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QCDC-DR-GA: Optimizing Container Loading and
Unloading through Dual-Cycling and Dockyard

Rehandle Reduction Using a Hybrid Genetic
Algorithm

Md. Mahfuzur Rahman, Md Abrar Jahin, Md. Saiful Islam, M. F. Mridha, Senior Member, IEEE,
and Jungpil Shin, Senior Member, IEEE

Abstract—This paper addresses the optimization of container
unloading and loading operations at ports, integrating quay-
crane dual-cycling (QCDC) with dockyard rehandle minimiza-
tion. We present a unified model encompassing both operations:
ship container unloading and loading by quay crane, and the
other is reducing dockyard rehandles while loading the ship.
We recognize that optimizing one aspect in isolation can lead
to suboptimal outcomes due to interdependencies. Specifically,
optimizing unloading sequences for minimal operation time may
inadvertently increase dockyard rehandles during loading and
vice versa. To address this NP-hard problem, we propose a
hybrid genetic algorithm (GA) QCDC-DR-GA comprising 1-
dimensional and 2-dimensional GA components. Our model,
QCDC-DR-GA, consistently outperforms four state-of-the-art
methods in maximizing dual cycles and minimizing dockyard
rehandles. Compared to those methods, it reduced 15-20%
of total operation time for large vessels. Results underscore
the inefficiency of separately optimizing QCDC and dockyard
rehandles. Fragmented approaches, such as QCDC Scheduling
Optimized by bi-level GA and GA-ILSRS (Scenario 2), show
limited improvement compared to QCDC-DR-GA. As in GA-
ILSRS (Scenario 1), neglecting dual-cycle optimization leads to
inferior performance than our proposed QCDC-DR-GA.

Index Terms—Dual Cycling, Quay Crane, Dockyard Rehan-
dles, Genetic Algorithm, 2D Crossover, 2D Mutation

I. INTRODUCTION

GLOBAL trade relies heavily on efficient port operations,
with shipping containers carrying nearly 80% of the

world’s goods. Therefore, countries are competing to have
large fleets. The operation to receive these mega-ships needs
preparations. The goal and challenge of every port is now to
reduce the turnaround time of vessels. The most expensive

M. M. Rahman, M. A. Jahin, and M. S. Islam were with the
Department of Industrial Engineering and Management, Khulna University
of Engineering & Technology (KUET), Khulna, 9203, Bangladesh
(e-mail: sm.mahfuz031@gmail.com; abrar.jahin.2652@gmail.com; sai-
fuliem@iem.kuet.ac.bd).

M. F. Mridha is with the Department of Computer Science, American
International University-Bangladesh (AIUB), Dhaka, 1229, Bangladesh (e-
mail: firoz.mridha@aiub.edu).

J. Shin is with the Department of Computer Science and Engineering,
The University of Aizu, Aizuwakamatsu, 965-8580, Japan (e-mail: jpshin@u-
aizu.ac.jp).

Manuscript received April 19, 2005; revised August 26, 2015. This work
was supported by the Competitive Research Fund of The University of Aizu,
Japan. (Md. Mahfuzur Rahman and Md Abrar Jahin are co-first authors.)
(Corresponding author: Jungpil Shin.)

single container handling equipment unit and the main opera-
tional bottleneck at ports are the Quay Cranes (QCs) [1]. Ports
can decrease ship turnaround time, increase productivity, and
boost freight transportation system throughput by increasing
QC efficiency [2]. Our research addresses this key bottleneck
to port productivity. The approach taken here is a low-
cost method; neither new infrastructure nor technologies are
needed. Although our strategy would not fix the capacity issue
in the long term, it can be applied more quickly than other
approaches and be used in conjunction with other methods.

Traditionally, ports adopt a single cycle approach (see Fig.
1), where QCs handle loading after completing unloading
tasks. However, dual cycling presents an advanced strategy
allowing simultaneous loading and unloading, thereby reduc-
ing empty crane moves and potentially decreasing turnaround
times significantly [2] (see Fig. 1).

Unload
container

Return
without

container

(a) Single Cycling

Unload
container

Load
container

(a) Dual Cycling

Fig. 1: (a) Unloading Using Single Cycling; (b) Unloading
and Loading with Double Cycling

Despite its benefits, maximizing the no. of dual cycles
requires careful consideration of factors such as the unloading
sequence of stacks within a ship row. Previous studies have
proposed greedy, heuristic, and metaheuristic algorithms, in-
cluding genetic algorithms (GA), to address the NP-hard na-
ture of optimizing quay crane dual-cycling (QCDC) schedul-
ing [3], [4], [5], [6]. Some of the studies focused on overall
handling efficiency and the system’s stability of container
terminals with double cycling and other inbound vehicles of
the port [7], [8].

Another issue named rehandling of containers arises at the
dockyard while loading the ship. Rehandling occurs when the
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target container is not on the top of the stack. So, minimizing
rehandling in the dockyard, where containers are moved for
retrieval or rearrangement, is crucial for efficiency. Numerous
works have addressed this issue by creating models and
developing solving approaches [9], [10], [11]. This NP-hard
problem is also tackled effectively using GA [12].

Our work builds upon existing research by integrating
maximization of the no. of dual cycles and minimization of the
no. of dockyard rehandles into a unified model. We introduce
the Maximizing Quay Crane Dual Cycles and Minimizing
Dockyard Rehandles by GA (QCDC-DR-GA) method to solve
this model efficiently.

This study presents seven significant contributions:
1) Empirical validation of the correlation between unloading

sequence and dockyard rehandles.
2) Development of a comprehensive model integrating dock-

yard and QCDC operations.
3) Introduction of a novel hybrid GA approach tailored to

container handling optimization.
4) Proposal of specialized GA techniques to address unique

challenges.
5) Extensive analysis of computational parameters within

the GA framework.
6) Rigorous benchmarking analysis against four state-of-the-

art algorithms, demonstrating superior performance and
reliability.

7) Statistical validation of the significant performance of
QCDC-DR-GA using a two-tailed paired t-test.

This article is structured in the following manner: In section
“Problem Description”, we discuss the problem statement. The
“Methodology” section covers model formulation (objectives
and constraints) and our approach, QCDC-DR-GA, including
its workflow, strategies, and parameters. The “Results” section
details scenario generation, computational experiments, and
result analysis. Finally, the “Conclusions” section summarizes
the work, highlights primary contributions, and suggests future
directions.

II. PROBLEM DESCRIPTION

Ship or port yard container is arranged in a three-
dimensional matrix of rows, bays, and tiers (see Fig. 2).
Containers are stacked in rows, with each row spanning the
width of the bay or ship. The operating cycle of a Quay
Crane (QC) involves (a) Locking and unlocking the trolley
with the container, (b) Horizontal movement of the trolley
(with container), and (c) Vertical movement of the trolley (with
container).

A. Case Consideration

Upon the arrival of a vessel at the port, with containers to
be unloaded and a loading plan for other containers, let Uc

and Lc represent the numbers of containers to be unloaded
and loaded, respectively, for each stack. Fig. 3 illustrates an
example used in this work. Let S be the set of stacks in a
row. |s| = N denotes the number of stacks in set S, and P is
a permutation of set S indicating the order of stack handling.
The sequence in which stacks within each row are handled

(a) Side view

(b) Front view

Bays

Tiers

Rows

Tiers

Fig. 2: Illustration of the container arrangement at dockyard
or ship. The rows, bays, and tiers are the three axes of the
container storing system, where (a) and (b) are the top view
and front view, respectively.

affects the total number of cycles, as explained by Goodchild
(2006) [2].

1) Generic Double Cycling Method:
(i) Select any unloading permutation, P ′. Unload containers

stack by stack.
(ii) Select a loading permutation, P , and load stacks accord-

ing to it.
2) Number of Rehandles in Dockyard: We integrate the

nearest lowest stack strategy to address rehandles, as applying
the lowest stack strategy alone can be challenging in real-life
scenarios. The example in Fig. 3 (b) illustrates a scenario with
3 rehandles under this strategy.

III. METHODOLOGY

A. Mathematical Model

The QCDC problem is modeled as a two-machine flow shop
problem.

1) Assumptions: We make the following assumptions:
(i) Containers at the dockside are prepared for loading as

needed.
(ii) Unloaded containers are promptly removed from the area

and stored appropriately.
(iii) Rehandles of containers on the ship are counted during

both the unloading and loading processes.
(iv) Rehandles on the ship are returned to the same stack from

which they were taken.
(v) Rehandles on the ship are considered to move between

the vessel and the apron; however, in reality, some may
only move between stacks on the vessel.

(vi) Rehandles in the dockyard are prioritized using the near-
est stack strategy, placing containers on the nearest lowest
stack.

(vii) The turnaround time of a vessel, indicative of QC effi-
ciency, is measured by minimizing the total number of
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A3

A2

A1

B3

B2

B1 C2

C1

D2

D1

A B C D

A1

D1 Container to unload

Container to be rehandled

Container to stay on vessel

(a) Unloading-plan of a vessel

A1

A2

A3

B1

B2

B3

B4

C1 D1

D2

D3

A B C D

Ship Loading Sequence Dockyard container’s status

(b) Loading plan of the vessel

B1

B2

B3

D1

A1

A2

C1

D3

D2

B4

Fig. 3: Illustration of unloading and loading plan of a ship
row.

single (ws) and dual cycles (wd) required for unloading
and loading.

(viii) Unloading and loading of one row are completed before
shifting the crane lengthwise along the ship to the next
row. Due to constraints with lateral movement, double
cycling across two rows is not feasible.

(ix) No interruptions occur due to inbound vehicles or cranes.
2) Symbols and Decision Variables: The notations are as

follows:
m: Bay of containers in the yard
n: Stack of containers in the yard
o: Tier of containers in the yard
Uc: Number of containers to unload in stack c ∈ S
Lc: Number of containers to load in stack c ∈ S
TUc: Completion time of unloading c ∈ S
TLc: Completion time of loading c ∈ S
T : Total completion time of unloading loading
R: Number of rehandles of a row in the dockyard
α: Average completion time of a single cycle
β: Average completion time of a double cycle
γ: Average time it takes to tackle a rehandle at the dockyard
µ: Large value
Hmn: Highest tier of the yard bay m and stack n
hmn: Height of the yard-bay m and stack n

The decision variables are as follows:

Xij : binary variable for the sequence of unloading jobs (1 if
j ∈ S is loaded after i ∈ S and 0 otherwise)
Yij : binary variable for the sequence of loading jobs (1 if
j ∈ S is loaded after i ∈ S and 0 otherwise)
xrmno: Equals to 1 if the container (m,n, o) is loaded onto
the ship-bay and 0 otherwise.

3) Model Establishment: The objective is to minimize the
maximum completion time of all jobs while adhering to
constraints. The completion time T depends on w and R, given
by T = αws + βwb + γR.

minimize, Tmax (1)

subject to,

TLc − TUc ≥ Lc ∀c ∈ S (2)

TUi − TUj + µXij ≥ Ui ∀j, i ∈ S (3)

TUj − TUk + µ(1−Xij) ≥ Uj ∀j, i ∈ S (4)

TLi − TLj + µYij ≥ Li ∀j, i ∈ S (5)

TLj − TLi + µ(1− Yij) ≥ Lj ∀j, i ∈ S (6)

TUc ≥ Uc ∀c ∈ S (7)

hmn ≤ Hmn (8)

Xij ∈ 1, 0 ∀j, i ∈ S (9)

Yij ∈ 1, 0 ∀j, i ∈ S (10)

xrmno ∈ 1, 0 (11)

These constraints fully define the model. Constraint (2)
ensures a stack is only loaded after necessary unloading.
Constraints (3), (4), (9), and (10) sequence unloading stacks
and ensure adequate time between them. Constraints (5), (6),
(9), and (10) do the same for loading. Constraint (7) ensures
sufficient time for unloading. Constraint (8) limits stack height.
Constraint (11) enforces binary conditions on flow variables.

B. QCDC-DR-GA

The paper addresses the optimization of unloading se-
quences and dockyard arrangements for container ships. The
problem complexity is defined by S! and N !, representing the
permutations of stacks and containers, respectively. The aim
is to maximize dual cycles during unloading and minimize re-
handles in the dockyard, resulting in a complexity of (S!×N !).

The genetic algorithm (GA) is employed as a metaheuristic
approach to finding high-quality solutions. With crossover
and mutation, a mixed GA is developed to handle both one-
dimensional (1-D) unloading sequences and two-dimensional
(2-D) dockyard plans. Key challenges include fitness calcu-
lation and integration of unloading sequences and dockyard
arrangements. The operating flow path of the QCDC-DR-GA
is illustrated in Fig. 4.

1) Set Initial Population: The initial population (P ) com-
prises chromosomes representing unload sequences and dock-
yard plans. Notations include:
P = population of chromosomes
n = the number of chromosomes in P
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Start

Input the
Dataset

Input the Unloading-Loading plan

Initialize the
first generation

Unloading-Sequence and
Dockyard-Container-Arrangement

Crossover

Use Two-Point Crossover
for 1D Unloading-Sequence

Use The Two-Dimensional Substring
Crossover for 2D Dockyard-Plan

Mutation

Use Swap Mutation for
1D Unloading-Sequence

Use Two-Dimensional Two-Point Swap-
ping Mutation for 2D Dockyard-Plan

Calculate Fitness

Rearrange the Unloading-Sequences
and Dockyard-Plan according to cost

Selection

Roulette Wheel Selection

New Population

Reach the number of iteration

New population as
initial population

No

End

Yes

Fig. 4: Methodological flowchart of the proposed QCDC-DR-
GA.

ci = the ith chromosome in P , where 1 ≤ i ≤ n
ci(us) = part of chromosome representing unloading sequence
ci(dp) = part of chromosome representing dockyard plan

A1 =
[
1 2 3 4 5 6 7 8 9 10

]
;

A2 =



3A 3B 1C 1D

1A 2B

2A 1E 1B

3C 2C 3E 3D

2D 2E 4A 4D

4B 4C 3C

4E


;

The solution vectors A1 and A2 denote the unload sequence
and dockyard plan, respectively. Each row in A2 represents
a dockyard stack, with elements indicating the position of
containers on ships. For instance, 3A denotes a container on
the third stack, the first position of the selected ship row. A1

and A2 correspond to parts of ci(us) and ci(dp).
2) Crossover: We employ two different methods for

crossover to handle the 1D and 2D parts of each chromosome.

One Dimensional Crossover: We employ the Two-Point
Crossover method, a special case of N-Point Crossover. Two
random points on the individual chromosomes are selected,
and genetic material is exchanged between these points. Com-
mon genes are retained, and any dropped genes are appended
to the chromosomes (see Fig. 5).

1 2 3 4 5 6 7 8 9 10 11 12Parent 1

12 11 10 9 8 7 6 5 4 3 2 1Parent 2

1 2 3 9 8 7 6 5 9 10 11 12Offspring 1

12 11 10 4 5 6 7 84 4 3 2 1Offspring 2

1 2 3 8 7 6 5 9 10 11 12 4Offspring 1

12 11 10 5 6 7 8 4 3 2 1 9Offspring 2

Fig. 5: 1D Two-Point Crossover technique.

Two Dimensional Crossover: For the 2D vector, we use
the 2D Substring Crossover method. This involves row swap
and column swap operations, which is a modified version of
the 2D crossover introduced in the aircraft scheduling problem
[13].

Row-wise operation: Two random points are selected, and
the entire row of the parents between these points is swapped.

Column-wise operation: The column-wise operation is per-
formed on the selected rows using the Two-Point Crossover
method previously used for 1D vector crossover.

Repeated items are removed, and any dropped-out items are
appended to the offspring (see Fig. 6).

3) Mutation: Mutation, akin to biological mutation, main-
tains genetic diversity between generations. We employed
two methods for distinct chromosome parts. The mutation
probability is denoted by Pm, and it occurs probabilistically,
governed by algorithm 1.

Algorithm 1: Mutation Algorithm
Input: Two 1D vectors after newly crossed child
Output: Two 2D vectors as mutated child

1 Generate a random number R.
2 if R > Pm then
3 Do not do the mutation operation.

4 else
5 Do mutation operation.

One Dimensional Mutation: We utilize the Swap Muta-
tion method for the 1D chromosome part, interchanging two
selected genes after crossover (see Fig. 7).

Two Dimensional Mutation: Here, we chose the 2D Two-
Point Swapping Mutation method for the 2D part of our
chromosome. This is also the modified version of the mutation
method introduced by Tsai et al. [13]. The method is described
in algorithm 2 (also see Fig. 8).
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Parent 1 Parent 2

4C 2B

2C 4A 3A

1A 1B 1C

2A 4B

2D 3B

3A 4B 3B

1A 2D 4C

2B 4A

1B

2A 2C 1C

Offspring 1 (row-swap) Offspring 2 (row-swap)

4C 2B

1A 2D 4C

2B 4A

2A 4B

2D 3B

3A 4B 3B

2C 4A 3A

1A 1B 1C

1B

2A 2C 1C

Offspring 1 (column-swap) Offspring 2 (column-swap)

4C 2B

2C 2D 4C

2B 1B 1C

2A 4B

2D 3B

3A 4B 3B

1C 4A 3A

1B 4A

1B

2A 2C 1C

Offspring 1 (repaired) Offspring 2 (repaired)

4C 2B 3A

2C 2D 4C

1B 1C

2A 4B

2D 3B

3A 4B 3B

4A 1A 2D

4C 2B

1B

2A 2C 1C

Fig. 6: 2D Two-Point Substring Crossover technique.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 11 5 6 7 8 9 10 4 12

Fig. 7: Swap mutation for 1D vector.

Notations:
R: the number of rows in the 2D chromosome part.
CRi : the number of columns in the ith row.

4C 2B

2C 4A 3A

1A 1B 1C

2A 4B

2D 3B

2C 4A 3A

1A 1B 1C

4C 2B

1B 4A 3A

1A 2C 1C

2A 4B

2D 3B

Fig. 8: 2D two-point swapping mutation.

Algorithm 2: 2D Mutation Algorithm
Input: A 2D vector from newly crossed children
Output: A 2D vector as a mutated child

1 Randomly generate r1 and r2 to select two rows from
the 2D vector, where 1 ≤ r1, r2 ≤ R

2 Generate random integers c1 and c2 to select two
points from the selected rows, where 1 ≤ c1 ≤ Cr1
and 1 ≤ c2 ≤ Cr2

3 Interchange the genes between the selected points of
the 2D vector

4) Calculate Fitness: Chromosomes are evaluated based on
their completion time, which is our objective function. The
cost, representing the total completion time, is computed for
each chromosome in every generation. This cost is then used to
select the fittest chromosomes for the next generation. Details
of the cost calculation are provided in algorithms 3 and 4.

5) Selection: We employ the Roulette Wheel selection tech-
nique, a probabilistic method favoring individuals with higher
fitness. Unlike traditional roulette, our approach employs
weighted probabilities based on fitness (Fig. 9). Notations used
include PE for the percentage of elite chromosomes and Erw

denoting the end value of the roulette wheel. The elite class,
representing the fittest individuals, automatically advances to
the next generation (with PE set at 20%).

Algorithm 5 outlines the steps of the roulette wheel selection
process.

6) Termination: The termination condition of the GA deter-
mines when the run ends. Initially, the GA progresses quickly,
yielding better solutions every few iterations. However, this
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progress tends to slow down later, with minimal improve-
ments. To guarantee that our solution approaches optimality,
we establish a termination condition as follows: gi denotes
the ith generation, G represents the maximum number of
generations, and Ns stands for the number of successive

Algorithm 3: Cost function
Input: Loading plan, unloading plan, dockyard

container arrangement, maximum dockyard
container stack height

Output: No. of single cycles, no. of double cycles, no.
of dockyard rehandles

1 Function unload_first_stack(unloading plan,
unloading sequence):

2 for container ∈ the dockyard stack of
unloadingSequence do

3 if the container will not stay on the vessel then
4 unload the container
5 no of single cycles += 1

6 Function calculate_rehandles(target
container):

7 Let, no of rehandles ← 0
8 Let, found the container ← false
9 for i ∈ stacks of dockyard do

10 for j ∈ containers of current stack do
11 if j = target container then
12 found the container ← true
13 while until containers are shifted from

the top of the target container one by
one do

14 no of rehandles + = 1
15 Shift the container nearest lowest

stack
16 return no of rehandles

17 if found the container = false then
18 Warning! container not found

19 return 0

20 Function loading_operation(unloading plan,
loading plan, unloading sequence):

21 if the current loading stack is empty then
22 if the current unloading stack is empty then
23 go to the next loading stack

24 else
25 return false, 0

26 Load the current container from dockyard
27 return true, calculate_rehandles(current

container to be loaded at dockyard)
28 Let, no of single cycles ← 0
29 Let, no of double cycles ← 0
30 Let, no of rehandles ← 0
31 unload_first_stack(unloading plan, unloading

sequence)

Algorithm 4: Cost function (continued)

32 while until all the stacks are unloaded from ship do
33 for container ∈ current stack do
34 if the container will not stay on the vessel then
35 unload the container
36 if there is any container to load and any

stack of the ship is free for loading then
37 flag, rehandles ←

loading_operation(unloadig
plan, loading plan, unloading
sequence)

38 no of rehandles += rehandles
39 no of dual cycles += 1

40 while complete loading the remaining stacks do
41 flag, rehandles ←

loading_operation(unloadig plan, loading
plan, unloading sequence)

42 no of rehandles += rehandles
43 no of single cycles += 1

8.3%
2.7%

14%5.5%

8.3%

5%

8%

13%

11%
7.8%

4%

11%

Fig. 9: Weighted roulette wheel.

Algorithm 5: Roulette Wheel Selection Algorithm
Input: Probability against the fitness value of each

chromosome
Output: A selected chromosome

1 Define a 1D vector RW of size n for storing the
fitness value of each chromosome. The fitness value
is stored as a cumulative sum order where Erw is the
total sum of all fitness.

2 for i← 1 to n do
3 Generate a random number r, where 0 ≤ r ≤ Erw.
4 Select a chromosome as a parent for crossover.
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generations where the fittest chromosome incurs the same cost.
The genetic algorithm (GA) execution concludes according to
the criteria specified in Algorithm 6.

Algorithm 6: GA termination algorithm
Input: Number of successive generations in which the

cost of the fittest chromosome is the same and
iteration number

Output: Boolean value to take termination decision
1 Ns ← Number of successive generations in which the

fittest chromosome costs the same.
2 if gi = G or Ns = 100 then
3 Terminate the GA run.

4 else
5 Continue

7) Parameters: The GA control parameters are shown in
Table I. The parameters that best fit our model, such as pop-
ulation size, crossover technique, elite percentage, mutation
probability, selection method, etc., are selected. As the solution
to our problem is a smooth landscape type and the complexity
of our problem is medium, we selected these parameters to fit
the situation.

TABLE I: GA control parameters

Parameter Value
Population size 200
1D crossover strategy Two-Point Crossover
2D crossover strategy 2D Substring Crossover
Crossover rate 0.80
1D mutation strategy Swap Mutation
2D mutation strategy 2D Two-Point Swapping

Mutation
Mutation rate 0.30
Selection strategy Roulette wheel
Elite class 0.20
Consecutive iterations 100

IV. RESULTS AND DISCUSSION

This section addresses the magnitude of QCDC-DR-GA.
We offer tools to translate cycle-based benefits into time
equivalents and validate those estimates against real-world
double-cycling data. With an eye on the present and future,
we analyze the financial impact of double cycling, estimating
potential rewards for both existing vessels and those gracing
the waves in the years ahead. The results of the experiments
were obtained using a computer with 8 gigabytes of RAM,
an Ubuntu 22.04 operating system, and an Intel Core i5 8th
Gen. The algorithm was implemented using Python libraries-
Pandas and NumPy.

A. Performance Comparisons of the Algorithms

We compared our QCDC-DR-GA algorithm with three
established methods:

(a) Dual-Cycling Greedy Upper Bound Approach (Greedy
UB): This heuristic sorts container stacks in descending
order for dual-cycle loading/unloading without consider-
ing dockside rehandles [2].

(b) Mixed-Integer Programming Model for QDCS (bi-level
GA): This method improves upon the Greedy UB by
integrating QDCS optimization within a bi-level genetic
algorithm framework [5].

(c) GA-ILSRS: Explored in two scenarios, this approach
optimizes dockyard rehandles using a genetic algorithm
combined with Iterated Local Search, neglecting load-
ing/unloading in one scenario and focusing solely on
dockyard rehandling in the other [12].

While the Greedy-upper-bound focuses solely on dual cy-
cling, the QDCS-bilevel GA enhances it by incorporating
QDCS optimization. Conversely, the GA-ILSRS solely op-
timizes dockyard rehandles. In contrast, our QCDC-DR-GA
considers both dual cycling and dockyard rehandles, optimiz-
ing them using a sophisticated genetic algorithm approach.

B. Datasets

Six scenarios were created with varying numbers of stacks
(5 to 30) and maximum stack heights (4 to 10) for container
rows, reflecting typical container ship characteristics. Loading
and unloading plans for each scenario, along with dockyard
container arrangements, were generated by the program. Con-
figuration details for the six datasets are summarized in Table
II. Sample unloading and loading plans for a small ship are
presented in Tables III and IV, respectively.

TABLE II: Loading-unloading plan configuration

Scenario No. of stacks Maximum stack height
1 30 10
2 25 10
3 20 10
4 15 8
5 10 5
6 5 4

TABLE III: Unloading plan of a ship’s row

Stack No.
Tier No. 1 2 3 4 5

1 1A 1B 1C 1D 1E
2 2A 2B 2C
3 F 3A 3B 3C 3D
4 4A 4B
5 5A 5B 5C 5D 5E
6 F 6A 6B 6C 6D
7 F 7A 7B 7C 7D
8 F 8A 8B 8C 8D
9 F 9A 9B 9C 9D
10 F 10A 10B 10C 10D

Tables III and IV provide container location information.
For instance, 1B indicates a container located in the 1st
stack, the 2nd tier of the row, with F indicating the container
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TABLE IV: Loading plan of a ship’s row

Stack No.
Tier No. 1 2 3 4 5

1 1A 1B 1C 1D 1E
2 2A 2B 2C 1D 2E
3 3A 3B
4 4A 4B 4C 4D 4E
5 5A 5B 5C 5D 5E
6 6A 6B
7 7A 7B 7C 7D
8 8A
9 9A 9B 9C 9D
10 10A 10B 10C 10D

remaining on the ship. Assuming a maximum stack height of
6, the dockyard plan is discussed further in Section III-B1 as
A2. Detailed generated data is available as supplementary ma-
terial at “https://dx.doi.org/10.21227/cj08-qn62” due to spatial
constraints.

C. Numerical Tests

The six scenarios detailed in subsection IV-B serve as the
basis for numerical testing. Processing times for QCs in single
and dual cycling, as reported by Goodchild [2], are 90 and 170
seconds, respectively. Container rehandling time by a gantry
crane at the dockyard follows a uniform distribution of 60
seconds.

1) Test Results: We thoroughly assess the QCDC-DR-GA
algorithm’s performance, comparing it with four established
methods for port container handling optimization. The evalua-
tion utilizes the six datasets, representing various scenarios
with differing container numbers and ship configurations.
Table V presents simulation results from each method on these
datasets. Additionally, Fig. 10 visually juxtaposes QCDC-DR-
GA’s performance with that of other approaches.

2) Key Findings: The key findings and remarks of the
simulation are as follows:

• The proposed QCDC-DR-GA model consistently out-
performs other methods by maximizing dual cycles and
minimizing container handling. This demonstrates its
effectiveness in optimizing the total unloading-loading
time.

• Combining QCDC optimization with dockyard rehandle
minimization in QCDC-DR-GA yields superior results
compared to fragmented approaches like QCDC Schedul-
ing Optimized by bi-level GA and GA-ILSRS (Scenario
2).

• Neglecting dual-cycling in QC operation optimization, as
seen in GA-ILSRS (Scenario 1), leads to inferior perfor-
mance compared to QCDC-DR-GA. This underscores the
importance of simultaneous consideration of both aspects
for optimal resource utilization.

D. Significance Test

A two-tailed paired t-test compared the operation times
given by the QCDC-DR-GA strategy with others for the
numerous datasets.
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Fig. 10: Comparative performance of QCDC-DR-GA against
the state-of-the-art algorithms

• Null hypothesis: No significant difference in operation
time between QCDC-DR-GA and the compared strategy.

• Alternative hypothesis: Significant difference in operation
time between QCDC-DR-GA and the compared strategy.

Using a significance level (α) of 0.05, the t-statistic and p-
value were computed for each pair of strategies. The results
and minimum, maximum, mean, and standard deviation of
operation times are summarized in Table V.

V. CONCLUSIONS

Utilizing a heuristic approach, we proposed a hybrid QCDC-
DR-GA algorithm that optimizes ship unloading and loading
processes using dual cycling and reduces dockyard rehandles.
Our model consistently outperforms existing methods across
the six scenarios of datasets that we created from small
to large, with particularly notable improvements for large
vessels. However, certain limitations warrant consideration.
The model assumes immediate loading container availability at
the dockside, potentially neglecting pre-staging requirements.
Furthermore, it focuses solely on rehandling between the ship
and the apron, overlooking potential relocations within ship
stacks. Lastly, disruptions from inbound vehicles or cranes
are not accounted for, possibly leading to underestimating
operational variability. Future research avenues could address
these limitations by incorporating pre-staging needs, explor-
ing intra-ship rehandle optimization, and integrating dynamic
disruptions to enhance practical applicability.
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