
P
os
te
d
on

2
A
p
r
20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
20
74
60
.0
57
29
69
8/
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Advanced Cardiovascular Health in a Quantum AI-driven

Healthcare Framework

Sarvapriya M Tripathi1, Himanshu Upadhyay1, and Jayesh Soni1

1Electrical and Computer Engineering, Florida International University Miami

April 02, 2024

1



 

Advanced Cardiovascular Health in a Quantum AI-
driven Healthcare Framework   

Sarvapriya M Tripathi 
 Electrical and Computer Engineering  

Florida International University 
Miami, USA 

stripath@fiu.edu

Himanshu Upadhyay 
Electrical and Computer Engineering  

Florida International University 
Miami, USA 

upadhyay@fiu.edu 

Jayesh Soni  
Electrical and Computer Engineering  

Florida International University  
Miami, USA  
jsoni@fiu.edu 

 

Abstract—With the advent of Healthcare 4.0, there is 
increased interest from researchers the world over in the 
application of modern, cutting-edge Artificial Intelligence (AI) 
and Quantum Artificial Intelligence (QAI) algorithms in solving 
healthcare challenges. The era of Quantum Computing (QC) 
promises to bring significant advancements in several areas of 
healthcare such that it may be sensible to give this hybrid 
Quantum/Classical paradigm its own name – Healthcare4Q. 
The potential of QC will extend the reach of Healthcare4Q with 
the help of diverse technologies such as quantum-enabled 
wearables, quantum-secure transfer and storage of data, and 
quantum computing at edge, fog, and cloud. All of these 
technologies promise to catapult Healthcare4Q to become the 
most capable healthcare framework in the advancement of 
medical innovations and improvement of patient care.  

An integral part of a person’s health lies in cardiovascular 
health, and thus prioritizing and optimizing cardiovascular 
health remains vital to the broader goals of public health and 
healthcare sustainability. In this study, under the paradigm of 
Healthcare4Q, we propose a framework called the Quantum AI-
driven Heart Health Framework (QAIHHF) that can provide 
advanced predictive intelligence to healthcare providers by 
utilizing historical and real-time data and processing 
capabilities proposed in Healthcare4Q.  We show that when 
applied to various diagnostics and health indicators such as 
ECG data, the Quantum AI provides accuracy at a level equal 
to or higher as compared to the classical methods thus proving 
itself to be the critical component that will herald the era of 
Healthcare4Q. 

Keywords— Healthcare 4.0, Healthcare4Q, Heart Failure, 
Quantum AI Heart Health Framework, Machine Learning, Deep 
Learning, Quantum Machine Learning, Random Forest, Long 
Short-Term Memory (LSTM), Quantum Neural Networks (QNN), 
Quantum LSTM  

I. INTRODUCTION  
Modern healthcare is currently poised for a revolution in 

the form of Healthcare 4.0 [1], [2], [3], [4], which represents 
a transformative approach to advancing medical innovations, 
and thus patient care, by leveraging the latest advances in 
information processing systems. This approach promises to 
deliver real-time personalized healthcare to patients, 
physicians, and caregivers by shifting from hospital-centric to 
a patient-centered model. As we will show below, adding 
Quantum technologies to healthcare gives a significant 
potential boost to the effectiveness and capability of 
healthcare. We call this paradigm Healthcare4Q. 

To achieve the central tenet of providing enhanced patient 
experience and increased satisfaction, the medical field will 
have to rely very heavily on advancements in technologies and 
updates in methods and procedures [5], [6], [7], [8]. The 
current and future advancements in data acquisition, secure 
transmission and storage, and advanced data processing using  
Machine Learning (ML) and Artificial Intelligence (AI) 

promise to deliver the envisioned benefits [9], [10], [11]. This 
would require the development, deployment, and 
management of new solutions and infrastructure to enable 
flexible and effective access to information from any location. 
The systems will also have to traverse the diverse and 
challenging privacy and security landscape while ensuring 
effective data management [12], [13]. And while concerns 
have been raised regarding the successful implementation of 
all of these aspects, the potential to revolutionize healthcare 
for modern society can be realized with a sustained and 
disciplined approach along with further research and 
innovation using AI/ML. AI/ML has already proven the 
potential to handle massive and diverse amounts of data 
generated by healthcare systems [14], [15], [16]. Noteworthy 
achievements using AI/ML include the interpretation of 
medical images [17], [18] and assisted robotic surgeries  [19], 
[20].  

In addition to the classical computing advances, there is a 
new and potentially far superior technology on the horizon in 
the form of quantum computing (QC) [21]. QC promises to 
provide processing speedups as compared to classical 
computation [22], [23]. This capability is particularly valuable 
to healthcare research where simulations, modeling, and data 
analysis can all benefit from the speedup promise of QC. Data 
Analysis can see the benefits of Quantum Machine Learning 
(QML) algorithms [24], [25], [26] that can efficiently analyze 
large and complex datasets which will lead to more accurate 
and rapid analysis of patient data such as biotelemetry, 
medical imagery and scans, and genomic data to improve 
diagnostics and medical planning. QC and QML algorithms 
also hold a promise to bring speed and accuracy in medical 
image analysis leading to better detection of subtle anomalies 
[27], [28], [29]. Drug discovery research can also benefit 
tremendously from QC with the superior molecular 
interaction modeling capabilities to aid in predicting potential 
drug candidates [30], [31] thus greatly accelerating the 
development of new medications and treatments. This 
research can be further aided by the capability provided by QC 
to simulate biological systems at a level of detail that classical 
computers struggle to achieve [32], [33]. This capability is 
crucial for understanding intricate biological processes and 
designing targeted interventions in areas such as personalized 
medicine. Quantum technology research has also seen 
advancements in cryptography, which can provide enhanced 
security for sensitive healthcare data. Quantum Key 
Distribution (QKD) can provide substantially improved 
Encryption and Security capabilities to create secure 
communication channels thereby protecting patient 
information during transit and in storage [34], [35], [36]. 
Lastly, QC can also prove critical in optimizing the logistics 
of healthcare [37], [38] by improving resource allocation, 
scheduling, and supply chain management etc., leading to 
efficiency and cost-effectiveness of healthcare delivery. 



In this paper, we study the proposed Healthcare4Q 
paradigm by demonstrating the effectiveness of the 
combination of Quantum and Classical ML algorithms in 
detecting cardiovascular health. As a leading cause of 
mortality in modern Western society, cardiovascular health 
remains a top concern and priority in healthcare research. 
There have been important algorithmic studies and advances 
in this area using classical AI and ML [39], [40] with varying 
degrees of accuracy. They have, for a large part, utilized ECG 
data and applied various classification algorithms such as K-
Nearest Neighbors (KNN), Support Vector Machines (SVM), 
Decision Trees, Naïve Bayes, etc. [41], [42].  

 There is also existing research using QML methods such 
as QSVM [43] where they study the QSVM algorithm and 
find the accuracy to be superior to classical SVM. Munshi et 
al. [44] study the problem using Quantum Support Vector 
Classifier (QSVC) and Variational Quantum Classifier (VQC) 
methods where they have shown the QML algorithms to be 
equally or more accurate than the equivalent classical 
methods. 

In our study, we investigated the MIT Electrocardiogram 
(ECG)  dataset, which consists of the ECG shapes of 
heartbeats of healthy human subjects as well as those suffering 
from arrhythmia and myocardial infarctions. The relative 
effectiveness of various classical and quantum machine 
learning and deep learning algorithms on the ECG data were 
studied, and the results were used to propose a novel health 
prediction score called Quantum AI-driven Heart Health 
Framework Score (QAIHHF Score). This study also proposed 
a larger framework involving utilizing this score with modern 
wearable technologies with real-time acquisition and analysis 
of the heartbeat data. This framework, along with technical 
details for Healthcare4Q are discussed in section II. 

The rest of the paper is organized as follows: Section II 
provides greater details on Healthcare4Q and Quantum AI-
Driven Heart Health Framework. Section III provides 
background information on the Quantum and Classical ML 
methods and algorithms. Section IV describes the 
experimental setup and the results obtained. Finally, in 
Section V we talk about the conclusions drawn from this study 
and future work.   

II. HEALTHCARE4Q TECHNICAL STACK AND QUANTUM AI-
DRIVEN HEART HEALTH FRAMEWORK (QAIHHF)  

In this work, we propose two new frameworks, 
Healthcare4Q and QAIHHF. Healthcare4Q looks at the future 
of healthcare in light of the upcoming technological upheaval 
expected in the next two decades. QAIHHF lays down a 
framework for scoring cardiovascular health using the 
technologies and capabilities made available by 
Healthcare4Q. 

A. Healthcare4Q Technical Stack 
The technological framework for Healthcare4Q (Fig. 1) 

relies very heavily on current and upcoming quantum 
technologies. Providing the foundational structure for 
Healthcare4Q will be Quantum cloud infrastructure and will 
include compute and store capabilities in the cloud that may 
get extended to fog and edge computing as well. Built on top 
of the cloud is the Quantum Privacy and Security framework, 
bringing in and relying on revolutionary capabilities such as 
quantum communication and encryption, to ensure the safety 
and security of sensitive data such as patient medical history. 

Quantum blockchains ensure that the information is secure, 
decentralized, and tamper-free. This data is extended to 
Quantum IoTs such as wearables, which can use and enhance 
this data. Additionally, the use of Quantum ML, Quantum DL, 
and Quantum Generative AI brings in enhanced decision-
making capabilities to fulfill the vision of Healthcare4Q (Fig. 
2). 

Fig. 1. Healthcare4Q Technology Framework 

 

Fig. 2. Quantum-AI Driven Heart Health Framework 

 

B. Quantum AI-driven Heart Health Framework (QAIHHF) 
As part of this study, we are introducing a new framework 

called Quantum AI-driven Heart Health Framework 
(QAIHHF). The framework, and score as shown in Fig. 3, 
focus on three major categories of factors that influence 
cardiovascular health: 

Genetic and Familial Factor: This category scores the 
ethnic, genetic, environmental, and hereditary risk factors, all 
of which have a significant influence on an individual's 
susceptibility to various heart-related conditions. 

Historical Factors: Past medical history can provide 
significant clues to the current and future heart health. 
Conditions like diabetes, hypertension, and high cholesterol 
can be excellent predictors of risks to cardiovascular health. 
And so too can some other chronic conditions like kidney 
disease or rheumatoid arthritis. This category measures that 
risk and is a crucial component of the QAIHHF score.  

Current Health Bio-Markers and Lifestyle Factors: A 
person’s lifestyle choices impart a profound impact on 
cardiovascular health. Factors such as Nutrition, Physical 
Activity, Smoking and Drinking, Stress and Sleep, etc. can 
prove to be important data points for the QAIHHF score. This 
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is further supplemented by data points obtained from common 
tests and measurements such as Blood Pressure, Weight and 
BMI, Blood Cholesterol and Glucose levels, ECG and Cardiac 
Imaging, etc. This category is the most important component 
of the score. 

Full detailed description and study of the proposed 
QAIHHF score are planned for a future study. 

 
Fig. 3. QAIHHF Scorecard   

III. BACKGROUND AND RELATED WORK 
In this section, we will provide a brief overview of the 

quantum technologies and algorithms that will be crucial in 
enabling Healthcare4Q. Specifically, we will discuss 
Quantum Machine Learning. Details on the other quantum 
technologies will be part of our future work.  

A. Quantum Computing and Quantum Circuits 
The fundamental unit of information in Quantum 

Computing, a qubit, can be described in Dirac notations as 
|Ψ⟩ = α|0⟩ +  β|1⟩, where |Ψ⟩ is a vector in Hilbert space 
with |0⟩ 	= ,!"-   and  |1⟩ 	= ,"!- . A qubit allows several 
quantum mechanical operations, which can be grouped 
together to act like logic gates, much similar to what exists in 
classical computing. Physics of the quantum mechanical 
systems also allows the qubits to be entangled to form a 
composite system of n qubits that can describe 2#  states 
together. Additionally, the property of superposition allows a 
qubit to represent a state out of infinitely many states (unlike 
a classical bit which can only represent one of two states), and 
only upon measurement does it collapse to give one of the two 
states as defined by the physics of the quantum system. Qubits 
and quantum gates can be combined to form what is called a 
quantum circuit. Fig. 4 shows an example of a quantum circuit 
[45].  

Fig. 4. An example of a quantum circuit. 

Using quantum circuits, it is possible to design complex 
algorithms in a hybrid manner. Fig. 5 shows one such 
environment where encoded input data is fed into the quantum 
layer, and the output of the quantum layer is measured and 
used for cost function calculation and optimization.  

Fig. 5. Hybrid ML environment. 

In their work [46], Schuld et al. discuss the thought process 
of designing a classification algorithm based on quantum 
circuits, a sample of which is shown in Fig. 6. The work 
proved the feasibility of quantum-ready design on near-term 
intermediate-scale quantum devices. Around the same time, 
several other research works [47], [48], [49], [50], [51] have 
investigated quantum algorithms to solve classification 
problems using linear algebra. Fig. 7 shows a schematic of the 
aforementioned quantum layer, commonly called a 
parameterized quantum circuit (PQC) or Variational Quantum 
Circuit (VQC)) [52].  

 
Fig. 6. A six-layer quantum circuit 

 

Fig. 7. Generic VQC Design. U(x) is the encoding layer for 
the input data x, while the V(θ) is the quantum layer acting 

on tunable parameters θ. 

B. Classification using Quantum and Classical ML 
For a typical supervised learning task, the goal is to train 

the model 𝑓  : 𝑥  ® y so that the model can accurately 
recognize (whether via regression or classification) previously 
unseen data. The simplest of these, the binary linear classifier, 
can be depicted in the form of a threshold function:  

	𝑦 = 𝑓(𝑥	|	𝜃) = 𝑠𝑖𝑔𝑛(𝑥$𝑤 + 	𝑏)                                (1) 

where 𝑥	 ∈ 	ℝ%	  are the trainable inputs, 𝜃  are the 
parameters {w, b} with weight 𝑤	 ∈ 	ℝ% and bias 𝑏	 ∈ 	ℝ. 

In QML, the above classification process reduces to linear 
algebraic computations using quantum perceptron [53] which 
implements the binary linear classifier described in (1). The 
calculation of 𝜑 = 	𝑥$𝑤  is done with appropriate feature 
engineering, which in this context involves data encoding of 
the features as normalized inputs mapping 𝑥	 ∈ 	ℝ% to the 2# 
dimensional amplitude vector |𝜑⟩	. The output of the circuit 
provides the classification of the normal and abnormal 
conditions as the binary outputs, thereby accurately 
implementing a binary linear classifier as a quantum circuit 
Fig. 8. 

The data encoding strategy used for quantum algorithms, 
in general, depends on the problem domain, and can generally 
be described as 𝜑 ∶ 	ℝ%	®	𝐶&! where N features are encoded 
into n qubits. The input vector 𝑥	 ∈ 	ℝ%	is first pre-processed 
into a normalized state of unit length. If N is not a direct power 
of 2, the data is padded with an appropriate number of zero-
length features such that the new feature space can all be 
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accommodated in the 2#  amplitudes of the n-qubit system. 
Not every problem domain yields itself to this way of pre-
processing and some datasets might get distorted due to this 
normalization. A possible solution for this [46] may exist in 
padding the feature space before the normalization with non-
zero padding terms such that the data is transformed from the 
original feature space to a higher-dimensional space.  

 
Fig. 8. A Quantum Circuit with Amplitude Embedding and 

Strongly Entangling Layers used for Classification. 

The results from the Quantum binary linear classifier can 
then be compared with classical classification algorithms such 
as Support Vector Machines (SVM), Decision Trees (DT), 
Random Forest (RF), and XG Boost.  

C. Classification using Quantum and Classical Long Short-
Term Memory (LSTM) 
LSTM (and by extension Quantum LSTM) is a form of 

Recurrent Neural Networks (RNN) that can learn long 
dependencies. This allows them to retain information for a 
longer time. LSTM was first introduced by Hochreiter & 
Schmidhuber [54], and implements a 4-layer network, each 
with its unique function, acting on consecutive time steps. 
Quantum LSTM implementation follows very similarly to 
LSTM (as depicted in Fig. 9) [52], [55], [56]. Implementation 
of QLSTM also utilizes a VQC layer with tunable parameters 
(as depicted in Fig. 7 and Fig. 10). 

The QLSTM model can be described by equations that are 
quite similar to LSTM as follows [55]:  

𝑓' = 𝜎,𝑉𝑄𝐶([ℎ')!, 𝑥']-	 	 (2a)	

𝐶' = 𝑓' ⊗𝐶')! +	𝑖' ⊗	𝐶J'		 	 (2b)	

𝐶J' = 𝑡𝑎𝑛ℎ(𝑉𝑄𝐶* . [ℎ')!, 𝑥'])		 (2c)	

𝑖' = 𝜎(𝑉𝑄𝐶+ . [ℎ')!, 𝑥'])	 	 (2d)	

𝑜' = 𝜎(𝑉𝑄𝐶,. [ℎ')!, 𝑥'])	 	 (2e)	

ℎ' = 𝑜' ⊗ tanh(𝐶')	 	 (2f)	

Here σ	is the sigmoid function and tanh is the hyperbolic 
tangent function. 

 

 
Fig.9. A QLSTM cell 

 
Fig. 10. A Variational Quantum Circuit (VQC) 

IV. EXPERIMENT SETUP AND RESULTS  
The following libraries are used to train ML, DL, and 

QML algorithms. 

Traditional Machine Learning: We have utilized the 
widely recognized Python library called Scikit-learn (sklearn) 
which presents a diverse array of tools for carrying out various 
machine learning tasks. 

Deep Learning: We use the well-known pairing of 
TensorFlow and Keras. TensorFlow, which was created by 
Google, is a versatile and widely utilized framework for deep 
learning. It offers robust assistance in constructing and 
training neural networks. Meanwhile, Keras has been 
seamlessly integrated into TensorFlow as a high-level API.  

Quantum Machine Learning: We make use of 
PennyLane [57] with PyTorch for our QML. PennyLane is a 
freely available library for Quantum Machine Learning that 
seamlessly integrates with PyTorch. This combination allows 
us the ability to construct and train QNN and QLSTM models, 
all while taking advantage of the automatic differentiation 
capabilities offered by PyTorch (Fig. 11). 

Fig. 11. QML Framework 

A. Data and the Evaluated Metrics 
Data used in this study is the MIT ECG data (in two 

datasets referred to in this work as PTB and Arrhythmia 
datasets respectively) consisting of the ECG shapes of 
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heartbeats of healthy human subjects as well as those suffering 
from arrhythmia and myocardial infarctions (Fig. 12). The 
data was normalized before processing, and the training set 
was ensured to have equal weightage across categories.  

In our study, we use the accuracy, precision, recall, and 
F1–score metrics to evaluate the trained models. The 
accuracy score indicates how often the model correctly 
predicted the category of the test data. The precision score 
allows us to measure how well our models predict the positive 
outcomes, while the recall metric indicates how well our 
models identify the true positives. And finally, the F1–score 
combines precision and recall indicating the ‘robustness’ of 
the models. 

Fig. 12. ECG Training Data categories  

B. Experimental Results 
The following are the hyper-parameters used and results 

achieved from traditional ML, conventional DL, and Quantum 
ML algorithms on both datasets :  

1) Classical Machine Learning Algorithms: 
Support Vector Machine (SVM) Optimization: The 

parameter C controls the trade-off between minimizing the 
classification error and maximizing the margin. We 
explored a range of values, including 0.001 and 0.0001. 
On the other hand, Gamma is a kernel coefficient 
parameter, and we experimented with various values, 
including 1, 10, and 100. 

Decision Tree (DT) Optimization: We explored both 
'gini' and 'entropy' for Criterion, used to measure the 
quality of a split at each node in the tree. In the case of Max 
Depth, which represents the maximum depth of the tree, 
we tested different depths including 50, 100, and 150. 

Random Forest (RF) Optimization: The n_estimators 
parameter represents the number of decision trees in the 
ensemble, and we explored different values, including 50, 
100, and 150. The max_depth parameter, which denotes 
the maximum depth of each decision tree in the ensemble, 
was experimented with depths of 50, 100, and 200. 

XGBoost Optimization: The parameter learning_rate 
controls the step size at each iteration while moving 
toward a minimum of the loss function and was explored 
with the values of 0.01 and 0.10. The parameter 
max_depth, like DT and RF optimization above, specifies 
the maximum depth of each decision tree in the ensemble. 
We experimented with depths of 50, 100, and 150. 

TABLE I.  ALGORITHMS WITH THE OPTIMAL PARAMETERS FOR PTB 
DATASET  

Algorithm Best Parameters 
SVM Gamma:1 ; C: 0.0001 
DT Criterion: Gini ; Max_Depth: 150 
RF N_estimators: 50 ; Max_Depth: 200 
XGBoost Learning Rate: 0.01 ; Max_Depth: 150 

TABLE II.  EVALUATED METRICS ON TRAINING SET ON BEST 
ALGORITHM FOR PTB DATASET 

Algorithm Accuracy Precision Recall F1-Score 
SVM 0.71 0.66 0.71 0.66 
DT 1.00 1.00 1.00 1.00 
RF 1.00 1.00 1.00 1.00 
XGBoost 1.00 1.00 1.00 1.00 

TABLE III.  EVALUATED METRICS ON TESTING SET ON BEST 
ALGORITHM FOR PTB DATASET 

Algorithm Accuracy Precision Recall F1-
Score 

SVM 0.72 0.65 0.70 0.67 
DT 0.92 0.92 0.92 0.92 
RF 0.97 0.97 0.97 0.97 
XGBoost 0.98 0.98 0.98 0.98 

 

As we can see from Tables I – III, both DT, RF, and 
XGBoost have managed to achieve high scores for accuracy, 
precision, recall, and F1-score, suggesting they possess a 
certain level of robustness when it comes to extrapolating their 
learning to novel data instances. Furthermore, both RF and 
XGBoost also showcase strong performances with impressive 
scores. Based on these findings, it can be inferred that DT, RF, 
and XGBoost are all good contenders for these datasets. On 
the other hand, the SVM model obtained lower scores, 
suggesting SVM may require some additional fine-tuning to 
match the performance levels of the other algorithms on this 
specific dataset. 

TABLE IV.  ALGORITHMS WITH THE BEST PARAMETERS FOR 
ARRHYTHMIA DATASET  

Algorithm Best Parameters 
SVM Gamma:100 ; C: 0.0001 
DT Criterion: Entropy ; Max_Depth: 150 
RF N_estimators: 50 ; Max_Depth: 200 
XGBoost Learning Rate: 0.01 ; Max_Depth: 150 

TABLE V.  EVALUATED METRICS ON TRAINING SET ON BEST 
ALGORITHM FOR ARRHYTHMIA DATASET  

Algorithm Accuracy Precision Recall F1-Score 
SVM 0.28 0.33 0.28 0.28 
DT 1.00 1.00 1.00 1.00 
RF 1.00 1.00 1.00 1.00 
XGBoost 1.00 1.00 1.00 1.00 

TABLE VI.  EVALUATED METRICS ON TESTING SET ON BEST 
ALGORITHM FOR ARRHYTHMIA DATASET  

Algorithm Accuracy Precision Recall F1-Score 
SVM 0.23 0.30 0.23 0.24 
DT 0.92 0.94 0.92 0.93 
RF 0.96 0.98 0.96 0.97 
XGBoost 0.96 0.98 0.96 0.97 

 



Tables IV-VI give the evaluation metrics and results for 
the Arrhythmia dataset, and we see results similar to the PTB 
dataset. The DT and RF models achieved high values in terms 
of accuracy, precision, recall, and F1 score, although it is 
important to interpret these results in the context of model 
complexity; DT and RF models can easily overfit, meaning 
they may be tuned too closely to the specific nuances of the 
training data. SVM, on the other hand, has lower values across 
all metrics, indicating its challenges in capturing the 
complexity of the arrhythmia dataset during training, 
indicating that it may not be the most suitable choice for this 
particular dataset. 

2) Deep Learning Algorithms: 
Artificial Neural Network (ANN) and Long Short-Term 

Memory (LSTM): Our optimization focused on three key 
hyperparameters. Batch Size determines the number of 
data samples used in each iteration during training. We 
explored a range of batch sizes, including 32, 64, 128, 256, 
and 512, allowing us to optimize between convergence 
speed and generalization. Learning Rate, which plays a 
pivotal role in controlling the step size during the gradient 
descent optimization process. Here we experimented with 
three different learning rates, 0.01, 0.001, and 0.0001. 
Adjusting the learning rate allowed us to fine-tune the 
training process and strike a balance between rapid 
convergence and avoiding overshooting the minimum. 
Finally, the Number of Layers influences a neural 
network’s capacity to capture complex patterns. We 
looked at network architectures with 2, 4, 6, 8, and 10 
layers. Varying the number of layers helped us determine 
the optimal network depth for the given dataset. 

Fig. 13. ANN Test Loss for Arrhythmia dataset 

Fig. 14. ANN Test Accuracy for Arrhythmia dataset 

Fig. 15. ANN Test Loss for PTB dataset 

Fig. 16. ANN Test Accuracy for PTB dataset 
 

Studies on ANN performance using two datasets offer 
significant results. This is because for both datasets, as the 
batch size increases, we see a fluctuating pattern in test 
accuracy along with a clear general trend towards an increase 
in minimum test loss. The smaller batch sizes (32 and 64) 
always yield a high level of accuracy and low loss, which 
means that one of the most important aspects of model 
optimization is the size of batches. The ECG-MIT dataset 
delivers its best results with the lowest batch size; however, 
the ECG-PTB dataset shows an inclination in this direction. 

Fig. 17. LSTM Test Loss for Arrhythmia dataset 



Fig. 18. LSTM Test Accuracy for Arrhythmia dataset 

Fig. 19. LSTM Test Loss for PTB dataset 

 
Fig. 20. LSTM Test Accuracy for PTB dataset 

The performances of LSTM on the two datasets 
demonstrate a relationship between batch size, loss, and 
accuracy. We found that for the PTB dataset when the batch 
size is 32, the model can achieve the highest accuracy and 
lowest loss, which means it would be best to train on smaller 
batch sizes for this dataset. In the case of other datasets, as the 
batch size increases, both loss and accuracy decrease, 
indicating that larger batch sizes are less efficient in the 
learning process. Another example of this tendency was found 
in the Arrhythmia dataset, where smaller batch sizes led to 
better performance of the model, with the loss being minimal 
and accuracy at its maximum among 256 (loss) and 32 
(accuracy). These findings emphasize that neural network 
training effectiveness and model accuracy are both strongly 
influenced by batch size, which should be chosen thoughtfully 
for optimizing diagnostic capabilities. 

3) Quantum Machine Learning Algorithms: 
Quantum Long Short-Term Memory (LSTM): The 

QLSTM model is implemented using 8 Qubits in strong 
entanglement with data encoded using amplitude 
encoding. We evaluated the model with varying batch size 
values including 32, 64, 128, 256, and 512. Below are the 
experimental results for both datasets. 

 

 
Fig. 21. QLSTM Test Loss for Arrhythmia dataset 

Fig. 22. QLSTM Test Accuracy for Arrhythmia dataset 

TABLE VII.  EVALUATED METRICS ON TESTING SET FOR ARRHYTHMIA 
DATASET FROM QLSTM 

Batch Size Accuracy Precision  Recall F1 Score 
32 0.8105 0.8219 0.8105 0.8128 
64 0.8075 0.8241 0.8075 0.8078 
128 0.8070 0.8312 0.8070 0.8104 
256 0.8095 0.8312 0.8095 0.8140 
512 0.8155 0.8337 0.8155 0.8193 

 

Figures 21 and 22 show the test loss and test accuracy 
respectively of the QLSTM network on the Arrhythmia 
dataset. Table VII presents a more detailed summary of the 
metrics calculated by this model. It can be concluded that 
among the different batch sizes, with high consistency, the 
network’s precision did not fall below 82%, accuracy was 
mostly within the range from 80.70% to 81.55%, and the F1 
score oscillated around 80.78% to 81.93%. We also noted that 
the best result in terms of accuracy and F1 score could be 
obtained for a batch size equal to 512 as increased batch size 
tended to make a slight improvement in performance. 

 



Fig. 23. QLSTM Test Loss for PTB dataset 

 
Fig. 24. QLSTM Test Accuracy for PTB dataset 

TABLE VIII.  EVALUATED METRICS ON TESTING SET FOR PTB DATASET 
FROM QLSTM 

Batch Size Accuracy Precision  Recall F1 Score 
32 0.9125 0.9135 0.9125 0.9125 
64 0.9035 0.9038 0.9035 0.9035 
128 0.9055 0.9060 0.9055 0.9055 
256 0.9125 0.9125 0.9125 0.9125 
512 0.9065 0.9081 0.9065 0.9066 

 

Figures 23 and 24 depict the test accuracy and test loss 
respectively from the PTB dataset. Table VIII presents the 
performance measures based on batch sizes. A significantly 
higher accuracy was found compared to the Arrhythmia 
dataset, which rose to 91.25% with batch sizes of 32 and 256. 
Again, a stable range between 90.35% and 91.25% across all 
batch sizes for the F1 score signifies a balanced performance. 

QLSTM network performed well on both the data sets and 
its performance was particularly better with an increased size 
of the batch, though it was most visible in the case of the 
Arrhythmia dataset. The stability seen from different metrics 
across various analyses suggests that QLSTM can be used to 
deal with the complexities of ECG signal classification. In this 
light, the PTB dataset with higher scores on different metrics 
is an indication that QLSTM is very effective in classifying 
biomedical signals. 

V. CONCLUSION  AND FUTURE WORK 
In this work, we set out to explore the capabilities and 

advantages of the proposed Healthcare4Q paradigm. The 
potential architectural and computational superiority offered 
by quantum computing will prove to be the turning point in 
the privacy and security needs of the future of healthcare. 
Quantum technologies of the future will also extend to IoT, 
wearables, and other edge devices thereby providing end-to-
end coverage, from data generation to processing workflow 
and decision-making to actionable intelligence.  

We further proposed and studied a heart health framework 
called QAIHHF. We also created a score based on this 
framework indicating the state of the health of a person’s 
heart. We listed various factors and contributors to this score, 
and we are currently working on creating the full model of that 
score that we plan to present in the near future.   

Working towards creating the QAIHHF score, we 
investigated several classical and quantum machine learning 
algorithms to study the efficiency and accuracy of quantum 
methods. We saw that the quantum algorithms were equally 
accurate when training with the ECG data and that these 
methods can indeed be used for the QAIHHF framework.  

This work was done using PennyLane’s default quantum 
simulation environment. The quantum simulation 
environment, owing to the single-threaded nature of the 
runtime, runs slower when compared to classical methods. We 
hope to improve upon the speed of model training in our 
subsequent work by optimizing code and utilizing GPU-
enabled environments. We will also explore the model 
training and related statistics in the quantum computing 
environments provided by IBM Quantum [58].  
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