
P
os
te
d
on

1
A
p
r
20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
19
82
46
.6
55
11
61
9/
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Junetae Kim1, Kyoungsuk Park1, and Kyunglim Kim1

1Affiliation not available

April 01, 2024

Abstract

Pulsatile physiological signals, characterized by rhythmic fluctuations, are vital for assessing health conditions and are widely

used in wellness devices and medical equipment. Despite their significance, models addressing domain-specific unmet needs

and considerations have not been developed as much as in other fields. Therefore, building on the foundation of variational

autoencoders, we introduce VABAM, a novel model for the amplitude-based synthesis of pulsatile physiological signals. The

uniqueness of VABAM lies in its ability to maintain the morphological identity of signals throughout the synthesis process,

achieved by integrating pass filter effects within the variational autoencoder architecture. To assess the effectiveness of the

model, we developed three novel metrics based on joint mutual information. These metrics were aimed at evaluating the

disentanglement of latent spaces, influence of ancillary information on signal morphologies, and controllability of amplitude-

based synthesis within morphological identities. Comparative analyses demonstrated that VABAM and its variants were

notably effective at preserving morphological integrity, highlighting their potential to minimize morphological distortions in

physiological signal processing and their compatibility with artificial intelligence models employing frequency and amplitude

features. Additionally, the proposed metrics, compatible with probabilistic models, were empirically proven to capture the

characteristics of various models from multiple perspectives.
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VABAM: Variational Autoencoder for Amplitude-based
Biosignal Augmentation within Morphological Identities

Junetae Kim, Kyoungsuk Park, Kyunglim Kim

Abstract—Pulsatile physiological signals, characterized by
rhythmic fluctuations, are vital for assessing health conditions
and are widely used in wellness devices and medical equipment.
Despite their significance, models addressing domain-specific
unmet needs and considerations have not been developed as
much as in other fields. Therefore, building on the foundation
of variational autoencoders, we introduce VABAM, a novel
model for the amplitude-based synthesis of pulsatile physiological
signals. The uniqueness of VABAM lies in its ability to maintain
the morphological identity of signals throughout the synthesis
process, achieved by integrating pass filter effects within the
variational autoencoder architecture. To assess the effectiveness
of the model, we developed three novel metrics based on joint
mutual information. These metrics were aimed at evaluating the
disentanglement of latent spaces, influence of ancillary information
on signal morphologies, and controllability of amplitude-based
synthesis within morphological identities. Comparative analyses
demonstrated that VABAM and its variants were notably effective
at preserving morphological integrity, highlighting their potential
to minimize morphological distortions in physiological signal
processing and their compatibility with artificial intelligence
models employing frequency and amplitude features. Additionally,
the proposed metrics, compatible with probabilistic models, were
empirically proven to capture the characteristics of various models
from multiple perspectives.

Index Terms—Frequency pass filters, generative models, mutual
information, permutation entropy, pulsatile physiological signals,
signal synthesis, variational autoencoders.

I. INTRODUCTION

PULSATILE physiological signals, including arterial blood
pressure (ABP), photoplethysmogram (PPG), and electro-

cardiogram (ECG), are vital biosignals that are characterized by
their rhythmic fluctuations [1]–[3]. These signals are critical for
assessing various health conditions, providing essential insights
into the physiological activities of the heart and vascular system
[1], cardiac function [2], and systemic hemodynamics [3].
Thus, they are employed in both wearable health monitors and
medical devices for surgery and critical care [3]–[6]. However,
these signals are frequently compromised by noise originating
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from electrical interference, motion artifacts, and extraneous
physiological factors, thereby complicating the extraction of
accurate diagnostic information [7], [8].

This challenge can be overcome by applying frequency
pass filters that selectively enhance or diminish the amplitude
of signals according to their frequency components [9]. For
example, low-pass filters are instrumental in removing high-
frequency noise [10], [11], whereas high-pass filters are key
to eliminating low-frequency drifts and baseline wander [12],
[13]. Furthermore, band-pass filters are crucial for isolating
specific frequency bands [8], [14]. Therefore, each filter plays
a pivotal role in improving signal clarity.

However, these filters often involve convolution, a process
that can result in edge effects [9], [15], which lead to signal
truncation, potentially compromising important information
at the signal boundaries. Although padding strategies can
mitigate these effects [16], their implementation can either
extend the length of the original signal or cause variations
in phase and horizontal shifts along the time-axis. From a
physiological perspective, such distortions, including edge
effects, phase alterations, and time-axis shifts, can skew the
interpretation of physiological activities [9], [17]. Additionally,
the design of pass filters with suboptimal frequency cutoffs can
distort the morphological characteristics of pulsatile signals
[9], [18], especially when the chosen cutoffs do not align
precisely with the inherent frequency components of the signal,
resulting in the attenuation or amplification of certain aspects
of the signal critical for accurate interpretation [9], [18]. In
conclusion, these alterations and distortions pose the risk of
the misrepresentation of the patient’s condition, resulting in
inaccurate health assessments.

Thus, in the realm of pulsatile physiological signals, the
use of pass filters serves as a necessary but potentially
problematic tool: indispensable yet prone to issues if overused.
Recognizing this, the development of a synthesis model with
high controllability over pass filter effects can offer solutions
to the aforementioned challenges from multiple perspectives.
Furthermore, these synthesis models can be effectively inte-
grated with rapidly advancing artificial intelligence models
designed to utilize the frequency and amplitude-based features
of physiological signals [6], [19]. Additionally, by preserving
the essence of physiological signals while synthesizing rare
events, these models can enhance training performance and
contribute to research on physiological dynamics. However,
despite considerable advancements that can be made in this
field, models that offer precise controllability in amplitude-
based biosignal synthesis are lacking, a technology gap

© 2024 The Authors
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addressed in this study.
The main objectives of this study are as follows:
• We developed a probabilistic deep learning model, named

VABAM, that enables the synthesis of pulsatile physi-
ological signals via pass filter effects (i.e., amplitude-
based modulation) while ensuring the preservation of the
morphological identity of the signals.

• We propose three novel metrics to establish a compre-
hensive evaluation of the synthesis and representation
capabilities of the model: Disentanglement of Z in signal
morphology, contribution of ancillary (i.e., conditional)
information to signal morphology, and controllability of
amplitude-based synthesis within morphological identities.

We define amplitude-based as the capability to modulate
frequency-amplitudes, a direct consequence of employing
frequency pass filters. Additionally, we define morphological
identity preservation as the absence of phase shifts and
horizontal movements along the time axis of the signal.

To achieve precise control in conditional synthesis, we
developed VABAM by extending the capabilities of the
representative probabilistic model, variational autoencoders
(VAEs), which are renowned for their explicit latent space
modeling and direct access to encodings [20]. Furthermore, we
ensured that the probabilistic nature of VABAM was effectively
assessed within a stochastic context by developing metrics
based on joint mutual information (JMI) [21]. Moreover, we
utilized widely recognized models within the VAE family as
benchmarks or combined them with VABAM to develop its
derivatives, thereby enabling a comparative analysis of the
characteristics of each model.

The notable novelties of VABAM and major contributions
of our study are outlined as follows:

• Integration of pass filter methods: Incorporating domain-
critical pass filter effects within a probabilistic model
facilitates controlled synthesis via amplitude-based aug-
mentation while offering protection against horizontal
shifts and phase alterations in signal morphology.

• Theoretically robust foundation: Embedding a proba-
bilistic approach into the core tenets of domain knowledge,
model development, and evaluation establishes a coherent
and theoretically robust cornerstone, positioning VABAM
as a potential foundational model for pulsatile physiologi-
cal signals.

• Novel representation of morphological characteristics:
Representing morphological characteristics as random
variables via power spectral density (PSD) exemplifies the
integration of physiological domain knowledge into prob-
abilistic modeling and metrics, enriching the theoretical
and practical applications of the field.

• Development of a specialized metric for controllability:
Creating a metric to evaluate the controllability of ancil-
lary (i.e., conditional) input-based synthesis lays a solid
foundation for probabilistically quantifying the coherence
of synthesized pulsatile physiological signals.

The structure of this paper is outlined as follows: Section II
provides a comprehensive review of the literature, delineating
both the distinctions and connections between our proposed

model and existing methodologies. Section III introduces the
preliminary concepts necessary for understanding our model,
derives the evidence lower bound (ELBO), and discusses its
components. Section IV presents three novel JMI-based metrics
alongside an additional metric, offering a comprehensive
evaluation framework for our study. Section V elaborates on the
execution of benchmark tests and ablation studies, providing an
assessment and interpretation of findings based on the proposed
metrics. Section VI deliberates on key insights and potential
areas for improvement, outlining directions for future research.

II. RELATED WORKS
A. Pass Filtering in Physiological Signal Processing

A diverse array of digital pass filters are widely used
to refine pulsatile physiological signals. Notably, low-pass
filters have been proven effective in mitigating high-frequency
noise present in cardiac bioelectrical signals. These filters are
typically employed to attenuate frequencies above a specified
threshold (e.g., 10 Hz), enhancing the quality of ECGs [10],
[11]. Similarly, high-pass filters used in electroencephalography
(EEG) have demonstrated efficacy in eliminating low-frequency
drifts or baseline wander. By blocking frequencies below a
designated threshold (e.g., 1 Hz), these filters enhance the
sharpness of brain wave patterns, thereby improving EEG
analysis [12], [13]. Additionally, band-pass filters play a crucial
role in photoplethysmogram (PPG)-based heart rate monitoring
by isolating specific frequency bands. These filters effectively
eliminate both high-frequency noise and low-frequency artifacts,
ensuring accurate detection of heartbeats [8], [14].

Cascading filters, which extend the concept of frequency
pass filters through a series of interconnected stages to
systematically refine signals [22], have been instrumental in
enhancing patient monitoring and diagnostic accuracy. Each
stage in these filters builds upon the output of its predecessor
[22], effectively reducing noise and improving signal clarity [5],
[23]. Their effectiveness can be attributed to the decomposition
of signals into specific subsets, enabling the precise removal
of a wide range of unwanted frequencies. The importance
of cascading filters extends beyond basic signal processing;
their application can be pivotal in the development of medical
devices and AI-driven health analytics [24], [25].

B. Physiological Signal Generative Model
In the domain of physiological signals, generative models

such as generative adversarial networks (GANs) and VAEs have
gained increasing significance. These models are predominantly
used for tasks such as augmentation, denoising, and modality
transfer. Augmentation models are essential for creating larger,
more diverse training datasets, particularly for generating
synthetic instances of rare conditions [26], [27]. Denoising
models play a crucial role in removing various noise interfer-
ences from physiological signals, including baseline wander,
muscle artifacts, and environmental noise [28], [29]. Modality
transfers facilitate the integration of various signal types, such
as converting PPG into ECG signals, which improves analysis
and diagnostic capabilities [30].
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Although the application of VAEs in this domain is relatively
limited compared to that of GANs, they have potential
applications in augmentation and imputation tasks. In aug-
mentation, key applications involve extracting typical one-
cardiac cycle shapes from ECGs [31], synthesizing ECGs using
demographic details such as age and sex [27], and generating
ECGs conditioned on four simplified classes, one of which is
low amplitude and high frequency [32]. For imputation, one
approach has effectively merged VAEs with Fourier neural
networks for ECGs missing imputation [32]. Another approach
has enhanced importance-weighted autoencoders with Gaussian
process priors for latent variables, significantly improving the
imputation of missing data [4].

C. Variational Autoencoders for Disentangled Representation

In the vast landscape of VAE derivatives, we focus on models
distinguished by their efficiency at disentangling representations
and exhibiting advanced control in the generative process. Thus,
starting with the foundational principles of VAE, we delve
into the evolution of related models, spotlighting their key
differentiators.

VAE marks a pivotal advancement in generative modeling,
introducing a probabilistic approach to encode input data
into a latent space [33], [34]. This methodology empowers
deep learning models to efficiently generate a diverse array
of complex data. At the heart of VAE lies the optimization
of the ELBO, which comprises a reconstruction loss and
regularization term that encourages the latent space Z to adhere
to a normal distribution [33], [34]. This balance between precise
data reconstruction and effective latent space organization is
paramount for ensuring the practical utility of a model across
various applications.

β-VAE, an extension of the VAE framework, introduces
a modification to the ELBO by adjusting the weight of the
regularization term in Z [35]. This adjustment is facilitated
by the introduction of the β factor. Such a refinement in
the β-VAE model is instrumental in fostering more distinct
and interpretable data representations, particularly effective in
disentangling complex latent variable structures within image
datasets [35]. This enhances our understanding of feature
representation and separation, aligning directly with the goals
of precision and efficiency in generative modeling.

Conditional VAE (C-VAE) extends the VAE framework
by integrating additional auxiliary data into the generative
process [36]. This conditioning mechanism enables the model
to generate outputs that closely align with specific attributes
or conditions [36]. This model is particularly advantageous in
scenarios where controlled generation is paramount, such as
targeted data augmentation or the development of models for
specific, scenario-based applications.

Total Correlation variational autoencoder (TC-VAE)
represents an innovative extension within the β-VAE frame-
work, focusing on minimizing the total correlation (TC), a
generalization of MI, in the latent space [37]. This strategy
is aimed at promoting the independence of latent variables,
which can significantly advance the disentanglement process.
By reducing inter-variable dependencies, TC-VAE enhances

the clarity and distinction in data representation, effectively
capturing the intrinsic structure of the dataset [37]. This
improvement in TC-VAE underscores its contribution to
improving the interpretability and utility of generative models.

FactorVAE (FAC-VAE) adopts a distinct strategy for
disentanglement within the β-VAE framework [38]. While
sharing objectives with TC-VAE, FAC-VAE introduces a
specific term in the loss function to penalize the total correlation
between latent variables. This approach, which requires an
auxiliary discriminator network and the density ratio trick,
effectively isolates independent factors in the data [38]. FAC-
VAE thus contributes to a nuanced understanding of complex
data structures, offering a unique method for disentanglement.

D. Mutual Information in Disentangled Representation

Mutual information (MI) stands as a pivotal metric in
information theory, quantifying the knowledge acquired about
a random variable by observing another, thereby effectively
capturing their statistical dependence [21]. Within the realm
of deep learning, MI plays a crucial role in developing
disentangled representations, which endeavor to segregate
distinct aspects of the data into independent components, and
in assessing the extent of disentanglement among variables.

Among representative models stemming from generative
adversarial networks (GAN), Deep InfoMax (DIM) harnesses
a specialized estimation to maximize MI between input data
and high-level representations. It offers an adjustable focus
on global or local information to tailor representations for
tasks such as classification or reconstruction [39]. Similarly,
InfoGAN employs an adversarial framework to maximize MI
between latent factors and generated data, thereby establishing
a lower bound for efficient optimization, facilitating the
generation of interpretable representations [40].

While the previously introduced FAC-VAE and TC-VAE
are aimed at minimizing TC to foster disentangled represen-
tations [37], [38], TC-VAE advances this approach further.
It decomposes Kullback–Leibler divergence (KLD) terms to
not only isolate the TC term but also directly incorporate the
index-code MI between the data and latent variable into the
objective function [37]. Moreover, this study introduces the
mutual information gap as a means to evaluate the degree of
disentanglement.

III. METHODS

A. Preliminary

1) ELBO in β-VAE: VABAM diverges from β-VAE, em-
barking on a unique trajectory separate from FAC-VAE and
TC-VAE. While VABAM shares similarities with C-VAE, its
structure distinctly sets it apart. This differentiation necessitates
a foundational grasp of the β-VAE ELBO, which encompasses
the core tenets of the standard VAE ELBO. β-VAE introduces
a hyperparameter β, enabling a balance between the adherence
of Z to a normal distribution and reconstruction fidelity [35].
The ELBO in the context of β-VAE is formulated as follows:

ELBOβ = Eqϕ(z|x)[log pθ(x|z)]− βKLD(qϕ(z|x)∥p(z)) (1)
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Fig. 1. Illustration of Cascading Filters Corresponding to Generative Process.

This formulation comprises two components: expected log-
likelihood of the data given the latent variable, ensuring
accurate data reconstruction, and a β-weighted KLD, thereby
imposing a weighted regularization on the latent space.

2) Cascading Filters: This method begins with defining the
low-pass filter (LPF) and high-pass filter (HPF) as follows:

LPF[t] =
S[t] · w[t]∑T−1

i=0 S[i] · w[i]
, (2)

HPF[t] = δ[t]− LPF[t]. (3)

Here, S[t], w[t], and δ[t] respectively denote the sinc filter, the
Hamming window [41], and the discrete unit impulse function,
defined as follows:

S[t] = sinc
(
2Θ

(
t− T − 1

2

))
, (4)

w[t] = 0.54− 0.46 cos

(
2πt

T

)
, (5)

δ[t] =

{
1 if t = 0

0 if t ̸= 0
. (6)

In these formulations, t and T correspond to the time and the
filter size, respectively. Applying a Hamming window to a filter
primarily aims to attenuate sidelobes in the frequency domain,
yielding a smoother signal spectrum [41]. Θ, functioning as
the cutoff frequency to filter out higher frequencies, represents
a neural network weight that influences backpropagation [6].

The operation of these filters is illustrated in Figure 1
[22]. Essentially, VABAM employs a two-stage cascading
filter framework to systematically break down the original
signal into four sub-signals. This breakdown is achieved
through convolution operations between the pass filters and the
signals from preceding stages, with each resulting sub-signal
undergoing specific frequency filtering.

B. Training and Generating Framework

VABAM comprises five integral components: Feature extrac-
tor, encoder, sampler, feature generator, and signal reconstructor
(Fig. 2). Each component works in synergy to contribute to
the overall functionality of the model, ensuring the effective
synthesis of pulsatile physiological signals.

Feature Extractor gx(·) applies cascading filters to the raw
input signal y, segmenting it into four amplitude-modulated

subsets x ∈ {xHH , xHL, xLH , xLL}. These subsets serve as
learning targets for the feature generator.

Encoder ge(·) is responsible for learning the parameters
defining the distributions of the latent variable, Z and the cutoff
frequency, Θ. It operates under two assumptions:

• θk ∼ U(0, 1) for k = 1, . . . , 6, representing six instances
within the proposed model structure. This distribution is
approximated by a Bernoulli distribution (refer to Eq.(20)).

• zj ∼ N (µzj , σ
2
zj ) for each dimension j, with j ∈

{1, 2, . . . , J}, where J is a hyperparameter determining
the number of dimensions.

Sampler gz(·) and gθ(·) facilitate a differentiable approxi-
mation of the data distribution. It employs the reparameteriza-
tion trick for backpropagation, where zj and θk are sampled
to enable gradients to flow through the network node.

Feature Generator gx′(·) utilizing parameters from the
encoder, generates four feature signals that serve as inputs for
the signal reconstructor. These sets are tailored to match the
amplitude-modulated subsets processed by the feature extractor
while integrating latent elements parameterized by zj and θk.

Signal Reconstructor gy(·) utilizes the generated feature
subsets to reconstruct signals, preserving the fundamental
aspects of the original signal.

C. Evidence Lower Bound (ELBO) Derivation

To clarify the ELBO, standard notation conventions are
utilized, with lowercase letters denoting realized values and
subscripts omitted for brevity. However, for seamless integration
with the subsequent discussion on JMI, uppercase letters are
employed to denote random variables or model parameters.

Based on the assumptions of the generative process in
VABAM, we express the joint probability as follows:

p(y, x, z, θ) = p(y |x) p(x | z, θ) p(z) p(θ). (7)

The marginal likelihood p(y) is derived by integration over
variables x, z, and θ:

p(y) =

∫∫∫
D

p(y, x, z, θ) dx dz dθ. (8)

To enable variational inference, we introduce a distribution
q(x, z, θ | y) that approximates the true posterior distribution
p(x, z, θ | y). Consequently, we get

p(y) =

∫∫∫
D

p(y, x, z, θ) q(x, z, θ | y)
q(x, z, θ | y)

dx dz dθ. (9)

Applying Jensen’s inequality to the integral, we derive the
evidence lower bound (ELBO) as follows:

log p(y) ≥ Eq(x,z,θ | y)

[
log

p(y, x, z, θ)

q(x, z, θ | y)

]
= ELBO(y). (10)

According to our model structure and its generative process,
we assume that the distribution q(x, z, θ | y) can be factorized
as follows:

q(x, z, θ | y) = q(x | y, θ) q(z, θ | y), (11)

where q(x | y, θ) is related to the feature extractor, and
q(z, θ | y) is associated with both the encoder and sampler.
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Fig. 2. Intuitive Illustration of Generation and Training Process.

This implies that feature signals x are modulated through the
cascading filter, given the θ drawn from the sampler and the
raw signal y (Fig.1).

The ELBO is then expressed as follows:

ELBO(y) = Eq(x,z,θ | y)
[
log p(y |x) + log p(x | z, θ)

+ log p(z) + log p(θ)− log q(x | y, θ)
− log q(z | y)− log q(θ | y)

]
. (12)

The final objective function is defined as follows:

J(Φ;y, x,z,θ)=argmin
Φ

Eq(x,z,θ|y) [− log p(y|x)

−log p(x|z, θ)
q(x|y, θ)

+log
q(z|y)
p(z)

+log
q(θ|y)
p(θ)

]
, (13)

where Φ represents all trainable network weights.

D. ELBO Terms

1) Reconstruction of Raw Signals: The expected log-
likelihood for the reconstruction of raw signals, y given
reconstructed feature signals, x can be approximated using
the Monte Carlo (MC) method as follows:

−Eq(x,z,θ|y) [log p(y|x)] ≈ −
1

L

L∑
l=1

log p(y|x(l)), (14)

where L is the number of MC samples. To ensure convergence
stability, we minimized the mean squared error (MSE) rather
than the negative log likelihood from Eq.(14) as follows:

J(Φy; y) =
1

N

N∑
n=1

(
yn − gy(xn)

)2
, (15)

with n and N denoting the sample index and the total number
of training samples, respectively.

2) Reconstruction of Feature Signals: The reconstruction of
feature signals involves computing the expected log ratio of the
probabilities of the model and those of the variational posterior
by minimizing the discrepancy between the two distributions
using KLD, as expressed in

−Eq(z,θ|y)q(x|y,θ)

[
log

p(x|z, θ)
q(x|y, θ)

]
≈ 1

L

L∑
l=1

KLD
(
q(x|y, θ(l)) || p(x|z(l), θ(l))

)
, (16)

where p(x|z, θ) corresponds to the feature generator.
Considering x, which comprises of four amplitude-modulated

sub-signals with real numbers, we posit that both q(x|y, θ(l))
and p(x|z(l), θ(l)) follow Gaussian distributions. Thus, we
approximate Eq.(16) using MSE as follows:

J(Φx;x)=
1

N

N∑
n=1

(
gx(yn, θn)− gx′(zn, θn)

)2
. (17)
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3) Variational Inference for p(z): Optimization of the latent
variable Z involves reducing the KLD relative to the prior:

Eq(z|y)q(θ|y)q(x|y,θ)

[
log

q(z|y)
p(z)

]
= KLD(q(z|y)||p(z)). (18)

For this optimization, we applied the KLD (denoted as
J(Φz; z)) specific to Gaussian distributions, along with a re-
parametrization trick commonly used in VAEs [33], [34].

4) Variational Inference for p(θ): Similarly, the optimization
of the cutoff frequency for the pass filter, Θ is achieved by
minimizing the KLD:

Eq(z|y)q(θ|y)q(x|y,θ)

[
log

q(θ|y)
p(θ)

]
= KLD(q(θ|y)||p(θ)). (19)

While θ inherently follows uniform distributions, the KLD
(denoted as J(Φθ; θ)) is optimized under the presumption that
θ adhere to Bernoulli distributions [42], [43], to execute the
reparameterization trick, as stated in the following formula:

KLD(q(θ|y)||p(θ)) ≈ KLD(q(θ|y)||Bern(µθ = 0.5)) (20)

=
1

N

N∑
n=1

(
1

K

K∑
k=1

∑
c∈{0,1}

(
µc
θn,k

(1−µθn,k)
1−c

× ln
µc
θn,k

(1− µθn,k
)1−c

0.5c0.51−c

))
, (21)

with K set to 6 according to the structure of VABAM.

IV. EVALUATION METRICS

A. Preliminary

1) Dimensional isolation in Z: We introduce a specialized
approach to support the evaluation of disentanglement in Z,
specifically designed to isolate a randomly selected dimension
within the latent space. To this end, we define a set z =
{zj}Jj=1, where zj follows a normal distribution, zj ∼ N (µj =
0, σ2

j ). Given the set z, we introduce a new set ź = {źj}Jj=1,
where each element źj is defined as

źj =

{
zj∗ , if j = j∗

Eq[zj |y], if j ̸= j∗.
(22)

Here, j is an index within the set {1, 2, . . . , J} and j∗ is an
index selected uniformly at random from the same range, with
the probability p(j = j∗) = 1

J . Considering the expected value
Eq[zj |y], articulated as

Eq[zj |y] ≈
1

M

M∑
m=1

z
(m)
j ≈ 0, (23)

in the set ź, every element except for zj∗ approximates the
mean of the Gaussian distribution, which is zero. However, the
zj∗ retains its original value from the set z, thereby achieving
its isolation within the latent space.

2) Power Spectral Density: We utilize PSD to represent
signal morphology as random variables, thereby incorporating
physiological characteristics into our proposed probabilistic
metrics. PSD, which characterizes the distribution of power
across various frequencies in a signal [44], helps identify
patterns and irregularities, thereby facilitating the interpretation
of its morphological features. It is defined as

PSDn,m(v) =
1

T
|Xn,m(v)|2 , (24)

where n, m, and T denote the sample index, generation
index, and the time length of the signal, respectively. The
term Xn,m(v) represents the frequency domain representation
of the signal, obtained through the FFT. We further refine
this measure by normalizing PSD, denoted as qn,m(v), which
provides a more nuanced understanding of power distribution
via the equation below:

qn,m(v) =
PSDn,m(v)

1
|V |
∑

v∈V PSDn,m(v)
(25)

3) Permutation Density in Power Spectral Density: We
introduce a novel metric to gauge the controllability of signal
synthesis, building upon the previously discussed PSD. This
metric evaluates the orderliness of synthesized signals by
analyzing the permutation distribution of PSD (PD-PSD) values,
particularly focusing on the level of structured generation
influenced by organized ancillary inputs. The development
of this metric follows the procedures outlined below.

1⃝ Defining PSD series: We initiate the procedure by
revisiting and extending the previously defined PSD:

PSD = {PSDn,v,1,PSDn,v,2, . . . ,PSDn,v,M},
where n, v, and M represent the sample index, the
frequency index, and the generation size, respectively.

2⃝ Constructing windowed vectors: We proceed by con-
structing W -dimensional vectors for a selected window
dimension W ≥ 2 as follows:

WPSDt = (PSDn,v,t,PSDn,v,(t+1), . . . ,PSDn,v,(t+W−1))

where t ∈ {1, . . . ,M −W + 1}.
3⃝ Generating permutation sets: We consider permutation

sets, which comprise W ! unique ordinal sequences. Each
permutation πs is defined as

πs ∈ {r|r is the s-th permutation of {1, 2, . . . ,W}}.
These sets are crucial for measuring the order of
components within WPSDt.

4⃝ Tallying occurrences: We tally occurrences of each per-
mutation πs as Πn(s, v), by associating every WPSDt

with its respective permutation. This step captures the
controllability of signal synthesis.

5⃝ Defining permutation density: Finally, we define the
permutation density as the joint probability of the
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TABLE I
DESCRIPTION OF THREE JMI-BASED METRIC

Metric Baseline Key Measure
I(V ; Ź, Z) I(V ;Z) I(V ; Ź|Z) Disentanglement of Z in morphology
I(V ; Θ́, Ź) I(V ; Ź) I(V ; Θ́|Ź) Contribution of Θ to morphology
I(S; Θ́, Ź) I(S; Ź) I(S; Θ́|Ź) Controllability of Θ-based synthesis

occurrence Πn(s, v) according to v and s relative to
the total count of all permutations as

qn(s, v) =
Πn(s, v)∑|V |

v=1

∑W !
s=1 Πn(s, v)

. (26)

4) Joint Mutual Information: The concept of conditional
mutual information (CMI) is defined as I(X;Y |Z), quantifying
the extent to which the information about X is enhanced by
introducing Y into the context already established by Z [45].
Applying the chain rule, CMI can be expressed in the form of
JMI as I(X;Y, Z) = I(X;Z) + I(X;Y |Z) [45].

This expansion allows for a more nuanced examination of
MI, distinctly separating the shared information in X and
Z from the information in X and the added Y given the
existing Z. In this context, we designate I(X;Z) as the baseline
and I(X;Y |Z) as the key indicator (Tab. I). Through this
lens, we comprehensively evaluate the characteristics of our
proposed model, alongside those of benchmark and ablation
models. This approach not only enhances our understanding
of the model’s performance but also elucidates the individual
contributions of both the baseline and the primary indicator to
overall performance. Consequently, our analysis prioritizes the
scrutiny of the specific terms I(X;Z) and I(X;Y |Z) over
the combined metric I(X;Y,Z).

B. Evaluation Metrics

We introduce novel JMI-based metrics to assess the disen-
tanglement of the latent variable Z in signal morphology [37],
[46], and to evaluate the contribution of Θ (i.e., the cutoff
frequency in VABAM) to signal morphology by quantifying
the information gain from the ancillary exogenous variable Θ
to V (Tab. I). Additionally, we assess the controllability of
amplitude-based synthesis within morphological identities by
quantifying the orderliness of the PSD in signals generated
from an ordered sequence of Θ, termed Θ́ (Tab. I).

The following notations and concepts are crucial for un-
derstanding these JMI-based metrics: V represents random
variables associated with frequency indices in the normalized
(PSD); Z is a random variable within a Gaussian distribution;
Ź denotes its isolated variant; Θ and Θ́ correspond to random
variables for conditional input data and its ordered form,
respectively. The corresponding lowercase variables signify
the realizations of these random variables.

When calculating JMI-based metrics, it is necessary to
approximate expectations. This was achieved by conducting
Monte Carlo simulations (MCS) [37] through the VABAM
sampler. Although the subsequent equations are presented from
the perspective of individual samples, the empirical approach is
structured at the batch level to enhance computational efficiency.
The dimensions of key metrics V and S, and latent variables

Z and Θ, vary among the six JMI-based metrics. Additionally,
the sampling strategies are distinct for each metric. The
supplementary document covers these details, encompassing
the analytic derivation, approximations, dimensionalities, and
sampling strategies.

1) I(V ; Ź, Z): This metric, which captures how much
information V contains about both Ź and Z jointly, can be
decomposed as I(V ; Ź, Z) = I(V ;Z)︸ ︷︷ ︸

i

+ I(V ; Ź|Z)︸ ︷︷ ︸
ii

.

The term i quantifying the intrinsic dependency within the
joint distribution q(v, z) against the marginal distributions q(v)
and q(z) under the independence assumption, is articulated as
follows:

i I(V ;Z) = Eq(v,z)

[
log

q(v, z)

q(v)q(z)

]
(27)

≈ Eq(z)

[
KLD

(
q(v|z) ∥ p(v)

)]
. (28)

The term ii measures the disentanglement in Z, as it
quantifies the information gained by V when the existing
dimensions of Z are probabilistically isolated along one of
their axes Ź. It can be quantified based on the ratio between the
joint probability q(v, ź|z) and the product of the conditional
probabilities q(v|z) and q(ź|z) as follows:

ii I(V ; Ź|Z) = Eq(v,ź,z)

[
log

q(v, ź|z)
q(v|z)q(ź|z)

]
(29)

= Eq(ź,z)

[
KLD

(
q(v|ź) ∥ q(v|z)

)]
. (30)

2) I(V ; Ź, Θ́): This metric reflects the extent of information
V holds jointly about Θ́ and Ź, and is decomposable as follows:
I(V ; Ź, Θ́) = I(V ; Ź)︸ ︷︷ ︸

iii

+ I(V ; Θ́|Ź)︸ ︷︷ ︸
iv

.

The term iii centers on the intrinsic dependency present in
the joint distribution q(v, ź) relative to the marginals q(v) and
q(ź), highlighting Ź as an isolated dimension of Z.

iii I(V ; Ź) = Eq(v,ź)

[
log

q(v, ź)

q(v)q(ź)

]
(31)

≈ Eq(ź)

[
KLD

(
q(v|ź) ∥ p(v)

)]
. (32)

The term iv focuses on the additional information about
V , which is acquired by introducing Θ́ to an existing Ź.
This term is quantified based on the relationship between the
joint probability q(v, θ́|ź) and the product of the conditional
probabilities q(v|ź) and q(θ́|ź), as follows:

iv I(V ; Θ́|Ź) = Eq(v,θ́,ź)

[
log

q(v, θ́|ź)
q(v|ź)q(θ́|ź)

]
(33)

= Eq(θ́,ź)

[
KLD

(
q(v|θ́, ź) ∥ q(v|ź)

)]
. (34)
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3) I(S; Ź, Θ́): This measure assesses the control of
amplitude-based synthesis as affected by Ź and the addi-
tion of Θ́ to Ź, decomposed as follows: I(S; Ź, Θ́) =
I(S; Ź)︸ ︷︷ ︸

v

+ I(S; Θ́|Ź)︸ ︷︷ ︸
vi

The term v , focused on evaluating the controllability of
amplitude-based synthesis under the condition of provided Ź,
given as follows:

v I(S; Ź) = Eq(s|ź)q(ź)

[
log

q(s, ź)

q(s)q(ź)

]
(35)

= Eq(ź)

[
KLD

(
q(s|ź) ∥ q(s)

)]
. (36)

Here, ź is conceptualized as a sequence of M realized instances
of ź, represented by ź = {źm}Mm=1.

The term vi assesses the controllability of amplitude-based
synthesis by modulating Θ́ while holding Ź fixed, implying
that the synthesis is influenced by adjustments in the variable.
This influence can be verified by observing the entropy changes
in the PSD of signals synthesized upon introducing Θ́ to Ź.

vi I(S; Θ́|Ź) = Eq(s,θ́,ź)

[
log

q(s, θ́|ź)
q(s|ź)q(θ́|ź)

]
(37)

= Eq(θ́,ź)

[
KLD

(
q(s|θ́, ź) ∥ q(s|ź)

)]
. (38)

Analogous to ź, θ́ is defined as a series of M realized instances
of θ́, expressed as θ́ = {θ́m}Mm=1. Further details are provided
in the supplementary document.

C. Filtering High-Quality Synthesis

Capturing and extracting realizations of Z and Θ, which con-
tribute to high-quality synthesis, provide valuable information.
Consequently, we devise specific metrics and procedures for
this filtering process and subsequently verify the PSD similarity
between the filtered synthesis signals and the original signals.

Building upon the preliminary steps for JMI-based metrics,
we introduce the normalized PSD for q(v|z(d,m), θ(d,m)) and
Q(v|yd′). Here, d′ denotes a sample index within a batch D,
while m represents the sampling index, with M being the total
number of sampled instances. Additionally, Y signifies the set
of the original signals, implying that yd′ is an element of D
such that yd′ ∈ D ⊆ Y .

The subsequent step involves quantifying the synthesis
quality during the filtering process. This begins with the
definition of the KLDd,m,d′ as follows:

KLDd,m,d′(Q(v)||q(v))

:=
∑
v∈V

Q(v|yd′) log

(
Q(v|yd′)

q(v|z(d,m), θ(d,m))

)
. (39)

Here, the indices d, m, and d′ are aligned to traverse their
respective dimensions, ensuring all indices d′, d and m are
matched correctly for the element-wise multiplication. Then,
we define the key metric Ωi as the minimum KLD across

dimension d′ to focus on identifying the best d′ for fixed d,m,
given as

Ωi = min
d′

KLDd,m,d′(Q(v)||q(v)) (40)

where i combines indices d and m, represented as i ∈ {(d,m) |
d ∈ {1, 2, . . . , |D|},m ∈ {1, 2, . . . ,M}}.

Subsequently, by leveraging Algorithm 1 with Ω and other
parameters, we acquire the set of realized z, denoted by z⃗,
and the set of observed θ, represented by θ⃗, both of which
collectively contribute to the generation of high-quality signals.
Intuitively, the algorithm processes each batch of |D| samples
through M synthesis attempts, extracting only those realized
z and θ pairs that demonstrate a distribution similarity above
a specified threshold with the PSD of the original signal.

Algorithm 1 Selecting Ω, z, and θ

Input:

• Ωi =

{
Ωi(v|z(d,m), θ(d,m)) w/ ancillary data
Ωi(v|z(d,m)) w/o ancillary data

• V max
i =

{
argmaxvq(v|z(d,m), θ(d,m)) w/ ancillary data
argmaxvq(v|z(d,m)) w/o ancillary data

• z∗i : realized z values at the current MCS.
• θ∗i : realized θ values at the current MCS.
• τ : threshold of Ω for selecting z∗i and θ∗i .

Initialization: z⃗, θ⃗ ← ∅
Procedure:

1: for each l ∈ {1, 2, . . . , L} (MCS Iteration) do
2: I ← {(d,m)|d ∈ {1, 2, . . . , |D|},m ∈ {1, 2, . . . ,M}}
3: for each v in the frequency domain do
4: Iv ← {i ∈ I|V max

i = v}
5: iΩ ← argmini∈IvΩi

6: if Ωi=iΩ < τ then
7: z⃗ ← CONCAT(z⃗, z∗i=iΩ)

8: θ⃗ ← CONCAT(θ⃗, θ∗i=iΩ) w/ ancillary data
9: end if

10: end for
11: end for
Return z⃗ and θ⃗

w/o ancillary data pertains benchmark models operating without ancillary (i.e.,
conditional) data inputs. In our experiments, τ was set to 1.

Ultimately, we evaluate the overall quality of the filtered-
synthesized signals using the filtering quality index (FQI)
proposed as follows:

FQI =
1

2

(
KLD(P (v|y)||Q(v|z⃗, θ⃗))+

KLD(Q(v|z⃗, θ⃗)||P (v|y))
)
. (41)

Here, P (v|y) represents the aggregated normalized PSD from
the true signal, expressed as P (v|y) = 1

N

∑N
n=1 P (v|yn),

where yn denotes the n-th original signal. Similarly, Q(v|z⃗, θ⃗)
signifies the aggregated normalized PSD from the extracted z⃗

and θ⃗, defined as Q(v|z⃗, θ⃗) = 1

|Z⃗|

∑|Z⃗|
i=1 Q(v|z⃗i, θ⃗i).
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Fig. 3. Illustration of Training Model Structure; CS denotes the signal’s compressed size, CS∗ is defined as CS∗ = SL− ⌊(SL− CS)/2⌋+ 1, with SL
representing the signal duration in seconds for a 100 Hz sampling rate, and SS the sliding size. Additionally, D, J , and K denote the data size in a batch,
and the sizes of dimensions Z and θ, respectively.

V. EXPERIMENTS AND RESULTS

A. Quantitative Evaluation Approaches and Strategies

1) Evaluation Overview: We comprehensively evaluated
VABAM’s performance by comparing it to several benchmark
models known for their expertise in disentanglement and
conditional generation. Additionally, we included variants of
VABAM, which were developed by integrating the objective
functions from these benchmark models, in the analysis (Tab.
II). Our evaluation also included ablation studies, primarily
focusing on the dimensional size of the latent variables Z and
the length of the decomposed feature x via cascading filters
(i.e., the compression size).

2) Model Implementation and Adaptation: VABAM and its
variants were implemented within a neural network architecture
primarily composed of multiple bidirectional GRU layers (Fig.
3). The evaluation involved models tailored for two pulsatile
signals: ABP and ECG. We configured the models to utilize 10
s data segments sampled at 100 Hz (100 samples per second)
for each signal type. Subsequently, the benchmark models were
restructured to align with the VABAM settings by adjusting
their core objective functions. This adjustment ensured that the
models were compatible with the VABAM framework, enabling
a direct and fair comparison across all evaluated models. In
total, 48 models were assessed, with 24 models evaluated for
each signal type.

3) Ancillary Input Operations: Our models, along with C-
VAE, distinguish themselves from other models by uniquely
integrating ancillary inputs Θ. During the evaluation phase

for our models, θ is sampled from a conditional uniform
distribution expressed as θ ∼ U(0, 1 | y). These samples are
then sorted in ascending order according to the synthesis index
before being utilized as input. Similarly, in the case of C-
VAE, the normalized PSD (Eq.(25)) of the original signal is
computed during the training phase for the conditional input.
For evaluation, this normalized PSD is arranged in ascending
order by the synthesis index before being inputted.

4) Evaluation Metrics: Eight metrics were employed for
each model (Tab. III): the seven previously proposed metrics
along with the Mean absolute percentage error (MAPE).
The JMI-based metrics were iteratively estimated through
MCS using small batches (i.e., interval estimation) during
the synthetic process (Fig. 1 in the supplementary document),
whereas FQI and MAPE were estimated only once from
the entire test dataset (i.e., point estimation). By default,
the MCS was executed with 10 × 100 nested iterations on
each batch, comprising 50 samples. Nonetheless, configuration
variations stemmed from the model’s inherent structure and
metric calculation methods, with more details provided in the
supplementary document.

B. Data Sources and Processing

ABP and ECG data were sourced from the MIMIC-III Wave-
form Database [47], which contains records from approximately
30,000 ICU patients. These records underwent multi-stage
preprocessing to extract high-quality pulsatile physiological
signals for model training. The data preprocessing steps were
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TABLE II
MODEL SUMMARIES FOR BENCHMARK TESTING AND ABLATION STUDIES

Models Objective functions Ablations

Type Name SKZ DKZ TC MI θ J C
30 50 5s 8s

Benchmarks

B-VAE O - - - - ✓ ✓ - -
C-VAE O - - - ∆ ✓ ✓ - -
TC-VAE - O O O - ✓ ✓ - -
FAC-VAE O - O - O ✓ ✓ - -

Ours & its
variants

SKZ O - - - ∆ ✓ ✓ ✓ ✓
SKZFC O - - - O ✓ ✓ ✓ ✓
TCMIDKZFC - O O O O ✓ ✓ ✓ ✓
FACFC O - O - O ✓ ✓ ✓ ✓

SKZ, DKZ, TC, MI, and θ, respectively represent the standard KLD for p(z),
dimension-wise KLD for p(z), total correlation, mutual information, and the
ancillary (conditional) input. J denotes the dimensional size of Z, and C
refers to the compression size of the signal given an initial duration of 10 s. C
is only applicable to our model and its variants. ∆ in θ signifies the existence
of ancillary input without parameterizing its distribution. Objective functions
were applied with an and basis, and ablation criteria with an or basis.

as follows: Initially, representative signals such as ABP and
ECG were selected, reducing the dataset to 13,574 records from
1,285 patients. In the quality assessment phase, data cleaning
procedures were applied to remove records with missing values
and to confirm those within the acceptable value range for ABP.
Subsequently, the selected signals were standardized, and peak
analysis was performed to identify and analyze signal peaks
[48]. Segments with irregular peak patterns or insufficient peaks,
as well as those exhibiting significant deviations in initial or
final peaks, or anomalies in the inverted ECG signal, were
discarded. The next step involved resampling the data from
125 Hz to 100 Hz [49], resulting in a dataset comprising
3,063,004 ten-second segments from 895 patients. Finally,
300,000 segments were chosen from this refined dataset to form
the training set, while another 60,000 and 10,000 segments
were allocated to the validation and test sets, respectively.

C. Evaluation of Reconstruction and Synthesis Quality

Reconstruction and synthesis quality are evaluated using
MAPE and FQI metrics (Tab. III, Fig. 4, and Fig. 5). Notably,
the majority of SKZ models exhibited higher MAPE values
compared to other models across all signals. This suggests
a potential limitation in the SKZ design, wherein Θ does
not adhere to a uniform distribution, potentially leading to
a convergence on Θ that extracts only easily reconstructible
features. Such a tendency could trap the model in local optima,
hindering the accurate reconstruction of the original signal
morphology. Furthermore, our experiments revealed that models
compressing the original signal to 8 s via cascading filters
demonstrated lower MAPE compared to those compressing
it to 5 s, implying that excessive signal compression may
result in information loss within features. Additionally, TC-
VAE consistently exhibited high MAPE values across signals,
indicating that adjustments in parameters such as Beta, TC,
and MI could offer avenues for improvement [50], warranting
further exploration.

Regarding FQI, SKZ displayed overall poor performance
across signals. The calculation of FQI involves filtering
synthesized signals based on the KLD between their PSD and
that of their corresponding original signals, with a threshold

τ set to 1. FQI is then calculated based on the KLD between
the PSD of the filtered synthesized signals and that of the
ground truth signals. Thus, this metric is designed to often
yield positively skewed performance evaluations. Despite this
inherent advantage, the significant underperformance of SKZ
indicates its tendency to converge on local optima, thereby
impeding the accurate reconstruction of the original signal
morphology.

D. Evaluation of Z Disentanglement in Signal Morphology

Disentanglement of Z in signal morphology is evaluated
through I(V ;Z) and I(V ; Ź|Z) (Tab. III, Fig. 4, and Fig. 5).
A prominent result is that C-VAE exhibits very low values for
both I(V ;Z) and I(V ; Ź|Z), thereby indicating that Z and
Ź poorly convey information about signal morphology. This
can be attributed to the experiment’s configuration, where PSD
was utilized as the conditional input, causing the morphology
representation to depend heavily on the PSD rather than on
Z. Additionally, SKZ shows values for I(V ;Z) comparable to
other models but tends to have lower values for I(V ; Ź|Z). This
indicates that although Z contributes to morphology, the model
struggles with effective disentanglement due to its inherent
structural limitations that lead to convergence at local optima.
These distinct results for C-VAE and SKZ, compared to other
models, are further highlighted in cross-comparative analysis
between baseline and key metrics (Fig. 6).

Other models exhibited higher I(V ; Ź|Z) values than
I(V ;Z) across signal types, indicating that disentanglement
was achieved to some extent, although the degree of disen-
tanglement can vary. Furthermore, among ABP models, the
performance was quite similar, but differences were observed
in the ECG models, thereby suggesting the need for further
attempts on optimizing parameters.

E. Evaluation of Θ’s Contribution to Signal Morphology

Θ’s contribution to signal morphology is evaluated through
I(V ; Ź) and I(V ; Θ́|Ź) (Tab. III, Fig. 4, and Fig. 5). Similar
to the previous metric, C-VAE and SKZ display distinctive
patterns compared to other models (Fig. 6). A notable discovery
across both signals is that for C-VAE, I(V ; Θ́|Ź) markedly
surpasses the baselineI(V ; Ź). This observation corroborates
earlier interpretations, indicating that morphology is minimally
influenced by Ź and predominantly dependent on the condi-
tional input of the PSD.

For SKZ, I(V ; Ź) values are notably higher in ABP com-
pared to those of other models. This observation underscores the
impact of parameterizing the distribution of Θ on the model’s
outcomes, given that SKZ shares identical settings with its
primary model, SKZFC, except for the constraint imposed on
the uniform distribution of Θ. Furthermore, considering the
propensity of SKZ models to converge to local optima, the
outcomes of I(V ; Ź) suggests that Θ is trained to extract easily
reconstructable features, thereby failing to generate a diverse
range of morphologies that encompass the entire spectrum of
ground truth signals. This limitation potentially contributes to
the elevated KLD values observed.
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TABLE III
MODEL PERFORMANCE COMPARISON BASED ON METRICS

Models ABP ECG
Name J C FQI MAPE i ii iii iv v vi FQI MAPE i ii iii iv v vi

B-VAE 30 - 0.047 0.054 1.783 4.08 - - - - 0.293 0.02 1.827 3.177 - - - -
50 - 0.078 0.057 1.765 4.084 - - - - 0.192 0.019 1.787 3.594 - - - -

C-VAE 30 - 0.063 0.055 0.145 0.066 0.107 0.981 0.0 0.255 0.121 0.018 0.225 0.173 0.188 2.1 0.0 0.281
50 - 0.063 0.057 0.119 0.062 0.113 1.245 0.0 0.163 0.11 0.02 0.322 0.392 0.436 1.047 0.0 0.271

TC-VAE 30 - 0.049 0.073 1.736 3.94 - - - - 0.07 0.022 1.907 3.368 - - - -
50 - 0.038 0.077 1.719 4.062 - - - - 0.129 0.022 1.943 3.571 - - - -

FAC-VAE 30 - 0.072 0.058 1.718 3.974 - - - - 0.186 0.019 1.884 3.833 - - - -
50 - 0.043 0.055 1.599 3.746 - - - - 0.255 0.019 1.891 3.631 - - - -

SKZ

30 5 0.189 0.068 2.514 2.062 2.981 0.019 0.0 0.424 1.419 0.024 1.974 1.053 2.032 0.0 0.002 0.401
50 5 0.133 0.091 1.663 1.766 1.337 0.13 0.0 0.487 1.118 0.025 1.864 1.908 1.483 0.013 0.0 0.469
30 8 1.366 0.064 3.137 0.582 3.352 0.0 0.0 0.101 1.34 0.026 1.872 0.764 2.017 0.001 0.0 0.343
50 8 0.372 0.065 2.734 1.264 2.889 0.004 0.0 0.231 1.193 0.028 1.754 0.838 1.721 0.002 0.0 0.134

SKZFC

30 5 0.073 0.067 1.93 4.089 1.561 0.086 0.0 0.33 0.235 0.019 2.07 2.587 1.973 0.232 0.0 0.358
50 5 0.095 0.066 2.276 4.219 1.855 0.122 0.0 0.393 0.159 0.02 1.967 2.112 1.486 0.145 0.0 0.555
30 8 0.044 0.049 1.707 3.925 1.658 0.068 0.0 0.451 0.153 0.019 1.882 2.659 1.295 0.125 0.0 0.42
50 8 0.068 0.05 2.032 4.366 1.564 0.087 0.0 0.558 0.119 0.02 1.781 3.006 1.536 0.196 0.0 0.494

TCMIDKZFC

30 5 0.066 0.063 1.762 3.8 1.467 0.46 0.0 0.455 0.128 0.02 1.871 2.645 1.263 0.651 0.0 0.422
50 5 0.051 0.064 1.806 3.795 1.38 0.124 0.0 0.664 0.139 0.02 2.306 3.165 1.685 0.285 0.0 0.594
30 8 0.051 0.053 1.695 3.084 0.971 0.199 0.0 0.549 0.285 0.019 1.701 2.66 1.548 0.265 0.0 0.512
50 8 0.049 0.05 1.712 3.712 1.461 0.195 0.0 0.54 0.141 0.019 1.885 2.65 1.206 0.234 0.0 0.539

FACFC

30 5 0.084 0.071 2.051 4.432 1.589 0.045 0.0 0.654 0.149 0.021 1.991 2.697 1.475 0.21 0.0 0.711
50 5 0.061 0.065 1.892 4.228 1.52 0.088 0.0 0.512 0.136 0.021 1.961 2.871 1.747 0.133 0.0 0.437
30 8 0.042 0.054 1.855 3.992 1.718 0.139 0.0 0.548 0.159 0.02 1.999 2.578 1.104 0.154 0.0 0.688
50 8 0.066 0.052 1.971 4.106 1.557 0.111 0.0 0.402 0.144 0.02 1.834 2.355 0.875 0.145 0.0 0.442

J and C denote the dimensional size of Z and the compression size of the signal, respectively. The terms i to vi correspond to I(V ;Z), I(V ; Ź | Z),
I(V ; Ź), I(V ; Θ́ | Ź), I(S; Ź), and I(S; Θ́ | Ź), respectively. I(V ; Ź), I(V ; Θ́|Ź), I(S; Ź), and I(S; Θ́|Ź) are applicable exclusively to models with
ancillary inputs. Lower FQI and MAPE, and higher values for other metrics, signify superior performance, with boldface highlighting the best outcomes.

Fig. 4. Performance Comparison on ABP Data through Metric Distributions; MAPE and FQI are point estimates, whereas other metrics are interval
estimates. MAPE and FQI values are normalized between 0 and 1 for each respective metric, while other metrics are normalized across both baseline and
key metrics.

F. Evaluation of Controllability in Θ-based Synthesis
The controllability of Θ-based synthesis is evaluated through

I(S; Ź) and I(S; Θ́|Ź) (Tab. III, Fig. 4, and Fig. 5). A notable
finding is that for both signals, the contribution of Ź to the
orderliness of the synthesized signals, as measured by S, is

minor. In contrast, the introduction of Θ́ significantly amplifies
its influence on S. This empirical evidence suggests that the
models in this experiment, particularly those in the C-VAE and
VABAM families, are engineered to regulate the orderliness of
synthesis through ancillary variable inputs. Furthermore, with
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Fig. 5. Comparison of Model Performance on ECG Data: Metric Distributions; MAPE and FQI are point estimates, whereas other metrics are interval
estimates. MAPE and FQI values are normalized between 0 and 1 for each respective metric, while other metrics are normalized across both baseline and
key metrics.

(a)

(b)

Fig. 6. Cross-Comparative Analysis of Baseline and Key Metrics; (a) Results from ABP. (b) Results from ECG. Values are normalized on both x and y axes.

the exception of SKZ, most configurations demonstrate that
VABAM variants outperform C-VAE concerning I(S; Θ́|Ź)
values, indicating their superior synthesis controllability.

G. Evaluation by Isolated Dimension Size in Z and Θ Ranges

We examined the performance variation based on isolated
dimension size Nj and the range of Θ, utilizing SKZFC
with C = 8s and J = 50 (Fig.7). We systematically varied
the isolated dimension size across the set 1, 10, 20, 30, 40, 50.

Furthermore, we constrained the parameter Θ by setting its
maximum values to 0.05, 0.1, 0.5, and 1.0. This approach
limited Θ to values from 0 up to these upper limits, while
ensuring the same number of syntheses across all cases.

Across both signals, a consistent pattern was observed when
varying the isolated dimension size Nj and Θ ranges, except for
I(S; Θ́|Ź). Notably, I(V ; Ź|Z) exhibited a gradual change in
relation to Nj . In particular, at Nj = 50, Ź becomes identical
to Z, rendering I(V ; Ź|Z) to zero. In contrast, setting Nj = 1
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(a)

(b)

Fig. 7. Performance Variation by Isolated Dimension Size Nj and Θ Ranges; (a) ABP results. (b) ECG results. Values are normalized for each metric.

maximally isolates a single dimension of Z, resulting in the
highest I(V ; Ź|Z). This suggests effective disentanglement,
as the influence of an individual Ź on V diverges from the
collective effect of Z. Concurrently, I(V ; Ź) assesses Ź’s
unconditioned direct impact on V , gauging differences between
the distributions of ground truth samples and those of batch
samples (Eq.(32)). An increasing I(V ; Ź) with greater Nj

signifies enhanced diversity in the representation of the batch’s
morphology, suggesting effective disentanglement through the
distinct contributions from each dimension to morphology.

Another notable result is the pronounced sensitivity of the
metrics to variations in the maximum limit of Θ, particularly
for I(V ;Z), I(V ; Θ́|Ź), and I(S; Ź). Among these, I(V ;Z)
and I(S; Ź) exhibit a positive relationship with the Θ max
limit. For I(V ;Z), this can be interpreted as the synthesis
of a more diverse set of signals within the morphological
identity of the ground truth, facilitated by the broader range
of Θ. In the case of I(S; Ź), when the intervals of the pass
filter effect are sufficiently spaced, it leads to the generation of
morphologically distinct signals, thereby enhancing orderliness.
However, if the intervals are insufficiently spaced, this may
result in the generation of almost indistinguishable signals,
potentially disrupting the orderliness of V .

Conversely, I(V ; Θ́|Ź) exhibits a distinct negative correla-
tion with Θ’s maximum limit. This suggests that a lower limit
directs the pass filter effect of Θ́ towards lower-frequencies,
generating signals with strong amplitudes at these frequencies,
which may differ from the original. However, setting a higher
limit enables the synthesis of not only low-frequency enhanced
signals but also those closely resembling the original.

A consistent pattern across the signals or a similar pattern
with other metrics was not identified in I(S; Θ́|Ź). Nonetheless,
the results underscore the importance of finding optimal
hyperparameter settings to enhance orderliness, which may
require trade-offs with other metrics.

H. Qualitative Evaluation

Qualitative assessments were conducted on 500 synthesized
samples per signal for each model (Fig. 8). Reflecting the
unique goals of each model, configurations were tailored

to enable the best possible signal synthesis. For B-, TC-,
and FAC-VAEs, designed without ancillary inputs, synthesis
variations were explored by adjusting Z. This process involved
sampling 500 random numbers from a normal distribution
N(0, 1), sorting them in ascending order, and then adding
them to Z for synthesis. For C-VAE, a strategy regarding
ancillary input, distinct from previous quantitative evaluations,
was adopted to highlight its differences from other models,
necessitating careful interpretation. This approach involved
randomly selecting 500 normalized PSD values from ground
truth signals, identifying the frequency index with the maximum
value for each sample, and ordering the PSD values based on
the maximum frequency indices. Such sorting accentuated the
functional strengths of C-VAE in synthesis exploration, as
the morphology tends to be predominantly determined by the
frequency with the maximum PSD value [51].

The primary findings suggest that while TC-VAE, known
for its proficiency in disentangling Z, manages to preserve
morphological identity to some extent, it still exhibits accom-
panying horizontal or phase shifts. In contrast, C-VAE faces
significant challenges in maintaining morphological identity,
showing noticeable horizontal or phase shifts. This difficulty
is likely attributable to the ancillary input strategy employed
in this experiment. Given that this experimental setup was
optimized to highlight C-VAE performance, it emphasizes the
inherent difficulties in preserving morphological identity solely
through the straightforward utilization of PSD arranged by
maximum frequency indices.

Regarding the main models, SKZFC, TCMIDKZFC, and
FACFC maintain the morphological identity without horizontal
or phase shifts, demonstrating effective amplitude-based synthe-
sis. The PSD degrees in Fig. 8 illustrate that, in these models,
amplitudes are coherently manifested along the synthesis axis
within a few frequencies, in sharp contrast to the irregular
expression of amplitudes across a wide frequency spectrum
in the benchmark models. This qualitative assessment aligns
well with our introduced metric, PD-PSD (Eq.(26)), which
quantifies structured amplitude-based modulation. Additionally,
these main models tend to synthesize distinct signals, especially
in their response to θ band, resulting in noticeable differences in
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Fig. 8. Synthesized Samples for ABP and ECG Data; The colors of the synthesized signal correspond to the values of the synthesis modulation parameter.
Color bars for B, TC, and FAC-VAE show mean Z values; for C-VAE, the maximum frequency index; and for SKZFC, TCMIDKZFC, and FACFC, the Θ
values. The red lines represent the original signals. The PSD degree matrix depicts the intensity of the PSD across frequency and synthesis indices.

low-frequency synthesis outcomes. Considering the variety of
methods for disentangling Z among these models, our findings
encourage further investigation to refine the synergy between
disentanglement of Z and the pass filter effects.

VI. DISCUSSION AND CONCLUSION

In this study, we introduced VABAM, a method designed
to enable amplitude-based synthesis of pulsatile physiological
signals while preserving their morphological identity. As a
member of the VAE family, VABAM presents distinct outcomes
compared to C-VAE and demonstrates strong compatibility
with the disentanglement-centric models such as TC- and
FAC-VAEs. This compatibility highlights the potential of
VABAM for further advancement and broader application.

Moreover, we proposed three novel metrics grounded in JMI:
1) disentanglement of Z in signal morphology, 2) contribution
of Θ to signal morphology, and 3) controllability of Θ-based
synthesis. These metrics provide empirical evidence on the
quantification of unique characteristics across various models.
Furthermore, our efforts to quantify the morphological features
of signals via PSD, alongside the innovative integration of

permutation entropy with MI for controllability assessment,
constitute a pioneering and theoretically robust methodology.
These underline the innovative essence and academic rigor of
our study, thereby establishing a new standard in this domain.

However, exercising caution in the use of JMI-based metrics
is imperative. These metrics, formulated as KLD expressions,
tend to yield higher values when the distributions of two random
variables differ significantly [52]. Factors such as incomplete
model training, resulting in inadequate reconstruction, or
ineffective amplitude-based synthesis can contribute to these
high values. Therefore, relying solely on a single metric
for performance evaluation is inadequate. A comprehensive
assessment incorporating various metrics is essential for a
thorough evaluation of the performance of a model.

Moving forward with our research, areas for improvement
have been identified. First, in terms of measuring controlla-
bility with I(S; Θ́|Ź), synthesis that entails minimal changes
between signals could yield high values if the PSD orderliness
is maintained across synthesis samples. However, synthesis
resulting in negligible differences between signals may not be
advantageous from an application standpoint. Thus, methods
that consider the PSD variance among synthesized signals along
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the frequency indices must be developed, prioritizing samples
that demonstrate both significant variance and orderliness.

Second, exploring a broader range of synthesis via model
adjustments and optimization, coupled with an in-depth inves-
tigation of its physiological implications, promises substantial
contributions to medical research, particularly in anesthesiology
and physiology. Moreover, expanding VABAM to incorporate
control over horizontal or phase shifts is expected to refine the
synthesis process, potentially widening its application range.

Recently, the use of pulsatile physiological signals has grown
rapidly, resulting in the development of various models for
foundation, imputation, and prediction. However, efforts to
integrate domain-specific knowledge have been limited. In this
context, our research is positioned to serve as a benchmark for
embedding domain theories within deep learning models. We
envision this laying the groundwork for further research that
more deeply integrates the theoretical aspects of physiological
signals.
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VABAM: Variational Autoencoder for Amplitude-based
Biosignal Augmentation within Morphological Identities
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This additional material offers a step-by-step breakdown of the formulae introduced in the main article. Readers
are encouraged to refer to the main document for a more integrated understanding of the context and concepts.

I. Details in Evidence Lower Bound Terms
A. Reconstruction of Raw Signals

Eq(x,z,θ|y)[log p(y|x)] =
∫
x

∫
z

∫
θ

log p(y|x)q(x, z, θ|y) dθ dz dx (1)

≈ 1

L

L∑
l=1

log p(y|x(l)),where x ∈ {xHH , xHL, xLH , xLL}. (2)

Empirically, the following equation, which accounts for a weighting factor denoted as ψy for the loss term and
batch training, is applied:

J(Φy; y) = ψy

(
1

|B|
∑
b∈B

(
1

|D|
∑
d∈D

(yb,d − gy(xb,d))
2

))
, (3)

where b and d represent the batch index and a sample index within the batch, respectively.

B. Reconstruction of Feature Signals

Eq(z,θ|y)q(x|y,θ)

[
log

p(x|z, θ)
q(x|y, θ)

]
=

∫
z

∫
θ

(∫
x

log
p(x|z, θ)
q(x|y, θ)

q(x|y, θ) dx
)
q(z, θ|y) dθ dz (4)

=

∫
z

∫
θ

−KLD
(
q(x|y, θ) || p(x|z, θ)

)
q(z, θ|y) dθ dz (5)

≈ − 1

L

L∑
l=1

KLD
(
q(x|y, θ(l)) || p(x|z(l), θ(l))

)
,

where z(l) ∼ N (0, 1), θ(l) ∼ Bernoulli(0.5), and x ∈ {xHH , xHL, xLH , xLL} (6)

In practice, the subsequent equation is utilized, considering a weight ψx for the loss term and batch training:

J(Φx;x) = ψx

(
1

|B|
∑
b∈B

(
1

|D|
∑
d∈D

(gx(yb,d, θb,d)− gx′(zb,d, θb,d))
2

))
. (7)
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C. Variational Inference for p(z)

Eq(z|y)q(θ|y)q(x|y,θ)

[
log

q(z|y)
p(z)

]
≈
∫
θ

(∫
z

log
q(z|y)
p(z)

q(z|y) dz
)
q(θ|y) dθ (8)

= KLD(q(z|y) || p(z))
∫
θ

q(θ|y) dθ (9)

= KLD(q(z|y) || p(z)). (10)

In our study, we employed the KLD method to regularize the latent variable z within the framework of the
standard VAE [1], as shown below:

KLD(q(z|y) || p(z)) = 1

N

N∑
n=1

1

2

J∑
j=1

(
µ2
zn,j

+ σ2
zn,j

− 1− log σ2
zn,j

) , (11)

where q(z|y) represents the approximate posterior distribution of the latent variables, conjectured to be Gaussian,
encapsulated by the expression gz(·) ∼ N (0, 1 | y), with gz(·) denoting the z-sampler in VABAM. Conversely, p(z)
denotes the prior distribution of these latent variables, presumed to be a standard normal distribution, given as
z ∼ N (0, 1).

For batch-level implementation, the subsequent equation is employed:

J(Φz; z) = ψz

∣∣∣∣∣∣ 1

|B|
∑
b∈B

 1

2|D|
∑
d∈D

J∑
j=1

(
µ2
zb,d,j

+ σ2
zb,d,j

− 1− log σ2
zb,d,j

)− ξz

∣∣∣∣∣∣
 , (12)

where ψz denotes the weight assigned to this loss term and ξz signifies the capacity term [2].

D. Variational Inference for p(θ)

Eq(z|y)q(θ|y)q(x|y,θ)

[
log

q(θ|y)
p(θ)

]
≈
∫
z

(∫
θ

log
q(θ|y)
p(θ)

q(θ|y) dθ
)
q(z|y) dz (13)

= KLD(q(θ|y) || p(θ)). (14)

Here, q(θ|y) represents the approximate posterior distribution of θ, postulated to follow a uniform distribution,
while p(θ) denotes the prior distribution of the parameter, also assumed to be uniformly distributed.

While θ inherently follows a uniform distribution, for implementing the reparameterization trick, this uniform
distribution is approximated using a Bernoulli distribution with a mean of 0.5. [3], [4]. The KLD is articulated as

KLD(q(θ|y) || p(θ)) = KLD(q(θ|y)||Uniform(0, 1.0)) (15)
≈ KLD(q(θ|y) ||Bern(µθ = 0.5)) (16)

=
1

N

N∑
n=1

 1

K

K∑
k=1

∑
c∈{0,1}

(
µc
θn,k

(1−µθn,k
)1−cln

µc
θn,k

(1−µθn,k
)1−c

0.5c0.51−c

) , (17)

with K set to 6, based on the structure of VABAM.

Empirically, the following equation is implemented at the batch level:

J(Φθ; θ) = ψθ

∣∣∣∣∣∣ 1

|B|
∑
b∈B

 1

K|D|
∑
d∈D

K∑
k=1

∑
c∈{0,1}

(
µc
θb,d,k

(1−µθb,d,k)
1−c ln

µc
θb,d,k

(1−µθb,d,k)
1−c

0.5c0.51−c

)−ξθ

∣∣∣∣∣∣
 , (18)

where ψθ and ξθ represent a weight for this term and a capacity term, [2], respectively.
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II. Synthesis Model Structures

Fig. 1. Illustration of the Synthesis Model Structures: CS and SS denote the signal’s compressed and sliding sizes, respectively. D, J , and
K denote the data size in a batch, and the sizes of dimensions Z and θ, respectively.

III. Mutual Information-Based Novel Metric
In this section, we detail the derivations of six joint mutual information (JMI)-based metrics, offering both

analytical and empirical forms. For programming purposes, it is advisable to refer to the empirical formulation.
Moreover, we present a modified formulation designed for benchmarking models.

A. Assumptions
For estimating MI, we made some assumptions.
• Uniform Distribution of Data Points: Each test dataset point is uniquely indexed by an integer, associated

with a uniformly distributed random variable [5]. Consequently, for a randomly selected instance yn where
n ∼ U(1, N), we define its probability as q(yn) = q(n) = 1

N .
• Uniform Distribution of Frequency Index: Similarly, the probability of observing the random variable v,

which denotes frequency index, is assumed to follow a uniform distribution, defined as q(v) = 1
|V | .

• Sampling via VABAM: We adopt z ∼ N (µ = 0, σ2 = 1 | y) and θ ∼ U(0, 1 | y) to sample latent variables
without replacement from the sampler in VABAM. This approach is rooted in the structural characteristics of
VABAM, where y influences z and θ, and both z and θ subsequently influence v and s. This configuration
leverages conditional independence, as the inclusion of the index yn does not impact the outcomes of v
and s once z and θ are known. This assumption allows the total number of Monte Carlo samples, L, to
equal the size of the test dataset, N , which can be expressed by the equations q(v|z, θ) = q(v|z, θ, yn) or
q(s|z, θ) = q(s|z, θ, yn).

Ultimately, these assumptions simplify computations and facilitate more stable and reliable inference, aligning with
the foundational practices of deep learning and Bayesian inference.

B. I(V ;Z, Ź)

I(V ; Ź, Z) = I(V ;Z)︸ ︷︷ ︸
i

+ I(V ; Ź|Z)︸ ︷︷ ︸
ii

i I(V ;Z) : The MI between the normalized PSD and Z.

a) Basic Analytical Derivation of I(V ;Z)
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I(V ;Z) = Eq(v,z)

[
log

q(v, z)

q(v)q(z)

]
(19)

= Eq(v|z)q(z)

[
log

q(v|z)q(z)
q(v)q(z)

]
(20)

= Eq(v|z)q(z)

[
log

q(v|z)
q(v)

]
(21)

= Eq(z)

[∑
v∈V

q(v|z) log q(v|z)
q(v)

]
. (22)

b) Approximation of I(V ;Z)

I(V ;Z) =

∫
z

q(z)

(∑
v∈V

q(v|z) log q(v|z)
q(v)

)
dz (23)

≈ 1

L

L∑
l=1

KLD
(
q(v|z(l)) ∥ q(v)

)
(24)

≈ 1

N

N∑
n=1

KLD
(
q(v|z(n), yn) ∥ q(v)

)
≥ 0, (25)

where q(v|z(n), yn) and q(v) are approximated via Monte Carlo marginalization as follows:

q(v|z(n), yn) =
∫
θ

q(v|z(n), θ(n), yn)q(θ)dθ ≈ 1

M

M∑
m=1

q(v|z(n), θ(n,m), yn). (26)

q(v) =
∑
yn∈Y

q(v|yn)q(yn) ≈ 1

N

N∑
n=1

q(v|yn) ≈ p(v). (27)

c) Final Expression of I(V ;Z)

I(V ;Z) =
1

N

N∑
n=1

KLD

(
1

M

M∑
m=1

q(v|z(n), θ(n,m), yn) ∥ p(v)

)
. (28)

d) Empirical Formulation for I(V ;Z)

I∗(V ;Z) =
1

B

B∑
b=1

(
1

|D|
∑
d∈D

KLD

(
1

M

M∑
m=1

q(v|z(b,d), θ(b,d,m), yb,d) ∥ p(v)

))
. (29)

e) Modification of I(V ;Z) for Benchmark Models without θ

Iz(V ;Z) =
1

B

B∑
b=1

(
1

|D|
∑
d∈D

KLD
(
q(v|z(b,d), yb,d) ∥ p(v)

))
. (30)

f) Clarification of Prior Derivations
• V indicates the normalized PSD treated as a random variable.
• L, the number of Monte Carlo simulations, assumed to be equal to the total number of observations, N , in

the test dataset utilized for calculating MI.
• |B| is the total number of batches.
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• |D| is the number of samples in each batch, calculated as N
|B| .

• z(b,d) is a 4D tensor represented as z(b,d) ∈ RB×|D|×M×J , indexed by a batch index b, a sample index in the
batch d, sub-repeat index m, and latent vector dimension index j. The values of z are randomly sampled at
the dimensions b, d, and j, but remain constant across the dimension m, denoted as zb,d,m,j = zb,d,j ∀m.

• θ(b,d,m) is a 4D tensor denoted as θ(b,d,m) ∈ RB×|D|×M×K , with indexing based on a batch index b, a sample
index in the batch d, sub-sampling index m, and latent vector dimension index k. The values of θ are sampled
randomly at dimensions b, d, m, and k.

• q(v) is a 4D tensor, expressed as q(v) ∈ RB×|D|×M×|V |, with indices comprising a batch index b, a sample
index in the batch d, sub-repeat index m, and a frequency index v treated as a random variable.

• p(v) is a 1D distribution vector for the normalized PSD across the frequency index, v, in the test dataset.

ii I(V ; Ź|Z) : The MI between the normalized PSD and Ź conditioned on Z. It quantifies how much
information is gained about V by knowing Ź in addition to Z, reflecting the additional information that Ź provides
over Z.

a) Basic Analytical Derivation of I(V ; Ź|Z)

I(V ; Ź|Z) = Eq(v,ź,z)

[
log

q(v, ź|z)
q(v|z)q(ź|z)

]
(31)

= Eq(v,ź,z)

[
log

(q(v, ź, z)/q(z))

q(v|z)q(ź|z)

]
(32)

= Eq(v,ź,z)

[
log

(q(v|ź)q(ź|z)q(z)/q(z))
q(v|z)q(ź|z)

]
(33)

= Eq(v|ź)q(ź,z)

[
log

q(v|ź)
q(v|z)

]
(34)

= Eq(ź,z)

[∑
v∈V

q(v|ź) log q(v|ź)
q(v|z)

]
. (35)

b) Approximation of I(V ; Ź|Z)

I(V ; Ź|Z) =
∫
ź

∫
z

q(ź, z)

(∑
v∈V

q(v|ź) log q(v|ź)
q(v|z)

)
dź dz (36)

≈ 1

L

L∑
l=1

KLD
(
q(v|ź(l)) ∥ q(v|z(l))

)
(37)

≈ 1

N

N∑
n=1

KLD
(
q(v|ź(n), yn) ∥ q(v|z(n), yn)

)
≥ 0, (38)

where q(v|ź(n), yn) and q(v|z(n), yn) are approximated as follows:

q(v|ź(n), yn) ≈
1

M

M∑
m=1

q(v|ź(n), θ(n,m), yn). (39)

q(v|z(n), yn) ≈
1

M

M∑
m=1

q(v|z(n), θ(n,m), yn). (40)

c) Final Expression of I(V ; Ź|Z)

I(V ; Ź|Z) = 1

N

N∑
n=1

KLD

(
1

M

M∑
m=1

q(v|ź(n), θ(n,m), yn) ∥
1

M

M∑
m=1

q(v|z(n), θ(n,m), yn)

)
≥ 0. (41)
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d) Empirical Formulation for I(V ; Ź|Z)

I∗(V ; Ź|Z) = 1

B

B∑
b=1

(
1

|D|
∑
d∈D

KLD

(
1

M

M∑
m=1

q(v|ź(b,d), θ(b,d,m), yb,d) ∥
1

M

M∑
m=1

q(v|z(b,d), θ(b,d,m), yb,d)

))
.

(42)

e) Modification of I(V ; Ź|Z) for Benchmark Models without θ

Iz(V ; Ź|Z) = 1

B

B∑
b=1

(
1

|D|
∑
d∈D

KLD
(
q(v|ź(b,d), yb,d) ∥ q(v|z(b,d), yb,d)

))
. (43)

f) Clarification of Prior Derivations
• ź(b,d) is a 4D tensor represented as ź ∈ RB×|D|×M×J , indexed by a batch index b, a sample index in the batch
d, sub-repeat index m, and latent vector dimension index j. Initially, the values of z are randomly sampled at
the dimensions b, d, and j, but remain constant across the dimension m, denoted as zb,d,m,j = zb,d,j for all
m. Then, all other elements, except for the isolated element zj=j∗ , which retains its original value from zj ,
are replaced by zero.

C. I(V ; Ź, Θ́)

I(V ; Ź, Θ́) = I(V ; Ź)︸ ︷︷ ︸
iii

+ I(V ; Θ́|Ź)︸ ︷︷ ︸
iv

iii I(V ; Ź) : The MI between the normalized PSD and Ź.

a) Basic Analytical Derivation of I(V ; Ź)

I(V ; Ź) = Eq(v,ź)

[
log

q(v, ź)

q(v)q(ź)

]
(44)

= Eq(v|ź)q(ź)

[
log

q(v|ź)
q(v)

]
(45)

= Eq(ź)

[∑
v∈V

q(v|ź) log q(v|ź)
q(v)

]
. (46)

b) Approximation of I(V ; Ź)

I(V ; Ź) =

∫
ź

q(ź)

(∑
v∈V

q(v|ź) log q(v|ź)
q(v)

)
dź (47)

≈ 1

N

N∑
n=1

KLD
(
q(v|ź(n), yn) ∥ q(v)

)
≥ 0, (48)
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where q(v|ź(n), yn) and q(v) are approximated via as follows:

q(v|ź(n), yn) ≈
1

M

M∑
m=1

q(v|ź(n), θ(n,m), yn). (49)

q(v) ≈ 1

N

N∑
n=1

q(v|yn) ≈ p(v). (50)

c) Final Expression of I(V ; Ź)

I(V ; Ź) =
1

N

N∑
n=1

KLD

(
1

M

M∑
m=1

q(v|ź(n), θ(n,m), yn) ∥ p(v)

)
. (51)

d) Empirical Formulation for I(V ; Ź)

I∗(V ; Ź) =
1

B

B∑
b=1

(
1

|D|
∑
d∈D

KLD

(
1

M

M∑
m=1

q(v|ź(b,d), θ(b,d,m), yb,d) ∥ p(v)

))
. (52)

iv I(V ; Θ́|Ź) : The MI between the normalized PSD and Θ́ conditioned on Ź. It quantifies how much
information about V is gained by knowing Θ́ in addition to Ź, reflecting the additional information that Θ́ provides
over Ź.

a) Basic Analytical Derivation of I(V ; Θ́|Ź)

I(V ; Θ́|Ź) = Eq(v,θ́,ź)

[
log

q(v, θ́|ź)
q(v|ź)q(θ́|ź)

]
(53)

= Eq(v,θ́,ź)

log
(
q(v, θ́, ź)/q(ź)

)
q(v|ź)q(θ́|ź)

 (54)

= Eq(v,θ́,ź)

log
(
q(v|θ́, ź)q(θ́|ź)q(ź)/q(ź)

)
q(v|ź)q(θ́|ź)

 (55)

= Eq(v|θ́,ź)q(θ́,ź)

[
log

q(v|θ́, ź)
q(v|ź)

]
(56)

= Eq(θ́,ź)

[∑
v∈V

q(v|θ́, ź) log q(v|θ́, ź)
q(v|ź)

]
. (57)

b) Approximation of I(V ; Θ́|Ź)

I(V ; Θ́|Ź) =
∫
ź

∫
θ́

q(θ́, ź)

(∑
v∈V

q(v|θ́, ź) log q(v|θ́, ź)
q(v|ź)

)
dθ́dź (58)

≈ 1

N

N∑
n=1

KLD
(
q(v|θ́(n), ź(n), yn) ∥ q(v|ź(n), yn)

)
≥ 0, (59)

where q(v|ź(n), yn) is approximated as follows:

q(v|ź(n), yn) ≈
1

M

M∑
m=1

q(v|ź(n), θ(n,m), yn). (60)
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c) Final Expression of I(V ; Θ́|Ź)

I(V ; Θ́|Ź) = 1

N

N∑
n=1

KLD

(
q(v|ź(n), θ́(n), yn) ∥

1

M

M∑
m=1

q(v|ź(n), θ(n,m), yn)

)
. (61)

d) Empirical Formulation for I(V ; Θ́|Ź)

I∗(V ; Θ́|Ź) = 1

B

B∑
b=1

(
1

|D|
∑
d∈D

KLD

(
q(v|ź(b,d), θ́(b,d), yb,d) ∥

1

M

M∑
m=1

q(v|ź(b,d), θ(b,d,m), yb,d)

))
. (62)

e) Clarification of Prior Derivations
• θ́(b,d) is a 3D tensor denoted as θ́(b,d) ∈ RB×|D|×K , with indexing based on a batch index b, a sample index

in the batch d, and latent vector dimension index k. Initially, the values of θ are sampled randomly at the
dimensions b, d, and k, and then θb,d,k is sorted along the d-dimension to yield θ́b,d́,k.

D. I(S; Ź, Θ́)

I(S; Ź, Θ́) = I(S; Ź)︸ ︷︷ ︸
v

+ I(S; Θ́|Ź)︸ ︷︷ ︸
vi

v I(S; Ź) : The MI between the permutation density of PSD (PD-PSD) and Ź.

a) Basic Analytical Derivation of I(S; Ź)

I(S; Ź) = Eq(s|ź)q(ź)

[
log

q(s, ź)

q(s)q(ź)

]
(63)

= Eq(s|ź)q(ź)

[
log

q(s|ź)
q(s)

]
(64)

= Eq(ź)

[∑
s∈S

q(s|ź) log q(s|ź)
q(s)

]
. (65)

b) Approximation of I(S; Ź)

I(S; Ź) =

∫
ź

q(ź)

(∑
s∈S

q(s|ź) log q(s|ź)
q(s)

)
dź (66)

≈ 1

N

N∑
n=1

KLD
(
q(s|ź(n), yn) ∥ q(s)

)
≥ 0, (67)

where q(s|ź(n), yn) and q(s) are approximated as follows:

q(s|ź(n), yn) =
∫
θ

∑
v∈V

q(s, v|ź(n), yn, θ(n))q(θ(n))dθ (68)

≈ 1

R

R∑
r=1

∑
v∈V

q(s, v|ź(n), θ(n,r), yn). (69)
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q(s) =

∫
z

∫
θ

∑
v∈V

q(s, v|z, θ)q(θ)q(z)dθdz (70)

≈ 1

R

R∑
r=1

∑
v∈V

q(s, v|z(n,r), θ(n,r), yn). (71)

c) Final Expression of I(S; Ź)

I(S; Ź) =
1

N

N∑
n=1

KLD

(
1

R

R∑
r=1

∑
v∈V

q(s, v|ź(n), θ(n,r), yn) ∥
1

R

R∑
r=1

∑
v∈V

q(s, v|z(n,r), θ(n,r), yn)

)
. (72)

d) Empirical Formulation for I(S; Ź)

I∗(S; Ź) =
1

B

B∑
b=1

(
1

|D|
∑
d∈D

KLD

(
1

R

R∑
r=1

q(s|ź(b,d),θ(b,d,r),yb,d) ∥
1

R

R∑
r=1

q(s|z(b,d,r),θ(b,d,r),yb,d)

))
. (73)

e) Clarification of Prior Derivations
• R denotes the number of Monte Carlo simulations, distinct from N and M in level, serving as the number of

data sub-partitions for computational efficiency.
• z(b,d,r) is defined as z(b,d,r) = {z(b,d,r,1), z(b,d,r,2), . . . , z(b,d,r,M)}, where each z(b,d,r,m) is an element in the

set and m is an index ranging from 1 to M . In practice, z is treated as a 5D tensor, indexed by a batch index
b, a sample index within the batch d, a data-partition indicator r, a sub-repeat index m, and a latent vector
dimension index j. The values of z are randomly sampled along the dimensions b, d, r, and j, and remain
constant across the dimension m, denoted as zb,d,r,m,j = zb,d,r,j ∀m.

• ź(b,d) is defined as ź(b,d) = {ź(b,d,r,1), ź(b,d,r,2), . . . , ź(b,d,r,M)} and treated as a 5D tensor. It is indexed by a
batch index b, a sample index in the batch d, data-partition indicator r, sub-repeat index m, and latent vector
dimension index j. Initially, the values of z are randomly sampled across the dimensions b, d, and j, and
remain constant across the dimensions r and m, denoted as zb,d,r,m,j = zb,d,j ∀r,m. Subsequently, except for
the isolated element zj=j∗ , which retains its original value from zj , all other elements are replaced by zero.

• θ(b,d,r) is defined as θ(b,d,r) = {θ(b,d,r,1), θ(b,d,r,2), . . . , θ(b,d,r,M)} and operated as a 5D tensor, indexed based
on a batch index b, a sample index in the batch d, data-partition indicator r, sub-sampling index m, and latent
vector dimension index k. The values of θ are randomly sampled along the dimensions b, d, r, m and k.

• q(s, v) is defined as a 5D tensor, q(s, v) ∈ RB×|D|×R×|V |×|S|, with indices comprising a batch index b, a
sample index in the batch d, data-partition indicator r, a random variable frequency index v, and a random
variable permutation index s.

vi I(S; Θ́|Ź): MI between the PD-PSD and a sorted sequence of M pieces of ancillary information, denoted
as θ́, conditioned on Ź. It quantifies how much information is gained about S by knowing Θ́ in addition to Ź,
thereby reflecting the additional information that Θ́ provides over Ź.

a) Basic Analytical Derivation of I(S; Θ́|Ź)

I(S; Θ́|Ź) = Eq(s|θ́,ź)q(θ́,ź)

[
log

q(s, θ́|ź)
q(s|ź)q(θ́|ź)

]
(74)

= Eq(θ́,ź)

[∑
s∈S

q(s|θ́, ź) log q(s|θ́, ź)q(θ́, ź)/q(ź)
q(s|ź)q(θ́|ź)

]
(75)

= Eq(θ́,ź)

[∑
s∈S

q(s|θ́, ź) log q(s|θ́, ź)
q(s|ź)

]
. (76)
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b) Approximation of I(S; Θ́|Ź)

I(S; Θ́|Ź) =
∫
ź

∫
θ́

q(ź)q(θ́)

(∑
s∈S

q(s|θ́, ź) log q(s|θ́, ź)
q(s|ź)

)
dθ́dź (77)

≈ 1

N

N∑
n=1

KLD
(
q(s|θ́

(n)
, ź(n), yn) ∥ q(s|ź(n), yn)

)
≥ 0, (78)

where q(s|ź(n), yn) is approximated as follows:

q(s|ź(n), yn) ≈
1

R

R∑
r=1

∑
v∈V

q(s, v|ź(n), θ(n,r), yn). (79)

c) Final Expression of I(S; Θ́|Ź)

I(S; Θ́|Ź) = 1

N

N∑
n=1

KLD

(∑
v∈V

q(s, v|ź(n), θ́
(n)
, yn) ∥

1

R

R∑
r=1

∑
v∈V

q(s, v|ź(n), θ(n,r), yn)

)
. (80)

d) Empirical Formulation for I(S; Θ́|Ź)

I∗(S; Θ́|Ź) = 1

B

B∑
b=1

(
1

|D|
∑
d∈D

KLD

(∑
v∈V

q(s, v|ź(b,d),θ́
(b,d)

,yb,d) ∥
1

R

R∑
r=1

∑
v∈V

q(s, v|ź(b,d),θ(b,d,r),yb,d)

))
. (81)

e) Clarification of Prior Derivations
• ź(b,d) is defined as ź(b,d) = {ź(b,d,1), ź(b,d,2), . . . , ź(b,d,M)} and treated as a 4D tensor. It is indexed by a batch

index b, a sample index in the batch d, sub-repeat index m, and latent vector dimension index j. Initially, the
values of z are randomly sampled across the dimensions b, d, and j, but remain constant across the dimension
m, denoted as zb,d,m,j = zb,d,j ∀m. Subsequently, except for the isolated element zj=j∗ , which retains its
original value from zj , all other elements are replaced by zero.

• θ́
(b,d,m)

is defined as θ́
(b,d,m)

= {θ́(b,d,1), θ́(b,d,2), . . . , θ́(b,d,M)} and treated as a 4D tensor. It is indexed based
on a batch index b, a sample index in the batch d, sub-sampling index m, and latent vector dimension index
k. The values of θ́ are randomly sampled along the dimensions b, d, m, and k, and then sorted in ascending
order over the index m.

IV. Descriptions of Supplemental Animated Materials
For enhanced understanding, additional animated materials are provided, with each file accessible at https://github.

com/JunetaeKim/VABAM/tree/main/Figures.

Anim. 1 VABAM (Our Model) Synthesis Results displays the outcomes of 100 synthesis experiments with
VABAM, showcasing the ability to maintain the original morphology of signals by preventing phase changes and
horizontal movements along the time axis.

Anim. 2 C-VAE Synthesis Results illustrates the results of 100 synthesis experiments using C-VAE, showing
the difficulty of preserving morphological identities when incorporating PSD values as conditional inputs.

Anim. 3 Pass Filter Convolution Operation Animation depicts how a pass filter functions through the
convolution between a signal and the filter, emphasizing the resultant loss of information due to edge effects
observable in the right part of the animation.

Anim. 4 Trade-off between Cleansing Efficacy and Morphological Alteration elucidates the trade-off rela-
tionship between the effectiveness of signal cleansing and the morphological changes resulting from the repeated
application of a pass filter.
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