of features according to the

results of sorting IOW-FI stat in descending order.

[STEP 2] Find optimal feature set S

 I. Using Bayesian switch point modelling and MCMC

sampling, find filtering point k that divides values

of sorted IOW-FI stats.

 [𝑆𝑤𝑖𝑡𝑐ℎ 𝑃𝑜𝑖𝑛𝑡(= 𝜏) 𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 𝑎𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝑁𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡]

𝑋~𝑓(𝑥𝑡) = {
𝑁(𝜇1, 𝜎1

2) (𝑡 < 𝜏)

𝑁(𝜇2, 𝜎2
2) (𝑡 ≥ 𝜏)

 𝐹𝑖𝑛𝑑 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝜃 =< 𝜇, 𝜎, 𝜏 > 𝑏𝑦 𝑀𝐶𝑀𝐶 𝑖𝑛 𝑃𝑦𝑀𝐶

II. Filter out relatively unimportant features by only

selecting k features before switch point.

III. Define selected k features as set S.

 Return S; End of algorithm

By introducing a new statistic called ‘In-and-Out Weight

based Feature Importance’(IOW-FI), which uses absolute

weights over p1 as an importance factor while using values

under p2 as a degrading factor with interpolation parameter 𝜆,

and using bayesian switch point modelling using Python’s

PyMC package, this research aims to make filtering

techniques more convenient in finding optimal values for

setting k: the number of selected features, while indirectly

addressing the importance of each feature under the joint

distribution of feature space. Though some feature filtering

techniques such as JMIM use joint distributions of features in

iterative feature selection, many mutual information-based

filtering methods (for example, NMIFS, mRMR, MIFS-U)

rely on the distributions based on only the currently searched

individual feature X and response value Y[13]. In this

research, IOW-FI is expected to work as a solution to this

limitation. Checking improvements in test accuracy when

using IOW-FI on the original model based on W1 from the

fitted box-constrained model, this paper ultimately aims to

validify the effects of using In-and-Out Weight Box for better

FS.(To check the use of PyMC codes, see Appendix).

IV. EXPERIMENTAL RESULTS

A. In-and-Out Weight Box Construction for Glioma Data

Fig. 4. Results in GMM analysis on W1 of the original

baseline DNN. Figures on the left side show the pdf(green) of

group 2 and the allocation probability graph of 𝛾1(2)(𝑥) in

6

interval [0.0007, 0.01]. Figure in right is a focused version of

the pdf(red) of group 1 by setting the x interval as [0.005,

0.08]. When visualizing the fitted GMM, clear difference in

the centers of each group can be recognized.

After lightly fitting the original baseline deep neural network

depicted in III.B, using the absolute values of fitted W1, the

GMM fitting was converged as in Figure 4 and Table I.

Visualization and parameter fitting results show that group 1

has a substantially large centroid value compared to group 2,

whereas group 2’s values are highly focused to the center

compared to group 1. This implies that separation of weights

based on relevance with the response variable(Glioma level)

was successful in the aspect of distance and density. The

crossover point for allocation probabilities of groups were

found in interval [0.004, 0.006]. Thus, initial points for

running newtons-method to find p1 and p2 were set as the

arithmetic mean of 0.005. Under threshold of 𝜀=0.05, values

p1 and p2 were computed as 0.00600964 and 0.00462994 with

newtons-method, which led to a margin box space with length

of 0.0013797. Based on these values, the In-and-Out Weight

Box constraint was constructed as in III.A.

TABLE I

GMM FITTING RESULTS: ESTIMATES FOR EACH GROUP

Results 𝜋 𝜇 Σ

Group 1 0.53 0.0494 3.749e-03

Group 2 0.47 0.0007 3.159e-06

B. Model performance comparison based on test data

TABLE II

MODEL PERFORMANCE ON GLIOMA DATA

 OM IOWB OM-C IOWB-C

Train data

(accuracy)

0.8838 0.8838 0.8644 0.8793

Train data

(Loss)

0.3465 0.3456 0.3463 0.3474

Test data

(accuracy)

0.6726 0.7143 0.5536 0.6964

Test data

(Loss)

0.8047 0.7371 0.9409 0.7687

*OM: Original Model, IOWB: In-and-Out Weight Box

constraint based Model, OM-C: Compressed OM, IOWB-C:

Compressed IOWB. Best results written in bold type(Epochs,

Learning rate were all equally conditioned).

 After finding values p1, p2 and constructing the In-and-Out

Weight Box, comparison of models OM, IOWB, OM-C and

IOWB-C were implemented to check performance of the box

constraint. Numerical results based on accuracy and binary

cross entropy loss were computed as in TABLE II. Results

show the IOWB model outperforms OM in the aspect of

overfitting issues or robustness in data shifts. While having

identical or better results in training, IOWB model’s accuracy

Fig. 5. Visualization of the training process(epochs=500) of

four models: In all models, convergence in accuracy metric

and binary cross entropy loss was found.

dropped 0.1695 for test data while OM’s accuracy dropped

0.2112. This implies using the In-and-Out Weight box

constraint itself is a better way of constructing baseline neural

networks for further enhancements. The advantages of using

the box constraint is more vivid when checking the results of

compressed networks via clustering. Though same

compression described in III.B was implemented, there was

significant difference in the loss of performance between OM-

C and IOWB-C. While the accuracy of OM-C on training data

dropped from 0.8838 to 0.8644, the accuracy of IOWB

dropped from the same value of 0.8838 to 0.8793. This

implies when using the box-constraint, the amount of

information loss by compression is less than using the original

model, which can validify the expectation that the margin of

boxes will work as a mean to provide clearer guidance for

clustering based compression techniques.

This characteristic is more amplified in analyzing non-

observed data: test data. In terms of test data, for the OM-C

model, there has been a dramatic decrease in accuracy after

compression(from train data to test data: 0.8644 to 0.5536, test

data performance difference after compression: 0.6726 to

0.5536). On the other hand, IOWB-C model had minor

reduction in accuracy(from train data to test data: 0.8793 to

7

0.6964, test data performance difference after compression:

0.7143 to 0.6964). Furthermore, when considering the

performance in terms of loss value for test data, the gaps

between the compressed model and the original model were

substantially different(OM-C: 0.1362(0.8047 to 0.9409), IO

WB-C: 0.0316 (0.7371 to 0.7687)). Thus, overall results

deduced using Glioma data support the initial thought of this

research that making W1 optimal with the In-and-Out Weight

Box leads to the construction of better information flow

architecture in supervised-deep learning. In other words,

former expectations of the IOWB to enhance original network

performance and network compression results were found to

be satisfied.

C. Suggestion of a Novel FS method: IOW-FI

Based on the significance of using the In-and-Out Weight

box, this research suggested a novel feature selection method

using the results of In-and-Out Weight Box: the IOW-FI

algorithm. Using IOWB’s W1 as sample data, IOW-FI stat

was calculated for each feature with 𝜆 set as 0.5 for balance.

After computation, Algorithm 2’s Step2 was implemented

under 5000 iterative sampling and 1000 tuning(per chain)

based on the Metropolis-Hastings Markov Chain Monte

Carlo(MCMC) sampler of PyMC (used parallel computing for

two chains). Uniform distributions and exponential

distributions were used as priors for 𝜇1(2) and 𝜎1(2) ,

each(*values for prior were selected based on descriptive

statistics of IOW-FI stats such as min, max, standard

deviations). Results of the MCMC were visualized as in

Figure 6 and Figure 7.(*Used python’s arviz package).

Fig. 6. Visualization of MCMC results for Glioma Data-based

IOW-FI stats values. From top to bottom, 𝜏, 𝜇1, 𝜇2, 𝜎1, 𝜎2.

Fig. 7. Summary of MCMC for each parameters: From top to

bottom, 𝜏, 𝜇1, 𝜇2, 𝜎1, 𝜎2 ‘s summary statistic. As �̂� values are

all below 1.05, convergence of MCMC chains is checked.

When comparing the posterior means of each 𝜇1(2) ,

significant difference between two estimates implies

classification based on switch point could be valid. Based on

this conclusion, this research used the posterior mean value of

switch point MCMC samples for finding the optimal estimate

for 𝜏(�̂�=18). Therefore, by selecting 18 features based on the

descending order of IOW-FI stat values, features

'Age_at_diagnosis', 'IDH1', 'NOTCH1', 'IDH2', 'PTEN',

'EGFR', 'GRIN2A', 'RB1', 'CIC', 'MUC16', 'CSMD3',

'PIK3R1', 'NF1', 'PIK3CA', 'TP53', 'BCOR', 'SMARCA4',

'FUBP1' were selected as important feature set S with IOW-FI

values of 0.26666667, 0.2, 0.2, 0.16666667, 0.16666667,

0.16666667, 0.13333333, 0.13333333, 0.13333333, 0.1, 0.1,

0.1, 0.06666667, 0.06666667, 0.06666667, 0.06666667,

0.03333333, 0.03333333, sequentially.

Based on set S, this research fitted a new model with

identical structures of the original baseline neural network.

(Same parameters such as learning rates, weight initialization

methods or kernel constraints were adopted). Performance

results compared to OM and IOWB were deduced as in Table

III. Using 78% of given features, the IOW-FI FS method

TABLE III

PERFORMANCE OF IOW-FI BASED MODEL

Results OM IOWB IOW-FI

Train Data

(accuracy)

0.8838 0.8838 0.8748

Train Data

(Loss)

0.3465 0.3456 0.3693

Test Data

(accuracy)

0.6726 0.7143 0.7143

Test Dat

(Loss)

0.8047 0.7371 0.7707

*IOW-FI refers to the model fitted based on IOW-FI feature

selection and MCMC. Best values in bold type.

succeeded in building a better model than the original model:

OM, which used the entire feature set. Though performance in

training data is slightly lower than the former model, for test

data, IOW-FI shows substantially high performance than OM

in terms of prediction accuracy and cross entropy loss while

reducing the total dimension of input features. This result

implies that the In-and-Out Weight Box not only contributes

in enhancing network compression via clustering, but also can

contribute in finding better feature subsets in the aspect of

feature selection, which leads to the fact that expectations in

8

Introduction, which stated the possibilities of the In-and-Out

Weight Box working as means to alleviate difficulties for

finding an optimal subset of input information or optimal

compressed network structures when fitting a valid

supervised-deep learning model, are found valid.

 Apart from the comparison between OM and IOW-FI, when

comparing IOWB and IOW-FI, it is found that IOWB works

better in predicting both train and test data. This implies that

the In-and-Out Weight Box constraint’s ability can expand to

the area of replacing FS procedures, which can lead to large

savings in computational cost.

V. CONCLUSION

This research suggested a novel approach called an In-and-

Out Weight Box constraint which can enhance network

compression results and alleviate difficulties for finding an

optimal subset of input features. Results show that the new

constraint can work as a mean to address these goals by

making the model more robust and optimizing weight matrix

W1 for better information extractions. Although there are

limitations in considering methods to optimize hyper -

parameters such as 𝛼, 𝛽, 𝜆 , it is expected that this novel

constraint can work as means to enhance both network

compression and feature dimension reduction in terms of

providing efficient starting points or baselines. For further

research, comparing IOW-SI with other feature selection

techniques and improving the IOW-SI statistic in the aspects

of finding optimal lambda or reducing information redundancy

for advancements are currently planned. Please check briefly

explained code procedures of the IOWB and Algorithm 2 in

Appendix.

APPENDIX

*Below are partial codes used in this paper.

Please check documents of tensorflow and pymc.io for

thorough explanations of packages or functions. Especially,

switch point modelling codes using pymc were based on the

skeletons introduced in the presentation of Chris Fonnesbeck

for PyData’s London 2019 Conference.

(Brief Explanations)

1 . In-and-Out Weight Box Constraint Python code

#p1, p2: values from GMM analysis and Newtons-method.

2. IOW-FI algorithm Python codes

*W_new : Matrix W1 of fitted IOWB network.

(Re-shaped to 23 x 30)

9

REFERENCES

[1] S. Han, J. Pool, J. Tran and W. J. Dally, “Learning both Weights and

Connections for Efficient Neural Networks”, arXiv:1506.02626, 2015.

[2] N. Abuhajar, T. Sun, Z. Wang, S. Gong, C. D. Smith, X. Wang, L. Xu and

J. Liu, “Network Compression and Frame Stitching for Efficient and
Robust Speech Enhancement”, IEEE National Aerospace and Electronics

Conference, pp. 269-276, 2021.

[3] T. Wu, X. Li, D. Zhou, N. Li and J. Shi, “Differential Evolution Based
Layer-Wise Weight Pruning for Compressing Deep Neural Networks”,

SENSORS, Vol. 21, no. 3, pp. 880-899, 2021.
[4] M. Bennasar, R. Sethchi and H. Yulia, “Feature Interaction

Maximisation”, Pattern Recognition Letters, Vol. 34, no. 14, pp. 1630-

1635, 2013.
[5] H. Alshamlan, G. Badr and Y. Alohali, “mRMR-ABC: A Hybrid Gene

Selection Algorithm for Cancer Classification Using Microarray Gene

Expression Profiling”, BioMed Research International, 2015, pp. 1-15,
2015.

[6] T. Thaher, and N. Arman, "Efficient Multi-Swarm Binary Harris Hawks

Optimization as a Feature Selection Approach for Software Fault
Prediction", 2020 11th International Conference on Information and

Communication Systems, 2020.

[7] M. Mahapatra, S. K. Majhi, S. K. Dhal, “MRMR-SSA: a hybrid approach
for optimal feature selection”, Evolutionary Intelligence, Vol. 15, no. 3,

pp. 2017-2036, 2022.

[8] V. Tra, M. Amayri and N. Bouguila, "Outlier detection via multiclass
deep autodencoding Gaussian mixture model for building chiller

diagnosis", Energy and buildings, Vol. 259, 2022.

[9] L. Jing, L. Pengbo, L. Huijun and C. Wanghu, “Outlier Detection Based
on Stacked Autoencoder and Gaussian Mixture Model”, 2022 IEEE

International Conference on Big Data, 2022.

[10] S. Han, H. Mao and W. J. Dally, “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman

Coding”, arXiv:1510.00149v5, 2016.

[11] E. Tasci, Y. Zhuge, H. Kaur, K. Camphausen and A. Krauze,
"Hierarchical Voting-Based Feature Selection and Ensemble Learning

Model Scheme for Glioma Grading with Clinical and Molecular

Characteristics", International Journal of Molecular Sciences, Vol. 23, no.
22, pp. 14155, 2022.

[12] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks”, Journal of Machine Learning Research,
Vol. 9, pp. 249-256, 2010.

[13] M. Bennasar, Y. Hicks and R. Setchi, “Feature selection using Joint

Mutual Information Maximisation”, Expert Systems with Applications,
Vol. 42, no. 22, pp. 8520-8532, 2015.

