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Abstract

In this paper, we analyze the secrecy performance of a two-hop cooperative network consisting solely of energy-harvesting self-

sustaining nodes drawing energy from a multi-antenna power beacon (PB). Performance of such networks is quite different from

that with powered nodes. We consider optimal combining of the direct and relayed signals at the multi-antenna destination

as well as the multi-antenna eavesdropper. Since availability of channel state information at the source is impractical in such

networks, we assume fixed-rate signaling. To implement incremental signaling, we utilize feedback bits from the destination.

Assuming practical nonlinear EH, exact and approximate expressions are derived for the secrecy outage probability of the

selective decode-and-forward (SDF) and the incremental decode-and-forward (IDF) relaying schemes. It is demonstrated that

IDF has much better secrecy performance than SDF just as with powered nodes. However, unlike with powered nodes, the

secrecy performance is a convex function of the transmit power of PB. We propose a novel power back-off scheme to improve

secrecy under different network operating conditions. The security-reliability trade-off (SRT) is analyzed to highlight the

trade-off between outage and secrecy performance with the power back-off scheme. Simulation results validate the analytical

expressions.
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Abstract—In this paper, we analyze the secrecy performance
of a two-hop cooperative network consisting solely of energy-
harvesting self-sustaining nodes drawing energy from a multi-
antenna power beacon (PB). Performance of such networks is
quite different from that with powered nodes. We consider op-
timal combining of the direct and relayed signals at the multi-
antenna destination as well as the multi-antenna eavesdropper.
Since availability of channel state information at the source is
impractical in such networks, we assume fixed-rate signaling.
To implement incremental signaling, we utilize feedback bits
from the destination. Assuming practical nonlinear EH, exact
and approximate expressions are derived for the secrecy outage
probability of the selective decode-and-forward (SDF) and the
incremental decode-and-forward (IDF) relaying schemes. It is
demonstrated that IDF has much better secrecy performance
than SDF just as with powered nodes. However, unlike with
powered nodes, the secrecy performance is a convex function
of the transmit power of PB. We propose a novel power
back-off scheme to improve secrecy under different network
operating conditions. The security-reliability trade-off (SRT) is
analyzed to highlight the trade-off between outage and secrecy
performance with the power back-off scheme. Simulation
results validate the analytical expressions.

Index Terms—Energy harvesting (EH), physical-layer secu-
rity (PLS), selective decode and forward (SDF), incremental
decode and forward (IDF), security-reliability trade-off (SRT).

I. INTRODUCTION

Internet of things (IoT) is crucial technology in realizing
a connected world with sensors embedded in homes, cities
and manufacturing plants [2]. 5G and 6G networks will
provide network connectivity to these IoT devices besides
traditional cellular connectivity. One of the key requirements
of 6G network is to support connectivity to 10’s of millions
of internet of things (IoT) or machine-type devices (MTD)
per square kilometer [3]. Therefore, conventional battery
charging techniques and replacement are not practical. They
may not even be feasible in some scenarios (on-body sen-
sors and in-body implants in biomedical applications for
example). Further, devices without batteries have smaller
form factor and are cheaper. Such nodes will have to be
self-sustaining and use only the harvested energy to remain
active. Hence, self-sustaining and battery-less IoT devices
which harvest energy from RF signals will play a significant
role in 6G [4]. Additionally, relays have been incorporated

The authors are with the Department of Electrical Engineering, Indian
Institute of Technology (IIT Delhi), New Delhi 110016, India (E-mail:
{amit.patel, shankar}@ee.iitd.ac.in). A conference version of this paper
restricted only to analysis for SDF is accepted for presentation in IEEE
VTC Spring 2023 [1]. In the journal version, we extend the analysis to
IDF, discuss power backoff, and compare the performance with SDF. This
work was supported by Prof. G.K. Chandramani Chair, IIT Delhi.

into communication standards (LTE-Advanced) due to their
promise to improve both the reliability and range of the
communication network [5], they are especially important
in self-sustaining networks since the large variations in the
link signal-to-noise (SNR) ratio greatly limit the quality of
service (QoS) that can be attained. Consequently, cooper-
ative communication links with EH self-sustaining nodes
are important for enhancing energy efficiency, reliability,
and range of wireless-powered cooperative communication
networks (WPCCN).

Due to the broadcast nature of the wireless medium,
communication is susceptible to eavesdropping by illegit-
imate receivers. Traditional security approaches employing
cryptographic algorithms and key management techniques
are computationally intensive and unsuited for low-power
IoT devices. Recently, physical-layer security (PLS) tech-
niques [6] have been proposed to overcome security issues
using the physical characteristics of the channel without
using an encryption key. In seminal work by Wyner [7]
showed that secrecy is attainable when the eavesdropper
channel is a degraded version of the main channel without
using key-based encryption. The core idea is that exploiting
channel characteristics can enhance physical layer secrecy
by enhancing the strength of the main channel over the
eavesdropping channel. For powered nodes, the use of co-
operative relays in increasing the secrecy of communication
networks is now well investigated due its susceptibility to
eavesdropping attacks [8]. It is apparent that understanding
the secrecy performance of WPCCN with EH nodes is quite
different from that of powered nodes, and needs to be studied
for use in next-generation networks.

A. Related Works

Recently, PLS of WPCCNs has been of interest to re-
searchers for the meeting requirements of future networks.
Cooperative jamming (CJ) is one of the techniques to
degrade the eavesdropper channel. In CJ, a friendly node
(source or destination) sends a jamming signal to confound
the eavesdropper while replenishing energy at the relay
node. In destination-based CJ [9]–[12], the source sends an
information signal to the relay, and simultaneously destina-
tion sends a jamming signal to confound eavesdropper and
replenishing energy at the relay. The relay then forwards the
information signal with the jamming signal. The destination
can cancel the jamming signal known to it while the
eavesdropper cannot. In [9], [10] artificial noise (AN) is
transmitted by the destination to enable EH (using either
time-switching (TS) or power-splitting (PS) ) at the amplify-
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TABLE I: Comparison of literature on Cooperative Jamming, Artificial noise, Relay/Jammer selection, Destination
assisted Jamming and our work.

Method of Secrecy EH Nodes EH Technique EH Source
[9] Destination-based CJ Relay SWIPT Destination jamming signal

[10]–[12] Destination-based CJ Relay SWIPT Destination jamming and source signal
[13] Source based jamming Relay SWIPT Source signal

[14]–[17] Relay based Jamming Multiple Relays SWIPT Source signal
[18] Intermediate node Jamming Multiple intermediate nodes SWIPT Source signal
[19] Cooperative Jamming Multiple DF relays SWIPT Power Beacon

Our Work Power control Both Source and Relay PB-WPCN Power Beacon

and-forward (AF) relay. In [11] both destination jamming
noise and the source signal are used to harvest energy at the
relay. In [12] the authors study optimal power allocation for
jamming and information symbols in an EH AF relay.

Source-based CJ is also well investigated for enhanc-
ing energy harvesting at intermediate node while jamming
eavesdropper [13]–[16]. In [13] the authors use a fraction of
the source power for jamming and the rest for information
transmission with the aid of an untrusted EH AF relay.
In [14], secrecy is studied with multiple EH AF relays,
each harvesting energy from the source signal, and using it
for both signal transmission and jamming. A beamforming
vector at the relays is determined optimally to maximize
the achievable secrecy rate. In [15], the secrecy performance
of a cooperative network with intermediate EH nodes (each
having finite storage) is studied. Each node acts as a relay for
information transmission as well as a jammer. Using energy
accumulation and storage information at the nodes, secrecy
improvement is achieved. In [16], multi-antenna EH nodes
harvest energy from the source signal, with nodes acting as
either relays or jammers based on their decoding status. The
authors propose a secure beamforming scheme for selected
relays to enhance secrecy with both TS and PS at the relay.
In [17], [18], uses best node selection, among multiple EH
intermediate nodes, for information transmission and rest as
jammers to enhance secrecy.

To enable the energy harvesting process at the relay
node, simultaneous wireless information and power transfer
(SWIPT) was proposed in [20], [21]. In [22], [23] power
splitting (PS) and time-switching (TS) protocols were used
to harvest energy from jamming signal. Several works
studying secrecy with SWIPT have been reported in litera-
ture [9]–[16]. Very few works considering wireless-powered
communication network (WPCN) architecture (using energy
harvesting at nodes) have been reported in literature. SWIPT
based EH architecture is suitable only over short ranges,
and to overcome this problem [24] have proposed a power
beacon (PB) based architecture. Also, PBs do not require
any back haul links, hence deployment cost is small [25].

B. Motivation and Contribution

Most of the aforementioned works on WPCCN have the
following limitations:

• The assumption of CSI at the source might not be
practical considering deployment of millions of nodes
in future networks. Since nodes are energy constrained,

attaining CSI at the source, for large number of nodes,
in each signaling interval is energy expensive.

• Most of the earlier works assume that either the source,
relay or jammer (in case of cooperative jamming) is of
EH type, and the remaining nodes are powered. With
rapidly increasing number of MTDs, all nodes in a
communication network are likely to be of the EH type.
In a practical scenario, IoT nodes need to assist a distant
node to meet its QoS requirements or to assist as a
relay for extending the range of communication. Hence
understanding the performance of cooperative networks
consisting solely of energy harvesting (EH) nodes is
very important. The secrecy performance of networks
with self-sustaining nodes has never been analyzed with
practical nonlinear EH circuits to date.

The only work to consider networks with solely EH
nodes is [19], which analyzes the secrecy performance
of a two-hop network with PB-based EH at the source
and the relay without a direct link. Due to the random
nature of the harvested energy, EH nodes need to be close
to each other to ensure acceptable QoS. Thus, neglecting
the direct link is not always reasonable. Therefore, we
assume the presence of direct links to both the destination
and the eavesdropper in our system model. In addition,
[19] considers the availability of channel knowledge to
the destination at both the source and the relays, which
is quite difficult in deployment scenarios with such low-
power MTDs. In contrast to these assumptions, we assume
no channel knowledge both at the source and the relay.
Consequently, we assume that the source uses fixed-rate
signaling instead. Since the signal-to-noise ratio (SNR) of
each link with an energy harvesting source takes the form
of the product of exponential random variables, the variance
of SNR is large as compared to its mean. For this reason,
to ensure good performance, we assume optimal combining
of the direct and relayed signals at both the destination and
the eavesdropper. This makes analysis of performance quite
involved. In this paper, we study method of power backoff
control for secrecy improvement at the expense of throughput
performance without any jamming. Also, we show that the
position of eavesdropper with respect to source and relay
plays an important role in power backoff control for secrecy
improvement. The significant contributions of our work are
as follows.

• We consider both non-incremental and incremental
signaling, and establish the superiority of the latter
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in terms of secrecy. Assuming practical nonlinear EH
circuits, we obtain an approximate expressions for
secrecy outage probability of the multi-antenna system
with non-linear EH model for both IDF and SDF
relaying schemes assuming fixed-rate transmission.

• For a PB-based WPCN, we show that IDF relaying
has better secrecy performance than the SDF relaying
scheme. Further, we obtain a accurate approximate
expression for the secrecy outage in the single antenna
scenario. We then establish convexity of transmit power
of PB with secrecy outage, suggesting an optimal
operating power of network.

• We further suggest an novel power control (backoff)
strategy at the source and the relay to improve secrecy
outage both for IDF and SDF signaling. We then specify
the power back-off at both the source and the relay
based on different network operating characteristics.

• We establish the security-reliability trade-off (SRT) and
show that improvement in secrecy is achieved only at
the expense of degradation in outage performance. We
then demonstrate how the power back-off at the source
and/or relay can be used to implement this trade-off.

The rest of this paper is structured as follows. Section II
elaborates on the system model of the PB-assisted coopera-
tive network. Section III analyzes the secrecy performance
of the proposed system model. Section IV discusses se-
crecy improvement through power back-off and SRT of the
proposed network. Numerical results based on the mathe-
matical analysis are compared to computer simulations in
Section VI. Finally, Section VII concludes the paper.

Notations: X ∼ CN (µ,σ2) implies that X is a complex
normal random variable of mean µ and variance σ2. Pr{A}
denotes the probability of an event A. fX (x) denotes the
probability density function (PDF) of a random variable
X . I1(·) is the modified Bessel function of the first kind
(and order 1), K1(·) denotes the modified Bessel function
of the second kind (and order 1), and E1(·) denotes the
exponential integral of type 1. A∪B and A∩B respectively
denote the union and intersection of events A and B. Ā is
the complement of the event A.

II. SYSTEM MODEL

Consider a two-hop cooperative network depicted in
Fig.1a consisting of a power beacon B, an EH source S, an
EH decode-and-forward (DF) relay R, a destination D, and
an eavesdropper E. We assume that B, D and E are equipped
with M, N and L antennas respectively. We assume a single
antenna at the source and the relay. It is assumed that the
power beacon B transmits with power P on a sub-carrier to
enable EH. Both S and R have no embedded power supply
- they harvest energy from B and use it for signaling in
another sub-carrier. However, due to the EH half-duplex
constraint (the nodes cannot harvest and use the energy
concurrently), two super-capacitors are used. While the
secondary super-capacitor charges, energy is drawn from the
primary super-capacitor for signal transmission. After the

signalling period, energy is transferred from the secondary
to the primary super-capacitor in a negligible amount of
time [26]. The destination D can be either battery-operated
or an EH node. Fig.1b depicts the signalling and energy
harvesting periods for S and R in a signaling interval T .

Let di j denote the distance between nodes with i ∈
[B,S,R] and j ∈ [S,R,D,E]. The path loss between any
two nodes i and j is assumed to be ki j = K(d0/di j)

m,
where d0 is the reference distance in the antenna far-field,
m is the path loss exponent, K = (λ/(4πd0))

2 is the free-
space path loss at distance d0, and λ is the wavelength.
Denote by Bi, D j and Ek the ith, jth and kth antenna of
B, D and E. We denote by hab ∼ CN (0,1) the channel
between a ∈ [Bi,S,R] and b ∈ [D j,Ek]. As in [9], [14],
[19], all channels are assumed to be of the Rayleigh fading
type. Let hBS = [hB1S , . . . ,hBMS ]

T , hBR = [hB1R , . . . ,hBMR ]
T ,

hSD = [hSD1
, . . . ,hSDN

]T , hRD = [hRE1
, . . . ,hREL

]T , hSE =

[hSE1 , . . . ,hSEL
]T , and hRE = [hRE1

, . . . ,hREL
]T .

Power beacon B transmits unit-energy symbols x with
power P using maximal ratio transmission (MRT) with
weights φBS = hBS/ ∥ hBS ∥ for the first T/2 duration, and
with weights φBR = hBR/ ∥ hBR ∥ for the next T/2 duration.
The received signal samples at S and R after matched
filtering are

yBS =
√

kBS Pφ
H
BS

hBS x+wBS , and yBR =
√

kBR Pφ
H
BR

hBR x+wBR , (1)

where wBS ,wBR ∼ CN (0,No) constitute additive white
Gaussian noise samples, and E(|x|2)= 1 (E(.) is the expecta-
tion operator). We consider the non-linear energy harvesting
(EH) model [27] with saturation characteristics in energy
harvesting circuit. So the harvested power in a signalling
interval for non-linear EH at S and R can be expressed as

PS =

{
ηP ∥ hBS ∥2 kBS , ηP ∥ hBS ∥2 kBS < Psat

Psat , otherwise,
(2)

PR =

{
ηP ∥ hBR ∥2 kBR , ηP ∥ hBR ∥2 kBR < Psat

Psat , otherwise,
(3)

where η is energy harvesting circuit conversion efficiency.
We first discuss the case of direct transmission, which is a
benchmark scheme.

A. Direct Transmission (DT)

In the case of direct transmission, S transmits unit-energy
symbols s at fixed information rate Rt and power PS in a
signaling interval to the destination D, which uses maximal
ratio combining (MRC) beamforming vector φSD =

hSD
||hSD ||

for receiving information. Similarly E uses maximal ratio
combining (MRC) beamforming vector φSE =

hSE
||hSE || . Then

the received signals yDT
SD

and yDT
SE

at D and E in a signaling
interval are given respectively by
yDT

SD
=
√

kSD PS φ
H
SD

hSD s+wSD , and yDT
SE

=
√

kSE PS φ
H
SE

hSE s+wSE , (4)

where wSD ,wSE ∼ CN (0,No) constitute additive white
Gaussian noise samples. The maximum mutual information
between S to D and S to E, normalized with bandwidth, are
[28]
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Fig. 1: (a) System model. (b) Energy harvesting and signaling period.

IDT
SD

=

log2

(
1+

PηkBS kSD gBS gSD
No

)
, gBS < Psat/PηkBS

log2

(
1+

Psat kSD gSD
No

)
, otherwise,

(5)

IDT
SE

=

log2

(
1+

PηkBS kSE gBS gSE
No

)
, gBS < Psat/PηkBS

log2

(
1+

Psat kSE gSE
No

)
, otherwise,

(6)

where gBS =∥ hBS ∥2, gSD =∥ hSD ∥2, gSR = |hSR |2, and
gSE =∥ hSE ∥2. The channel gains between nodes S-D and
S-E (denoted by gSD and gSE respectively) are exponentially
distributed. Clearly, gRD =∥ hRD ∥2 and gRE =∥ hRE ∥2 are
Gamma distributed.

B. Cooperative Transmission

In the case of cooperative transmission, signaling takes
place in two phases. Signaling in these phases is described
below.
Phase I Signalling
In the first phase (phase I) of signaling, S transmits unit-
energy symbols s of information rate Rt with power PS in a
signaling interval to R and D. For reasons that will become
apparent later, only a fraction βS of the available power at
S is used for transmission, which implies that S transmit
power is βS PS (we will show later that βS < 1 can improve
secrecy performance in certain scenarios, or implement the
SRT). D uses maximal ratio combining (MRC) beamforming
vector φSD =

hSD
∥hSD∥ to receive information. Similarly E

uses maximal ratio combining (MRC) beamforming vector
φSE =

hSE
∥hSE ∥ . In what follows, we use superscripts I and II to

distinguish between first and second-phase quantities when
required. Then the received signal samples yI

SR
, yI

SD
and yI

SE
at R, D and E respectively in phase I of a signaling interval
are given by

yI
SR
=
√

kSR βS PS hSR s+wSR , yI
SD

=
√

kSD βS PS φ
H
SD

hSD s+wSD , (7)

and yI
SE
=
√

kSE βS PS φ
H
SE

hSE s+wSE , (8)

where wSD ,wSR ,wSE ∼ CN (0,No) are additive white Gaus-
sian noise samples. The The maximum mutual information
during phase I of signalling between S-R link is

ISR =

log2

(
1+

βS PηkBS kSR gBS gSR
No

)
, gBS <

Psat
PηkBS

log2

(
1+

βS Psat kSR gSR
No

)
, otherwise

. (9)

Further, the maximum mutual information in phase I of
signaling between S-D and S-E links are

ISD =

log2

(
1+

βS PηkBS kSD gBS gSD
No

)
, gBS <

Psat
PηkBS

log2

(
1+

βS Psat kSD gSD
No

)
, otherwise,

(10)

ISE =

log2

(
1+

βS PηkBS kSE gBS gSE
No

)
, gBS <

Psat
PηkBS

log2

(
1+

βS Psat kSE gSE
No

)
, otherwise.

(11)

In what follows, we describe phase II signaling with SDF
and IDF schemes.
Phase II signaling
Both R and D attempt to decode the information symbols.
In case of SDF signaling, R re-encodes and transmits the
symbols in the second phase of signaling when decoding is
successful in phase I, and D combines the signals in the first
and second phases optimally. R is assumed to use a fraction
βR of the available power and transmit with power βRPR
(once again, the reason for this power back-off will become
apparent later). When R fails to decode information in phase
I, it does not perform relaying in phase II. In case of IDF,
signaling depends on decision made by S based on feedback
bits from R and D. Specifically, R transmits fR = 1 if it
can decode the symbols, and fR = 0 otherwise. Similarly, D
communicates feedback bit fD = 1 if decoding is successful,
and fD = 0 otherwise. When fD = 1 ( fR = 1 or fR = 0), there
is no second phase. Instead, new information symbols are
transmitted by the source (which clearly increases through-
put). Note that information rates at D and E are given by
(10). However, if fD = 0 and fR = 1, R transmits the decoded
information symbols in the second phase. D uses maximal
ratio combining (MRC) beamforming vector φRD =

hRD
∥hRD∥

to receiving information. Similarly E uses maximal ratio
combining (MRC) beamforming vector φRE =

hRE
∥hRE ∥ . The

received signal samples yII
RD

, yII
RE

at D and E respectively in
phase II of a signaling interval are given by

yII
RD
=
√

kRD βR PR φ
H
RD

hRD s+wRD , yII
RE
=
√

kRE βR PR φ
H
RE

hRE s+wRE , (12)

where wRD ,wRE ∼ CN (0,No) constitute additive white
Gaussian noise samples. The channel gains denoted by
gBR =∥ hBR ∥2, gRD =∥ hRD ∥2, and gRE =∥ hRE ∥2 are Gamma
distributed. The maximum mutual information during phase
II of R-D and R-E links are

IRD =

log2

(
1+ βR PηkBR kRD gBR gRD

No

)
, gBR < Psat

PηkBR

log2

(
1+ βR Psat kRD gRD

No

)
, otherwise,

(13)
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IRE =

log2

(
1+ βR PηkBR kRE gBR gRE

No

)
, gBR < Psat

PηkBR

log2

(
1+ βR Psat kRE gRE

No

)
, otherwise,

(14)

Further, in case of IDF signaling, when fR = fD = 0, the
signaling to D is in an outage, and the information rates
to D and E are once again given by (10). Here we make
the worst-case assumption that the eavesdropper monitors
the feedback bits fR and fD in order to perform optimal
combining to maximize its SNR when fD = 0 and fR = 1.
In other scenarios, when fD = 1 (direct link is successful),
as well as when fD = fR = 0 (the direct link fails and R
fails to decode), E cannot clearly perform combining due
to non-availability of the relayed signal in phase II. Due
to the independence of the S-D and S-E links, incremental
signaling can intuitively be expected to provide a better
trade-off between secrecy and throughput.

Due to the small and random nature of harvested energy,
the received SNR at the destination is sometimes very low.
Optimal combining of direct signal and relayed signal by
maximal ratio combining [29] results in improved through-
put (and secrecy performance, as we show in this paper).
These optimal weights are determined by S-D and R-D
channel knowledge at the destination. Hence the SNR at the
destination becomes ΓI

SD
+ΓII

RD
. Similarly, E also applies the

optimal combining of relayed and direct signals to maximize
its SNR. So the SNRs ΓD and ΓE at D and E after phase II
of the signaling interval are given by

ΓD=



βS PηkBS kSD gBS gSD
No

+
βR PηkBR kRD gBR gRD

No
,gBS <

Psat
PηkBS

,gBR <
Psat

PηkBR
βS PηkBS kSD gBS gSD

No
+

βR Psat kRD gRD
No

, gBS <
Psat

PηkBS
,gBR ≥

Psat
PηkBR

βS Psat kSD gSD
No

+
βR PηkBR kRD gBR gRD

No
, gBS ≥

Psat
PηkBS

,gBR <
Psat

PηkBR
βS Psat kSD gSD

No
+

βR Psat kRD gRD
No

, gBS ≥
Psat

PηkBS
,gBR ≥

Psat
PηkBR

.

(15)

Similarly, SNR at E would be

ΓE=



βS PηkBS kSE gBS gSE
No

+
βR PηkBR kRE gBR gRE

No
,gBS <

Psat
PηkBS

,gBR <
Psat

PηkBR
βS PηkBS kSE gBS gSE

No
+

βR Psat kRE gRE
No

, gBS <
Psat

PηkBS
,gBR ≥

Psat
PηkBR

βS Psat kSE gSE
No

+
βR PηkBR kRE gBR gRE

No
, gBS ≥

Psat
PηkBS

,gBR <
Psat

PηkBR
βS Psat kSE gSE

No
+

βR Psat kRE gRE
No

, gBS ≥
Psat

PηkBS
,gBR ≥

Psat
PηkBR

.

(16)

For ease of exposition, we denote gBS by gS , gBR by
gR , kBS by kS and kBR by kR , αS = Psat

PηkBS
, αR = Psat

PηkBR

. Further, ΩSD =
βS PkS kSD

βR No
denote average SNR of S-D

link. Similarly, ΩSR =
βS PkS kSR

βR No
, ΩRD =

PkR kRD
No

, ΩSE =
βS PkS kSE

βR No
,

ΩRE =
PkS kRE

No
denote average SNR of S-R, R-D, S-E, and

R-E links respectively. After phase II, the maximum mutual
information of the combined signals are

ISRD = log2 (1+ΓD) , and ISRE = log2 (1+ΓE ) , (17)

with ΓD and ΓE given by (15) and (16) respectively.

III. SECRECY OUTAGE PROBABILITY

In this section, we analyze the secrecy outage probability
pos of SDF and IDF signaling schemes (the DT scheme

is used as a benchmark). In most literature on secrecy, the
assumption of adaptive rate signaling is implicit, which im-
plies that channel knowledge is assumed at the transmitter.
The channel to E is however assumed to be unknown, which
causes a secrecy outage. In many practical scenarios, such
channel knowledge is not available at the transmitter, and
fixed-rate signaling is used. Secrecy outage has been defined
with and without incremental signaling for such scenarios
in [30] assuming powered nodes.

Consider the case of IDF with fixed-rate signaling as used
in this paper, there are three different secrecy outage events,
depending on the success probability of the direct link and
the probability of successful decoding at R: i.) When the
signal from S to D is successfully decoded at D in phase I
(ISD >Rt) , a secrecy outage occurs when the information rate
of the eavesdropping channel is more than the equivocation
rate (ISE ≥ Re) . ii.) When signal decoding at D fails in
phase I (ISD < Rt), but R successfully decodes and cooperates
with D in phase II, then secrecy outage occurs when either
or both of the following events occur: a) main link is in
outage (ISRD <Rt) , and b) the capacity after combining at E is
greater than the equivocation rate (ISRE ≥ Re). iii.) When both
the S-D link and S-R link fail ((ISD < Rt)∩ (ISR < Rt)) then
secrecy outage occurs irrespective of decoding success at
E. In summary, we can write the secrecy outage probability
pIDF

os with IDF as
pIDF

os =Pr{(ISD >Rt)∩ (ISE ≥Re)}︸ ︷︷ ︸
pIDF

os,1

+Pr{(ISD <Rt)∩ (ISR <Rt))}︸ ︷︷ ︸
pIDF

os,3

+Pr{(ISD <Rt)∩(ISR ≥Rt)∩ ((ISRD <Rt)∪ (ISRE ≥Re))}︸ ︷︷ ︸
pIDF

os,2

. (18)

To write the secrecy outage expression for SDF (non-
incremental relaying) we need to consider only the two
following sub-cases: i.) when decoding at R fails (ISR < Rt ),
(so R cannot cooperate with D) secrecy outage event is
the union of a) the S-D link failure event (ISD < Rt ), and
b) the event that capacity of the S-E link exceeds the
equivocation rate (ISE ≥Re). ii.) Decoding at R is successful,
so R cooperates with D but decoding fails after combining
at either one of D (ISRD < Rt ) or E (ISRE ≥ Re). Clearly pSDF

os
is given by

pSDF
os = Pr{(ISR < Rt)∩ ((ISD < Rt)∪ (ISE ≥ Re))}︸ ︷︷ ︸

pSDF
os,1

+Pr{(ISR ≥ Rt)∩ ((ISRD < Rt)∪ (ISRE ≥ Re))}︸ ︷︷ ︸
pSDF

os,2

. (19)

We present an approximate closed-form expression of
secrecy outage for IDF and SDF signaling in the following
lemmas.

Lemma 1. An approximate expression for secrecy outage
for multiple antenna with IDF signalling is

pIDF
os.,mult. ≈

γ(M,αS)

Γ(M)
+

1
Γ(M)

N−1

∑
m=0

L−1

∑
l=0

γm
thγl

th,eI1

m!l!Ωm
SD

Ωl
SE

− I2

+
Γ(M,αS)Γ(N,λSD)Γ(L,λSE )

Γ(L)Γ(N)Γ(M)
− 1

Γ(M)

N−1

∑
m=0

γm
th(I3 − I4)

m!Ωm
SD

+
(1− e−λSR )γ(N,λSD)Γ(M,αS)

Γ(N)Γ(M)
+ pos,21, (20)

where f (r)= Γ(2N−r)
Γ2(N)

(N
r
)
(−1)N−r−1, γth =2Rt −1, γth,e =2Re−

1, λSR =
γthβR No

βS Psat kSR
, λSD =

γthβR No

βS Psat kSD
, λRD = γthNo

βR Psat kRD
, λSE =

γth,eβR No

βS Psat kSE
,
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λRE =
γth,eNo

βR Psat kRE
, I1=

∫ αS
0 e

− γth
gS ΩSD

−
γth,e

gS ΩSE
−gS gM−m−l−1

S
dgS ,

I2=
∫ αS

0
e
−gS − γth

gS ΩSR gM−1
S

dgS
Γ(M)

, I3=
∫ αS

0 e
− γth

gS ΩSD
−gSgM−m−1

S
dgS ,

I4=
∫ αS

0 e
− γth

gS ΩSD
− γth

gS ΩSR
−gSgM−m−1

S
dgS , and pos,21 is defined in

(21) (on next page).
Proof. See Appendix A. ■

Lemma 2. An approximate expression for secrecy outage
for multiple antenna with SDF signalling is

pSDF
os.,mult. =

γ(M,αS)

Γ(M)
− I2 −

N−1

∑
m=0

γm
thI1

m!Ωm
SD

Γ(M)
+

N−1

∑
m=0

γm
thI3

m!Ωm
SD

Γ(M)

+
N−1

∑
m=0

L−1

∑
l=0

γm
thγl

th,e(I4 − I5)

m!l!Ωm
SD

Ωl
SE

Γ(M)
+

(1− e−λSR )Γ(M,αS)

Γ(M)Γ(N)Γ(L)

×
[
γ(N,λSD)Γ(L)+Γ(N,λSD)Γ(L,λSE )

]
+ pos,21 + pos,22, (33)

where fe(r)≈
Γ(2L−r)(L

r)(−1)L−r−1

Γ2(L) , I1=
∫ αS

0 e
− γth

gS ΩSD
−gSgM−m−1

S
dgS ,

I2=
∫ αS

0 e
− γth

gS ΩSR
−gSgM−m−1

S
dgS ,

I3=
∫ αS

0 e
− γth

gS ΩSD
− γth

gS ΩSR
−gS gM−m−1

S
dgS ,

I4=
∫ αS

0 e
− γth

gS ΩSD
−

γth,e
gS ΩSE

−gSgM−m−l−1
S

dgS ,

I5=
∫ αS

0 e
− γth

gS ΩSD
−

γth,e
gS ΩSE

− γth
gS ΩSR

−gSgM−m−l−1
S

dgS .

Proof. We simplify pSDF
os,1 in (19) by substituting ISR , ISD and

ISE from (9), (10), and (11) respectively, conditioning on
EH channels gS and gR , further simplifying the resulting
expression using the PDF of gS and gR , and using the
series expansion of the lower incomplete gamma function
[31, 8.352] (as in the derivation of pIDF

os,1 in Appendix A).
pSDF

os,2 can be simplified using the identity Pr{A
⋃

B} =

Pr{A}+Pr{B}−Pr{A∩B} for events A and B to get
pSDF

os,2 = Pr{(ISR ≥ Rt),(ISRD < Rt)}︸ ︷︷ ︸
pSDF

os,21

+Pr{(ISR ≥ Rt),(ISRE ≥ Re)}︸ ︷︷ ︸
pSDF

os,22

−Pr{(ISR ≥ Rt),(ISRD < Rt), ISRE ≥ Re)}︸ ︷︷ ︸
pSDF

os,23

. (34)

As with IDF, it can be shown pSDF
os,2 ≈ pSDF

os,21 + pSDF
os,22. The

expression for pSDF
os,21 is the same as pIDF

os,21 (in Appendix A).
Evaluation of pSDF

os,22 follows on similar lines. ■

The expressions for secrecy outage in case of multiple
antennas are complex to lend any analytical insights.
Hence, we derive expressions for a single antenna system
to deduce useful insights about the system behavior. We
present an accurate expression of IDF scheme for a single
antenna system in the following lemma.

Lemma 3. An approximate expression for secrecy outage
for IDF signaling with single antennas at B,D, and E (M =
1,N = 1,L = 1) is

pos ≈ pos,1 + pos,2 + pos,3

pos,1 =
∫

αS

0
e
−gS−

γth
gS ΩSD

−
γth,e

gS ΩSE dgS + e−λSD−λSE −αS , (35)

pos,2 ≈ pos,21, (36)

pos,3 =
∫

αS

0
e−gS

(
1− e

− γth
gS ΩSR

)(
1− e

− γth
gS ΩSD

)
dgS

+
(
1− e−λSR

)(
1− e−λSD

)
e−αS . (37)

where pos,21,is defined in (38).

Proof. See Appendix B. ■

Lemma 4. An accurate approximate expression for pIDF
os

is given by (39)

where q1 =
γ2

thΩSR
ΩRD ΩSD (ΩSR

−ΩSD )
, q2 =

γ2
th

ΩRD (ΩSR
−ΩSD )

,

I = e−αS (1 − e−αR ) − γthe−αS QRD
ΩRD

,QSD = e
γth

ΩSD E1(
γth

ΩSD
) −

e
γth

ΩSD E1(αS + γth
ΩSD

), QSR = e
γth

ΩSR E1(
γth

ΩSR
) − e

γth
ΩSR E1(αS + γth

ΩSR
),

QRD = e
γth

ΩRD E1(
γth

ΩRD
)− e

γth
ΩRD E1(αR + γth

ΩRD
), and dSR = νdSD (ν

models the relative position of R with respect to S and D),
ΩRD = τΩSD and τ = (1−ν)m .

Proof. See Appendix C. ■

Remark 1. A simplified expression of secrecy outage for
the linear EH case (Psat → ∞, αS → ∞ and αR → ∞) is

pIDF
os,approx.,HighSNR ≈ 1+

√
4γth

ΩSD

+
4γth,e

ΩSE

K1

(√4γth

ΩSD

+
4γth,e

ΩSE

)
−

√
4γth

ΩSD

K1

(√4γth

ΩSD

)
−

√
4γth

ΩSR

K1

(√4γth

ΩSR

)
+

√
4γth

Ω
K1

(√4γth

Ω

)
+q1e

γth
ΩSD

+
γth

ΩRDE1

(
γth

ΩSD

)
E1

(
γth

ΩRD

)
−q2e

γth
ΩSR

+
γth

ΩRD E1

(
γth

ΩSR

)
E1

(
γth

ΩRD

)
.

(40)

Remark 2. At high power, ΩSD ,ΩSR ≫ γth and ΩSE ≫ γth,e.

Using lim
x→0

K1(x)→
Γ(1)

2
( x

2
)−1 [32, 9.6.9], we have terms√

4γth
ΩSD

+
4γth,e
ΩSE

K1

(√
4γth
ΩSD

+
4γth,e
ΩSE

)
→ 1,

√
4γth
ΩSD

K1

(√
4γth
ΩSD

)
→

1,
√

4γth
ΩSR

K1

(√
4γth
ΩSR

)
→ 1,

√
4γth
Ω

K1

(√
4γth
Ω

)
→ 1 . Also, q1 → 0,

q2 → 0, as ΩSD ,ΩSR ,ΩRD ≫ γth and the terms e
γth

ΩSD E1

(
γth

ΩSD

)
,

e
γth

ΩSR E1

(
γth

ΩSR

)
and e

γth
ΩRD E1

(
γth

ΩRD

)
assume small finite values.

So in (39), pIDF
os,approx. → 1 as expected. At low powers,

ΩSD ,ΩSR ,ΩRD ≪ γth , so the terms e
γth

ΩSD E1

(
γth

ΩSD

)
≈ ΩSD

γth
,

e
γth

ΩSR E1

(
γth

ΩSR

)
≈ ΩSR

γth
and e

γth
ΩRD E1

(
γth

ΩRD

)
≈ ΩRD

γth
,

and the terms q1e
γth

ΩSR E1

(
γth

ΩSR

)
e

γth
ΩRD E1

(
γth

ΩRD

)
and

q2e
γth

ΩSD E1

(
γth

ΩSD

)
e

γth
ΩRD E1

(
γth

ΩRD

)
cancel each other. Also,

xK1(x)→ 0 for large x so, pIDF
os,approx. → 1 once again.

Remark 3. When the legitimate nodes are more
closely located than E, ΩSD ≫ ΩSE . So, ΩSD ,ΩSR ≫ γth,√

4γth
ΩSD

+
4γth,e
ΩSE

≈
√

4γth,e
ΩSE

,
√

4γth
ΩSD

→ 0,
√

4γth
ΩSR

→ 0 and
√

4γth
Ω

→ 0.

Using lim
x→0

K1(x)→
Γ(1)

2
( x

2
)−1 [32, 9.6.9], terms√

4γth
ΩSD

+
4γth,e
ΩSE

K1

(√
4γth
ΩSD

+
4γth,e
ΩSE

)
→ 1,

√
4γth
ΩSD

K1

(√
4γth
ΩSD

)
→

1,
√

4γth
ΩSR

K1

(√
4γth
ΩSR

)
→ 1,

√
4γth
Ω

K1

(√
4γth
Ω

)
→ 1 . Also, q1 → 0,

q2 → 0, as ΩSD ,ΩSR ,ΩRD ≫ γth and terms e
γth

ΩSD E1

(
γth

ΩSD

)
,

e
γth

ΩSR E1

(
γth

ΩSR

)
and e

γth
ΩRD E1

(
γth

ΩRD

)
assume small finite values.

So, in (39), pIDF
os,approx. ≈

√
4γth,e
ΩSE

K1

(√
4γth,e
ΩSE

)
. Hence, secrecy

outage is limited by the strength of the eavesdropping link
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pos,21 = pos,21|I + pos,21|II + pos,21|III + pos,21|IV , (21)

pos,21|I=
N−1

∑
r=0

f (r)
Γ2(M)

[
Ω

N−r−1
SD

Ω
N
RD

I1d−
2N−r−2

∑
k=0

Ω
N+2k
SD

Ω
N+k−r−1
RD

I2d

]
, I1d=

αS∫
0

αR∫
0

gM+N−r−2
S

gM+N−1
R

γ(r+1, γth
gR ΩRD

)e
−gS−

γth
gS ΩSR

−gR dgR dgS

(gR ΩRD −gS ΩSD)
2N−r−1 , (22)

I2d =

αS∫
0

αR∫
0

gM+N+2k−1
S

gM+N+k−r−2
R

γ(k+ r+1, γth
gS ΩSD

)e
−gS−

γth
gS ΩSR

−gR dgR dgS

k!(gR ΩRD −gS ΩSD)
2N+k−r−1 , (23)

pos,21|II =
Γ(M,αS)e

−λSR

Γ2(M)Γ(N)

[
γ(M,αR)γ(N,λSD)−

N−1

∑
m=0

m

∑
l=0

(
m
l

)
(−1)lγm

thβm
R

m!Ωm
RD

λl
SD

γ(l +N,λSD) IP21(l,m)

]
, (24)

pos,21|III =
Γ(M,αR)

Γ2(M)Γ(N)

[
γ(N,λRD) IP31 −

N−1

∑
m=0

m

∑
l=0

(
m
l

)
(−1)lγm

th
m!Ωm

SD
λl

RD

γ(l +N,λRD) IP32(l,m)

]
, (25)

pos,21|IV =
e−λSR Γ(M,αS)Γ(M,αR)

Γ(N)Γ2(M)

[
γ(N,λRD)− e−λRD

N−1

∑
m=0

m

∑
l=0

(−1)lλm−l
SD

kl
RD

γ

(
N + l,

λSD (δkSD−kRD )
kRD

)
(δkSD)

l−1(δkSD − kRD)m!

]
. (26)

IP21(l,m) =

αR∫
0

e
−gR−

γthβR
gR ΩRD gM−m−1

R
dgR

Γ(M)
(

1− γthβR
gR ΩRD λSD

)l+N , IP31 =

αS∫
0

e
− γth

gS ΩSR
−gS gM−1

S
dgS

Γ(M)
, IP32(l,m) =

αS∫
0

e
− γth

gS ΩSD
− γth

gS ΩSR
−gS gM−m−1

S
dgS

Γ(M)
(

1− γth
gS ΩSD λRD

)l+N . (27)

pos,22|I=
L−1

∑
r=0

fe(r)
Γ2(M)

[
Ω

L−r−1
SE

Ω
L
RE

I1e−
2L−r−2

∑
k=0

Ω
L
SE

Ω
L−r−k−1
RE

I2e

]
, I1e=

αS∫
0

αR∫
0

gM+L−r−2
S

gM+L−1
R

γ(r+1, γth,e
gR ΩRE

)e
− γth

gS ΩSR
−gS−gR dgR dgS

(gR ΩRE −gS ΩSE )
2L−r−1 , (28)

I2e =

αS∫
0

αR∫
0

gM+L−1
S

gM+L−r−k−2
R

γ(k+ r+1, γth
gS ΩSE

)e
− γth

gS ΩSR
−gS−gR dgR dgS

k!(gR ΩRE −gS ΩSE )
2L−r−k−1 , (29)

pos,22|II =
Γ(M,αS)e

−λSR

Γ2(M)Γ(L)

[
γ(M,αR)Γ(L,λSE )+

L−1

∑
m=0

m

∑
l=0

(
m
l

)
(−1)lγm

th,eβm
R

γ(l +L,λSE ) IQ21(l,m)

m!Ωm
RE

λl
SE

]
,

pos,22|III =
Γ(M,αS)

Γ2(M)Γ(L)

[
Γ(L,λRE ) IP31 +

L−1

∑
m=0

m

∑
l=0

(
m
l

)
(−1)lγm

th,eγ(l +L,λRE )IQ23(l,m)

m!Ωm
SE

λl
RE

]
, (30)

pos,22|IV =
e−λSR Γ(M,αS)Γ(M,αR)

Γ2(M)Γ(L)

[
Γ(L,λRE )+ e−λSE

L−1

∑
m=0

m

∑
l=0

λm−l
SE

(−1)lkl
RE

γ

(
L+ l −1,

λSE (δkSE −kRE )
kRE

)
(δkSE )

l−1(δkSE − kRE )m!

]
. (31)

IQ21(l,m) =

αR∫
0

e
−gR−

γth,eβR
gR ΩRE gM−m−1

R

Γ(M)
(

1− γthβR
gR ΩRE λSE

)l+L dgR , IQ23(l,m) =

αS∫
0

e
−gS−

γth,e
gS ΩSE e

− γth
gS ΩSR gM−1

S

Γ(M)
(

1− γth,e
gS ΩSE λRE

)l+L dgS . (32)

and there exists a performance floor. To achieve a lower
secrecy outage, the strength of the eavesdropping link has
to be reduced (for example by jamming).

Remark 4. When E is more closely located to S than D,
ΩSE ≫ ΩSD so that

√
4γth
ΩSD

+
4γth,e
ΩSE

≈
√

4γth
ΩSD

. At sufficiently

high powers (ΩSD ,ΩSR ≫ γth),
√

γth
ΩSR

→ 0, and
√

γth
Ω

→ 0 .

Therefore,
√

4γth
ΩSR

K1

(√
4γth
ΩSR

)
→ 1 and

√
4γth
Ω

K1

(√
4γth
Ω

)
→ 1.

Also, q1 → 0, q2 → 0 and terms e
γth

ΩSD E1

(
γth

ΩSD

)
, e

γth
ΩSR E1

(
γth

ΩSR

)
and e

γth
ΩRD E1

(
γth

ΩRD

)
assume small finite values. Hence

pIDF
os,approx → 1 (secrecy outage is a certain event).

It is evident from Remark 1 that with small transmit
powers, the direct link is often in outage, and R re-transmits
when it can successfully decode. The re-transmissions from
R are observed by E, which weakens secrecy, so pos is
high. When the transmit power is high, the direct link is

successful with high probability, and the direct link to E
is also sufficiently strong, secrecy outage occurs, and pos
is large once again. A critical transmit power P of PB
certainly exists at which pos is the smallest. We pose this
optimization problem as

P∗ = argmin
P

pos. (41)

In the following lemma, we establish the convexity of pos
with respect to power P. We provide proof of convexity
for IDF signaling (proof for SDF signaling follows along
similar lines).

Lemma 5. The secrecy outage probability pIDF
os is a convex

function of transmit power P.

Proof. Convexity of pIDF
os can be established using high

SNR expression in (40) by showing second derivative is
positive. Detailed proof is given in Appendix D. ■
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pos,21=

αS∫
0

αR∫
0

e
−gS−gR−

γth
gS ΩSR

[
1− (gR ΩRD e

− γth
gR ΩRD −gS ΩSD e

− γth
gS ΩSD )

(gR ΩRD −gS ΩSD)

]
dgR dgS︸ ︷︷ ︸

pos,21|I

+e−λSR

[
1−

(
βR kRD e−λRD −βS kSD e−λSD

)(
βR kRD −βS kSD

) ]
e−αS e−αR︸ ︷︷ ︸

pos,21|IV

+
∫

αR

0
e−αS−gR−λSR

[
1−e−λSD −

[
e
− γth

gR ΩRD − e−λSD
](

1− cβR
gR ΩRD λSD

) ]
dgR

︸ ︷︷ ︸
pos,21|II

+
∫

αS

0
e
−gS−αR−

γth
gS ΩSR

[
1− e−λRD −

[
e
− γth

gS ΩSD −e−λRD

]
(

1− γth
gS ΩSD λRD

) ]dgS

︸ ︷︷ ︸
pos,21|III

, (38)

pIDF
os,approx. ≈ 1+

√
4γth

ΩSD

+
4γth,e

ΩSE

K1

(√4γth

ΩSD

+
4γth,e

ΩSE

)
−

√
4γth

ΩSD

K1

(√4γth

ΩSD

)
−

√
4γth

ΩSR

K1

(√4γth

ΩSR

)
+

√
4γth

Ω
K1

(√4γth

Ω

)
+pos,21|I + pos,21|II + pos,21|III + pos,21|IV

pos,21|I ≈ q1QSD QRD −q2QSR QRD , pos,21|II ≈ (1− e−λSD )e−λSR (1− e−αR )e−αS − λSD e−λSR I
(1+λSD)

,

pos,21|III ≈
(
1− e−λRD

)(
1− e−αS

)
e−αR −

(
1− e−λRD

) γthe−αR QSR

ΩSR

−
λRD

(
1− e−αS

)
e−αR

(1+λRD)
− cΩSR λRD e−αR QSD

ΩSD(ΩSD −ΩSR)(1+λRD)

+
cΩSD λRD e−αR QSR

ΩSR(ΩSD −ΩSR)(1+λRD)
, pos,21|IV ≈

[
1−

(
βR kRD e−λRD −βS kSD e−λSD

)
(βR kRD −βS kSD)

]
e−λSR e−αS e−αR , (39)

Remark 5. Unfortunately, the optimal value P∗ cannot
be expressed in closed form. However, P∗ can readily be
evaluated numerically.

Remark 6. It can be shown analytically that
pSDF

os,approx. ≥ pIDF
os,approx., which implies that SDF signaling is

less secure than IDF signaling. Note that re-transmissions
from R aid both D and E. For lower transmit powers, the
performance of SDF is similar to that of IDF since the
direct link is often in an outage in such scenarios, and
IDF signaling essentially amounts to SDF signaling. As
the transmit power increases marginally, frequent relay
re-transmissions degrade the secrecy performance with
SDF. However, since frequent relay transmissions are
avoided with the IDF scheme, its secrecy performance
is superior in this power range. We show later that even
reducing transmit power at R in a power backoff scheme
helps in improving secrecy performance with IDF signaling.

IV. SECRECY IMPROVEMENT USING POWER BACK-OFF

In this section, we establish how power back-off can be
used at S and R to improve the secrecy performance of the
considered wireless-powered cooperative network (although
it clearly degrades outage). The effectiveness of power
back-off is later demonstrated by extensive simulations.

A. Power back-off at the Relay
As noted earlier, IDF signaling offers better secrecy than

SDF signaling. We show here that when E is closer to
R than S, there exists an optimal value of this back-off
parameter β∗

R that ensures best secrecy. We pose this
optimization problem as

β
∗
R = arg min

0<βR<1
pos. (42)

We bring out the feature of this optimization problem in
the following lemma.

Lemma 6. The secrecy outage probability pIDF
os,approx

(pSDF
os,approx) is a convex function of the power back-off

parameter βR when E is closer to R than the S, and there
exists an optimal value of the power back-off parameter
β∗,IDF

R
and (β∗,SDF

R
) that minimizes the secrecy outage.

Proof. Detailed proof is given in Appendix E. ■

Remark 7. Although the optimal power back-off parameters
β∗,IDF

R
and β∗,IDF

R
cannot be expressed in closed form,

they can be readily evaluated by a 1-D offline search. The
amount of improvement in secrecy is more with SDF than
IDF due to frequent re-transmissions by R in the latter case.

B. Power back-off at the Source
In this subsection, we show that power back-off at S can

improve secrecy under certain conditions. Assuming P is
large, the direct link is successful with a high probability,
and leakage of information from R to E is practically non-
existent. In these cases, S can operate at reduced power by
applying power back-off βS while maintaining the required
outage constraint pout < ε. Hence, when the main channel
is stronger than the eavesdropping channel (widely studied
in literature), any reduction in power will marginally reduce
the SNR of the main channel while significantly reducing
the SNR of the eavesdropping channel. So, gain in secrecy
is attained by power back-off. This occurs till a certain
power P∗ at the beacon. Any further decrement in the power
at S will make the S-D link weak, and the R will start
cooperating with D (thereby leaking information to E and
thus reducing secrecy). There exists an optimal value of this
back-off parameter which gives minimum secrecy outage
performance. We pose this optimization problem as

β
∗
S
= arg min

0<βS<1
pos. (43)

We present the following lemma based on this observation.

Lemma 7. The secrecy outage probability pIDF
os,approx. is a

convex function of the power back-off parameter βS , and
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there exists an optimal value β∗,IDF
S

of the power back-off
parameter that minimizes the secrecy outage.

Proof. Detailed proof is given in Appendix E. ■

Remark 8. Unfortunately, the optimal power back-off pa-
rameter β∗,IDF

S
cannot be expressed in closed form. However,

β∗,IDF
S

can readily be evaluated numerically. Similar to IDF
signaling, secrecy outage with SDF signaling can also be
further improved by employing power back-off at the source.
Proof of convexity of pSDF

os,approx. with respect to βS follows
on similar lines.

In scenarios where E is not distant from R and P > P∗,
joint power back-off both at S and R improves secrecy
performance. There exists optimal values of back-off pa-
rameters (βS ,βR). We pose this optimization problem as

(β∗
S
,β∗

R
) = arg min

0<βS ,βR<1
pos. (44)

Lemma 8. The secrecy outage probability pIDF
os,approx. is

jointly convex with power back-off parameters (βS ,βR), and
there exist optimal values of (β∗,IDF

S
,β∗,IDF

R
) at source and

relay that minimize the secrecy outage.

Proof. Detailed proof is given in Appendix F. ■

The individual power back-off studied earlier (at only S
or R) is a special case of joint power back-off. When E is
closer to R and the network is operating at P = P∗, joint
back-off reduces to individual back-off at R. In contrast,
when E is far from R and the network is operating at P>P∗,
joint back-off reduces to individual back-off at S. In table II,
we indicate the back-off conditions for different operating
conditions of the network. In this sub-section, we studied
the importance of power back-off to improve secrecy outage
while degrading the outage performance. We further study
this interdependence of secrecy and reliability as a security-
reliability trade-off (SRT) in the next subsection.

TABLE II: Power back-off conditions at S and R

Network Condition Back-off
at R

Back-off
at S

P ≥ P∗, E is close to R Yes Yes
P < P∗, E is close to R Yes No
P ≥ P∗, E is not close to R Yes Yes
P < P∗, E is not close to R No No
P ≥ P∗, E is far from R No Yes
P < P∗, E is far from R No No

V. SECURITY-RELIABILITY TRADE-OFF

In recent years, security-reliability trade-off (SRT) has
been analyzed [33]–[35] to study the interplay of security
and reliability in communication networks. In this section,
we analyze the SRT of a self-sustainable cooperative net-
work for the first time. It is evident from the discussions in
the previous section on power back-off that as we increase
the power P of the power beacon, both S and R harvest
an increased amount of energy. This ensures improvement
in reliability performance. However, this also leads to an
increased risk of eavesdropping, and thereby poor secrecy
performance. On the other hand, decreasing P reduces the
reliability of the network, leading to reduced leakage of

information to E, and hence improved secrecy. To estab-
lish SRT, we derive an expression for outage probability
(pOP) and intercept probability (pIP) for the main and
eavesdropping link, respectively. In case of IDF signaling,
an outage occurs when the S-D link fails, and the S-R-
D link after combining the direct and relayed signals has
inadequate SNR [36]. Further, information rate at E exceeds
the information rate Rt interception by E occurs. Hence pOP
and pIP will be

pIDF
OP = Pr{ISD < Rt}Pr{min(ISR , ISRD)≤ Rt |ISD < Rt} , (45)

pIDF
IP = Pr{ISD ≥ Rt , ISE > Rt}+Pr{ISD < Rt , ISRE > Rt} . (46)

We present an expression for outage probability with the
IDF relaying scheme with multiple antennas for linear EH
(α → ∞, β → ∞) in the following lemma.

Lemma 9. The outage probability with the IDF relaying
scheme can be expressed as

pIDF
OP =1−

N−1

∑
m=1

2γ
m+M/2
th

m!Ωm+M/2
SD

KM

(√
4γth

ΩSD

)
−

N−1

∑
m=0

m

∑
r=0

(
m
r

)

×
∞∫

0

∞∫
0

e
− γth

gS ΩSR
− γth

gR ΩRD
γ

m−r
th Ωr

SD
ΩN−m+r

RD
gM+r−1

S
gM+N+r−m−1

R

m!Γ(N)Γ2(M)(gR ΩRD −gS ΩSD)

×e−gS−gR γ

(
N + r−1,

γth(gR ΩRD −gS ΩSD)

gR ΩRD gS ΩSD

)
dgR dgS . (47)

Proof. Detailed proof is given in Appendix G. ■

We now present an expression for intercept probability
for the IDF scheme in the following lemma.

Lemma 10. The exact expression for the intercept proba-
bility with the IDF relaying scheme is

pIDF
IP =

1
Γ(M)

N−1

∑
m=0

L−1

∑
l=0

2γ
m+l
th

m!l!Ωm
SD

Ωl
SE

(
γth

ΩSD

+
γth

ΩSE

)(M−m−l)/2

×KM−m−l

(
2
√

γth

ΩSD

+
γth

ΩSE

)
+

ΩL−r−1
SE

ΩL
RE

Γ(N)Γ2(M)

L−1

∑
r=0

fe(r)
∫

∞

0

∫
∞

0
e−gS−gR

×
gM+L−r−2

S
gM+L−1

R
Γ

(
r+1, γth

gR ΩRE

)
γ

(
N, γth

gS ΩSD

)
(gR ΩRE −gS ΩSE )

2L−r−1 dgS dgR

−
L−1

∑
r=0

2L−r−2

∑
k=0

fe(r)ΩL
SE

ΩL−r−k−1
RE

k!

∞∫
0

∞∫
0

gM+L−1
S

gM+L−r−k−2
R

(gR ΩRE −gS ΩSE )
2L−r−k−1

×e−gS−gR Γ(k+ r+1,γth/(gS ΩSE ))γ(N,γth/(gS ΩSD))dgS dgR . (48)

Proof. Detailed proof is given in Appendix H. ■

VI. SIMULATION AND NUMERICAL RESULTS

In this section, we numerically evaluate expressions for
secrecy outage with DT, SDF and IDF schemes. We study
the effect of transmit power as well as power back off (both
at S and R) on secrecy. Also, we demonstrate the existence
of SRT in a PB-based cooperative network. We validate
the analytical results in the paper through Monte Carlo
simulations. We consider distances dSD = 10 m, dSE = 10
m, dRE = 10 m, dBS = 5 m and dBR = 5 m. The path-loss
exponent m = 4, and the reference distance for antenna far-
field is d0 = 1 m. The carrier frequency fc = 2.4 GHz,
and the transmission bandwidth Bw = 10 MHz. Further,
No =−93 dBm. We consider Rt = 3 bpcu (bits per channel
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use) and equivocation rate Re = 2 bpcu so that so secrecy
transmit rate is Rs = Rt − Re = 1 bpcu. We assume that
the legitimate nodes are along a line, with the relay being
equidistant from S and D (dSR = 0.5dSD ).

In Fig.2 and Fig.3, we plot the exact and approximate
expressions for pos with respect to ΩSD (ΩSD =

δPkS kSD
No

) for
DT, SDF, and IDF schemes and compare with simulation
results. We assume two scenarios a) E is equidistant from
S and R (ΩSE = ΩRE ) and b) E is closer to R than S
(ΩRE = 4ΩSE ). In both scenarios, we observe perfect agree-
ment between simulation and analytical results. Moreover,
in Fig. 2 and 3 the secrecy outage exhibits a floor since
pos is limited by the large eavesdropper’s link SNR. As
we gradually increase ΩSD , the strength of the main link
increases. Hence, secrecy performance improves for both
SDF and IDF schemes. Further increase in ΩSD results in
better performance of IDF over SDF scheme. This happens
due to reduced leakage of information symbols from R
during re-transmissions when the S-D link fails. In Fig. 3, E
is close to R. This enhanced R-E link leaks more information
to E with SDF than IDF. Clearly, the IDF scheme provides
better physical layer security.

In Fig. 4, we study effect of link quality of the eaves-
dropping link ΩSE on secrecy outage when dRE is fixed
(ΩRE = 0dB). As we increase ΩSE , pos decreases since E is
brought closer to S (S-E link quality increases, hence secrecy
degrades). Moreover, IDF performs better than SDF for low
ΩSE . At high ΩSE both schemes fail to provide secrecy.

In Fig. 5, we plot pos with respect to P. In the low
transmit power regime, the performance of SDF and IDF
is similar since the direct link fails to support the required
target rate in many instances, and the relay re-transmits
the symbol to the destination. As we increase the beacon’s
transmit power, re-transmissions from R is less frequent with
IDF than with SDF, thus decreasing the chance of leaking
information symbols to E. Hence IDF performs better than
SDF in terms of secrecy. Further increase in transmit power
increases the probability of correct detection in both direct
and eavesdropping links, leading to an increase in pos. In
the high P regime, the performance of IDF is similar to
that of DT, while the performance of SDF is even poorer
than DT due to leakage of information from re-transmissions
from R. Clearly there exists an optimal power of PB which
minimizes the pos.

In Fig. 6 and 7, we plot pos with respect to the power
back-off parameter βR at R for IDF and SDF respectively.
When E is close to R, re-transmissions from R to D leads
to information leakage to E. This loss in secrecy can be
minimized by using less transmit power (βR < 1) at R.
There exists an optimal power back-off parameter β∗

R
which

minimizes secrecy outage for a given R-E distance. This is
consistent with lemma 6. As E is moved closer to R, the pa-
rameter β∗

R
becomes smaller, signifying that lower transmit

power at R ensures the best secrecy outage performance.
This also leads to energy savings at R, and the residual
energy can be used at R for its routine circuit operation.

Power back-off parameter evaluated numerically matches
closely with the simulation result. Also, improvement with
power back-off is higher with SDF than IDF due to re-
transmissions from R in the former leading to leakage of
information to E. This leakage is reduced by back-off at R
to a greater extent with SDF than with IDF signaling.

In Fig. 8 and 9, we plot pos (with IDF and SDF re-
spectively) with respect to the power back-off parameter
βS at S for different S-E distances. For a given outage
constraint of the network, we note later that this corresponds
to a point of operation on the SRT curve plotted in Fig.
10. The source can operate with larger power back-off in
order to reduce secrecy outage while increasing pout , thus
moving the operating point on the SRT curve towards right
(increase in pout ). This power back-off leads to energy
savings at S and improvement in pos. Also, there exists
an optimal power back-off parameter β∗

S
which minimizes

secrecy outage by reducing the transmit power of S while
yielding sub-optimal outage performance. The approximate
power back-off parameter evaluated numerically matches
closely with the exact power back-off parameter.

In Fig. 10, we plot pip versus pout for different MER
values λme = 25 dB and λme = 35 dB. The plot clearly
signifies the existence of a trade-off between security and
reliability in self-sustaining cooperative nodes. The SRT
curve of DT is above that of IDF, clearly suggesting
improvement in the trade-off. This shows that the use of
incremental signaling relaying improves both outage and
secrecy performance. However, both of these quantities are
interlinked, and improving intercept probability leads to
poorer outage performance, and vice-versa. Also, as we
increase the strength of the main to eavesdropper channel
the improvement in SRT offered by IDF over the DT
schemes also increases, suggesting the benefits of using an
incremental signaling. Further, when the outage probability
constraint is small, we are operating at the top-left corner of
the SRT curve. S applies power back-off in order to attain a
larger outage at the expense of lower intercept probability.
At high SNR, the SRT performance of the IDF scheme is
superior to SDF, while at low SNR SDF performs better
than IDF in terms of SRT.

VII. CONCLUSION

In this paper, we analyzed the secrecy performance of
a cooperative network with self-sustaining energy harvest-
ing nodes assuming fixed-rate signalling. The nodes were
assumed to harvest energy from a power beacon. Optimal
combining was used at both the destination and the eaves-
dropper. We analyzed the secrecy outage performance of
selective decode and forward (SDF) and incremental decode
and forward (IDF) relaying schemes. It was shown that the
latter ensures much better secrecy performance. The security
reliability trade-off of such networks was analyzed to derive
insights. It was established that the secrecy outage is a
convex function of the power beacon power. An optimal
value of the power beacon power exists that minimizes
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the secrecy outage. A novel power back-off technique was
proposed that allows a trade-off of outage for better secrecy.
Finally, we demonstrated the validity of the analytical results
through computer simulations. The derived insights lend
important insights into the secrecy performance of networks
with self-sustaining machine-type devices.

APPENDIX A
Proof of Lemma 1: We substitute for ISR , ISD , ISE from

(9), (10), (11) and ISRD , ISRE from (17) in expression of pos,1
defined in (18). Specifically, pos,1 becomes

pIDF
os,1 = Pr

{
gS gSD ΩSD > γth/βR ,gS gSE ΩSE ≥ γth,e/βR ,gS ≤ αS

}
+Pr

{
βS PsatkSD gSD/No>γth,βS PsatkSE gSE /No>γth,e,gS >αS

}
. (49)

In case of multiple antenna, PDFs of channels gSD and
gSE will be fgSD

(gSD) = e−gSD gN−1
SD

/Γ(N) and fgSE
(gSE ) =

e−gSE gL−1
SE

/Γ(N) respectively. Conditioning on the channel
gain gS , solving, and then averaging over gS , we get

pIDF
os,1=

∫
αS

0
Γ(N,γth/(gS ΩSD))Γ(L,γth,e/(gS ΩSE )) fgS

(gS)dgS

+
∫

∞

αS

Γ(N,λSD/βR)Γ(L,λSE /βR) fgS
(gS)dgS . (50)

Since the power beacon B possesses M antennas, the PDF

of channel gS and gR will be fgS
(gS) =

e−gS gM−1
S

Γ(M) . Using the
PDF of gS and series expansion of lower incomplete gamma
function [31, 8.352], we can express the above equation as
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pIDF
os,1=

N−1

∑
m=0

L−1

∑
l=0

∫
αS

0

γm
thγl

th,e

gm+l
S

Ωm
SD

Ωl
SE

e
− γth

gS ΩSD
−

γth,e
gS ΩSE

−gS gM−1
S

m!l!Γ(M)
dgS

+
∫

∞

αS

Γ(N,λSD/βR)Γ(L,λSE /βR)
e−gS gM−1

S

Γ(M)
dgS . (51)

To evaluate pIDF
os,2 , we simplify the expression using the

identity Pr{A
⋃

B}= Pr{A}+Pr{B}−Pr{A∩B} for events A
and B. Using this in (19), we get

pIDF
os,2 = Pr{(ISR ≥ Rt),(ISRD < Rt)}︸ ︷︷ ︸

pIDF
os,21

+Pr{(ISD < Rt),(ISR ≥ Rt),(ISRE ≥ Re)}︸ ︷︷ ︸
pIDF

os,22

−Pr{(ISD < Rt),(ISR ≥ Rt),(ISRD < Rt),(ISRE ≥ Re)}︸ ︷︷ ︸
pIDF

os,23

. (52)

Substituting for ISD , ISR , ISRD and ISRE , then conditioning
pos,2 on gS , gR , and exploiting independence of gSD , gSR ,
gSE and gRE we have
pIDF

os,2|I =Pr
{
gS gSD ΩSD <γth,X <γth

}︸ ︷︷ ︸
p1|gS ,gR

Pr
{
gS gSR ΩSR ≥γth

}︸ ︷︷ ︸
p2|gS

+Pr{gS gSD ΩSD < γth}︸ ︷︷ ︸
p4|gS

Pr{gS gSR ΩSR ≥ γth}Pr
{

Y ≥ γth,e
}︸ ︷︷ ︸

p3|gS ,gR

−Pr
{

gS gSD <
γth

ΩSD

,X < γth

}
Pr
{

gS gSR ≥ γth

ΩSR

}
Pr
{

Y ≥ γth,e
}
,(53)

where X = gS gSD ΩSD + gR gRD ΩRD , Y = gS gSE ΩSE + gR gRE ΩRE .
Since pIDF

os,22|gS ,gR
= p4|gS

p2|gS
p3|gS ,gR

, and pIDF
os,23|gS ,gR

=

p1|gS ,gR
p2|gS

p3|gS ,gR
, pIDF

os,2|gS ,gR
= pIDF

os,21|gS
+ (p4|gS

−
p1|gS ,gR

)p2|gS
p3|gS ,gR

. Therefore, for single antenna system
(M = 1, N = 1, L = 1), we have

p1|gS ,gR=1− gR ΩRD e
− γth

gR ΩRD

(gR ΩRD−gS ΩSD)
+

gS ΩSD e
− γth

gS ΩSD

(gR ΩRD−gS ΩSD)
, p2|gS =e

− γth
gS ΩSR ,

p3|gS ,gR=
gR ΩRE e

−
γth,e

gR ΩRE −gS ΩSE e
−

γth,e
gS ΩSE

(gR ΩRE−gS ΩSE )
, p4|gS =1−e

− γth
gS ΩSD . (54)

Using the linear approximation to the exponential terms
e−x ≈ 1/(1 + x) , we can write p4|gS

= 1 − gS(
gS+

γth
ΩSD

) , and

p1|gS ,gR
= 1 −

(
gS gR τ+

γthgR τ

ΩSD
+

γthgS
ΩSD

)(
gS+

γth
ΩSD

)(
gR τ+

γth
ΩSD

) from (54) (τ = (1 − ν)m ,

defined in the text following (39)). We make the observation
that gS gR τ ≫ γthgS

ΩSD
and gS gR τ ≫ γthgR τ

ΩSD
since gS ,gR ≫ γth

ΩSD
for

large SNR. So, gS gR τ +
γthgR τ

ΩSD
+

γthgS
ΩSD

≈ gS gR τ +
γthgS
ΩSD

. Hence,
p4|gS

≈ p1|gS ,gR
. So, pIDF

os,22 ≈ pIDF
os,23, resulting in pIDF

os,2 ≈
pIDF

os,21. Similarly, we can show a similar result for multiple
antennas. To evaluate pIDF

os,21 we first derive the PDF for
random variable X = gS gSD ΩSD +gR gRD ΩRD to evaluate pos,21
as

fX |gS ,gR
(x) =

∫ x

0
fgSD

(gSD) fgRD
(x−gSD)dgSD . (55)

Using the PDF of gSD and gRD and conditioning on gS and
gR , we get

fX |gS ,gR
(x)=

∫ x

0

gN−1
SD

(x−gSD)
N−1e

− x
gR ΩRD

− gSD
(gS ΩSD −gR ΩRD ) dgSD

(gS gR ΩSD ΩRD)
NΓ2(N)

. (56)

Using the binomial expansion in the integral and rearrang-
ing terms, we get

fX |gS ,gR
(x) =

∑
N−1
r=0

(N−1
r
)
xr(−1)N−1−re

− x
gR ΩRD

(gS gR ΩSD ΩRD)
NΓ2(N)

×
∫ x

0
g2N−2−r

SD
e
− gSD

(gS ΩSD −gR ΩRD ) dgSD . (57)

Further, using the definition of the lower incomplete gamma
function [32, 6.5.1], we get

fX |gS ,gR
(x) =

∑
N−1
r=0

(N−1
r
)
xr(−1)N−1−re

− x
gR ΩRD

Γ2(N)(gR ΩRD −gS ΩSD)
(2N−r−1)

×(gS ΩSD gR ΩRD)
(N−r−1)

γ

(
2N − r−1,

x(gR ΩRD −gS ΩSD)

gS ΩSD gR ΩRD

)
. (58)

Using the series form of lower incomplete gamma function
for integer values [31, 8.352] in the above expression, we
obtain the PDF of X as

fX |gS ,gR
(x) =

e
− x

gR ΩRD

Γ2(N)

N−1

∑
r=0

(
N−1

r

)
xr(−1)N−1−r

Γ
(
2N − r

)
× (gS gR ΩSD ΩRD)

N−r−1

(gR ΩRD −gS ΩSD)
(2N−r−1)

− e
− x

gR ΩRD

Γ2(N)

N−1

∑
r=0

(
N−1

r

)
×xr(−1)N−1−r (gS gR ΩSD ΩRD)

N−r−1γ
(
2N − r

)
(gR ΩRD −gS ΩSD)

(2N−r−1)

×e
− x(gR ΩRD −gS ΩSD )

gS ΩSD gR ΩRD

2N−r−2

∑
k=0

xk(gR ΩRD −gS ΩSD)
k

(gS ΩSD gR ΩRD)
kk!

. (59)

Using PDF of X in (97) and averaging over gS and gR ,
we get (22). Similarly, we can evaluate pIDF

os,21|II , pIDF
os,21|III

and pIDF
os,21|IV to obtain (24), (25) and (26) respectively.

Expression of pos,3 from (18) will be

pIDF
os,3 = Pr

{
gS gSD ΩSD <γth/βR ,gS gSR ΩSR <γth/βR ,gS ≤ αS

}
+Pr

{
βS PsatkSD gSD/No<γth,βS PsatkSR gSR/No<γth,gS>αS

}
. (60)

Using PDF of channels gSD , gSR and conditioning on the
channel gain gS , solving, and then averaging on gS , we get

pIDF
os,3=

∫
αS

0
γ(N,γth/(gS ΩSD))e

− γth
gS ΩSR

e−gS gM−1
S

Γ(M)
dgS

+
∫

∞

αS

γ(N,λSD/βR)
(
1− e

− λSR
βR
)e−gS gM−1

S

Γ(M)
dgS . (61)

Using the series expansion of lower incomplete gamma
function [31, 8.352], we get pIDF

os,3 in (20)

APPENDIX B

Proof of Lemma 3: Substituting M = 1,N = 1,L = 1 in pIDF
os,1

derived for multi-antennas in (51), Γ(M,α)
Γ(L)Γ(N)

= e−α, Γ
(
N,λSD/βR

)
=

e−λSD/βR and Γ
(
L,λSE /βR

)
= e−λSE /βR . Hence pIDF

os,1 reduces to
(35). To derive pIDF

os,2|I in (36), we use (53) and (54) to get pIDF
os,21|I in

(38). Similarly, we can derive pIDF
os,21|II , pIDF

os,21|III and pIDF
os,21|IV . pIDF

os,3
expression in (37) is achieved by substituting N = 1 and M = 1 in
(61).

APPENDIX C
Proof of Lemma 4: pos,1 in (35) reduces to√
4γth
ΩSD

+
4γth,e
ΩSE

K1

(√
4γth
ΩSD

+
4γth,e
ΩSE

)
and pos,3 in (36) reduces

to 1−
√

4γth
ΩSD

K1

(√
4γth
ΩSD

)
−
√

4γth
ΩSR

K1

(√
4γth
ΩSR

)
+
√

4γth
Ω

K1

(√
4γth
Ω

)
for large value of α (at high SNR). Further, pIDF

os,2 ≈ pIDF
os,21

(see paragraph succeeding (54)). To simplify pIDF
os,21, we

use linear approximation of e
− γth

gS ΩSR ≈
(
1 + γth/gS ΩSR

)−1,
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e
− γth

gS ΩSD ≈
(
1+ γth/gS ΩSD

)−1 and e
− γth

gR ΩRD ≈
(
1+ γth/gR ΩRD

)−1

in pos,21|I (defined in (38)). Simplifying further, we get

pos,21|I ≈
αS∫
0

αR∫
0

e−gR−gS dgS dgR

(1+ γth/gS ΩSR)

[
1− gS gR+γthgS/ΩRD+γthgR/ΩSD

(γth/ΩSD+gS)(γth/ΩRD+gR)

]
=
∫

αS

0

∫
αR

0

γ2
thΩSR e−gR−gS gS dgR dgS

(gS ΩSR + γth)(γth +gS ΩSD)(γth +gR ΩRD)
. (62)

Using partial fractions of terms involving (gS ΩSD + γth) and
(gS ΩSR + γth) and using the identity [32, 5.1.28], we obtain
pos,21|I in (39). Similarly, we can find pos,21|II and pos,21|III .

APPENDIX D
Proof of Lemma 5: In order to prove the convexity of

pos with P for IDF signalling, we write the expression for
pIDF

os.,approx. in (40) as a function of ρ = P
No

as follows

pIDF
os,approx.(ρ) = 1+β

′
1ρ

−1/2K1

(
β
′
1ρ

−1/2
)
−β

′
2ρ

−1/2K1

(
β
′
2ρ

−1/2
)

−β
′
3ρ

−1/2K1

(
β
′
3ρ

−1/2
)
+β

′
4ρ

−1/2K1

(
β
′
4ρ

−1/2
)

+(q′1/ρ
2)e

γth
ρΩ′

SD E1(γth/ρΩ
′
SD
)e

γth
ρΩ′

RD E1(γth/ρΩ
′
RD
)︸ ︷︷ ︸

Q1

−(q′2/ρ
2)e

γth
ρΩ′

SR E1(γth/ρΩ
′
SR
)e

γth
ρΩ′

RD E1(γth/ρΩ
′
RD
)︸ ︷︷ ︸

Q2

, (63)

where β′
1 =

√
4γth
Ω′

SD
+

4γth,e
Ω′

SE
, β′

2 =

√
4γth
Ω′

SD
, β′

3 =

√
4γth
Ω′

SR
, β′

4 =
√

4γth
Ω′ ,

Ω′
SD

=
βS kS kSD

βR
, Ω′

SR
=

βS kS kSR
βR

, Ω′
RD

= kR kSD , Ω′
SE

=
βS kS kSE

βR
, Ω′ =

Ω′
SR

Ω′
SD

(Ω′
SR
+Ω′

SD
)
, q′1 =

γ2
thΩ′

SR
Ω′

SD
Ω′

RD
(Ω′

SR
−Ω′

SD
)
, and q′2 =

γ2
th

Ω′
RD

(Ω′
SR
−Ω′

SD
)
. We

find derivatives of each term in (63). We use properties of
derivative of Bessel function [32, 9.6.27, 9.6.29] to find
derivative of terms involving Bessel function in (63). We

also define Tj(ρ) = e
γth

ρΩ′
j E1(

γth
ρΩ′

j
)e

γth
ρΩ′

RD E1(
γth

ρΩ′
RD
), j ∈ {SR,SD}

to find derivative of terms Q1 and Q2 by using [32, 5,1.26].
For i ∈ {1,2,3,4},

d(β′
iρ

−1/2K1(β
′
iρ

−1/2))

dρ
=−

β′
iK1(β

′
iρ

−1/2)

2ρ3/2
+

β′2
i K0(β

′
iρ

−1/2)

4ρ2

+
β′2

i K2(β
′
iρ

−1/2)

4ρ2 , (64)

d2(β′
iρ

−1/2K1(β
′
iρ

−1/2))

dρ2 =−(5/8)β′2
i ρ

3K0(β
′
iρ

−1/2)

+
(
(3/4)β′

iρ
−5/2+(1/8)β′2

i ρ
−7/2+(1/16)β′3

i ρ
−7/2

)
K1(β

′
iρ

−1/2)

− (5/8)β′2
i ρ

−3K2(β
′
iρ

−1/2)+(1/16)β′3
i ρ

−7/2K3(β
′
iρ

−1/2), (65)

T ′
j (ρ)=

dTj(ρ)

dρ
=

1
ρ

e
γth

ρΩ′
j E1(

γth

ρΩ′
j

)+
1
ρ

e
γth

ρΩ′
RD E1(

γth

ρΩ′
RD

)− γthT0(ρ)

ρ2Ω′
RD

+
γthT0(ρ)

ρ2Ω′
j

,

(66)

dQ1

dρ
=

q′1T ′
SD
(ρ)

ρ2 −
2q′1TSD(ρ)

ρ3 ,
dQ2

dρ
=

q′2T ′
SR
(ρ)

ρ2 −
2q′2TSR(ρ)

ρ3 ,

d2Q1

dρ2 =
q′1T ′

SD
(ρ)

ρ2 −
2q′1TSD(ρ)

ρ3 ,
d2Q2

dρ2 =
q′2T ′

SR
(ρ)

ρ2 −
2q′2TSR(ρ)

ρ3 .

(67)

Equating
d pIDF

os,approx.
dρ

to zero using the above terms, P∗ can
be evaluated. However numerical methods are required due
to the complex nature of the equation. Further, it can be
shown that

d2 pIDF
os,approx.
dρ2 |P=P∗ > 0.

APPENDIX E
Proof of Lemma 6 and 7: Proof of convexity with

βR : Using the expressions of pIDF
os,22 = p4|gS

p2|gS
p3|gS ,gR

and
pos,23 = p1|gS

p2|gS
p3|gS

from paragraph succeeding (53). we
derive approximations for pIDF

os,22 and pIDF
os,23 using linear

approximation to e
−

γth,e
gR ΩRE ≈ (1 + γth,e/gR ΩRE )

−1, e
−

γth,e
gS ΩSE ≈

(1 + γth,e/gS ΩSE )
−1, e

− γth
gS ΩSD ≈ (1 + γth/gS ΩSD)

−1, e
− γth

gR ΩRD ≈
(1 + γth/gR ΩRD)

−1, and e
− γth

gS ΩSR ≈ (1 + γth/gS ΩSR)
−1 in (53)

and (54). We then simplify the resulting expressions by
segregating terms involving gS and gR using partial fractions,
then individually integrate over gS and gR to obtain following
expressions

pIDF
os,22 ≈−1+ v21e

γth
Ω E1

(
γth

Ω

)
+ v22e

γth,e
ΩRE E1

(
γth,e

ΩRE

)
e

γth,e
Ω E1(

γth,e

Ω
)

−v23e
γth,e
ΩRE E1

(
γth,e

ΩRE

)
e

γth,e
ΩSE E1

(
γth,e

ΩSE

)
, (68)

pIDF
os,23 ≈−1+ v31e

γth
ΩSR E1(

γth

ΩSR

)

+(v32 − v36)e
γth

ΩSD E1(
γth

ΩSD

)e
γth

ΩRD E1(
γth

ΩRD

)

−(v33 − v37)e
γth

ΩSR E1(
γth

ΩSR

)e
γth

ΩRD E1(
γth

ΩRD

)

+(v34 − v36 + v37)e
γth,e
ΩSE E1(

γth,e

ΩSE

)e
γth,e
ΩRE E1(

γth,e

ΩRE

)

−(v35 + v37)e
γth

ΩSR E1(
γth

ΩSR

)e
γth,e
ΩRE E1(

γth,e

ΩRE

)

+v36e
γth

ΩSD E1(
γth

ΩSD

)e
γth,e
ΩRE E1(

γth,e

ΩRE

)

+(v36 − v37)e
γth,e
ΩSE E1(

γth,e

ΩSE

)e
γth

ΩRD E1(
γth

ΩRD

), (69)

where Ω =
ΩSR ΩSD

(ΩSR+ΩSD )
, v21 =

γth
Ω

, v22 =
γ2

th,eγth

ΩRE (γthΩSE −γth,eΩ)
,

v23 = v22
γth,eΩ

γthΩSE
, v31 =

γth
ΩSR

, v32 =
γ2

thΩSR
ΩSD ΩRD (ΩSR−ΩSD )

, v33 = v32
ΩSD
ΩSR

,

v34 =
γ3

th,eΩSR
ΩSE ΩRE (γth,eΩSR−γthΩSE )

, v35 = v34
γthΩSE
γth,eΩSR

,

v36 =
γ2

thγ2
th,eΩSR

(ΩSR−ΩSD)(γth,eΩSD−γthΩSE )(γth,eΩRD−γthΩRE )
, and

v37 = v36
(γth,eΩSD−γthΩSE )

(γth,eΩSR−γthΩSE )
.

Expressions of pIDF
os,1 (βS ,βR) and pIDF

os,3 (βS ,βR) are

pIDF
os,1 (βS ,βR) = β̃1β

−1/2
S

K1(β̃1β
−1/2
S

), (70)

pIDF
os,3 (βS ,βR) = 1− β̃2β

−1/2
S

K1(β̃2β
−1/2
S

)

−β̃3β
−1/2
S

K1(β̃3β
−1/2
S

)+ β̃4β
−1/2
S

K1(β̃4β
−1/2
S

), (71)

where β̃1 =

√
4 ˜γth

Ω̃SD
+

4 ˜γth,e

Ω̃SE
, β̃2 =

√
4 ˜γth

Ω̃SD
, β̃3 =

√
4 ˜γth

Ω̃SR
, β̃4 =√

4 ˜γth

Ω̃SR
+

4 ˜γth,e

Ω̃SD
, ˜γth =

(2Rt −1)
η

, ˜γth,e =
(2Re−1)

η
, Ω̃SR =

PkS kSR
No

, Ω̃SD =

PkS kSD
No

, Ω̃RD =
PkR kRD

No
, Ω̃SE =

PkS kSE
No

, Ω̃RE =
PkR kRE

No
. In order to

express pIDF
os,2 (βS ,βR) , we define following terms

TSR =
1
βS

e
˜γth

βS Ω̃SR E1(
˜γth

βS Ω̃SR

), TSD =
1
βS

e
˜γth

βS Ω̃SD E1(
˜γth

βS Ω̃SD

),
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TSE =
1
βS

e
˜γth,e

βS Ω̃SE E1(
˜γth,e

βS Ω̃SE

), TO =
1
βS

e
˜γth

βS Ω̃ E1(
˜γth

βS Ω̃
),

TE =
1
βS

e
˜γth,e

βS Ω̃ E1(
˜γth,e

βS Ω̃
), TRD =

1
βR

e
˜γth

βR Ω̃RD E1(
˜γth

βR Ω̃RD

),

TRE =
1
βR

e
˜γth,e

βR Ω̃RE E1(
˜γth,e

βR Ω̃RE

), (72)

So, the expression of pIDF
os,2 (βS ,βR) with aforementioned

terms will be

pIDF
os,2 (βS ,βR)≈ b1 TSR TRD −b2 TSD TRD +b3 TO −b4 TSR +b5 TO TRE

−b6 TSE TRE −b7 TSR TRE −b8 TSE TRD −b9 TSD TRE , (73)

where b1 = q̃1+ ṽ33− ṽ37, b2 = q̃2+ ṽ32− ṽ36, b3 = ṽ21, b4 = ṽ31,
b5 = ṽ22, b6 = ṽ23 + ṽ34 − ṽ36 + ṽ37, b7 = −ṽ35 − ṽ37, b8 = ṽ36 −
ṽ37, b9 = ṽ36, q̃1 =

˜
γ2

th
Ω̃RD (Ω̃SD−Ω̃SR )

, q̃2 =
˜γth

2
Ω̃SR

Ω̃SD Ω̃RD (Ω̃SD−Ω̃SR )
, ṽ21 =

˜γth

Ω̃
, ṽ22 =

˜γth,e
2 ˜γth

Ω̃RE ( ˜γthΩ̃SE − ˜γth,eΩ̃)
, ṽ23 = ṽ22

γth,eΩ

γthΩSE
, ṽ31 =

˜γth

Ω̃SR
, ṽ32 =

˜γth
2
Ω̃SR

Ω̃SD Ω̃RD (Ω̃SR−Ω̃SD )
, ṽ33 = ṽ32

ΩSD
ΩSR

, ṽ34 =
˜γth

3
e Ω̃SR

Ω̃SE Ω̃RE ( ˜γth,eΩ̃SR− ˜γthΩ̃SE )
,

ṽ35 = ṽ34
˜γthΩ̃SE
˜γth,eΩ̃SR

, ṽ36 =
˜γth

2 ˜γth,e
2
Ω̃SR

(Ω̃SR−Ω̃SD )( ˜γth,eΩ̃SD− ˜γthΩ̃SE )( ˜γth,eΩ̃RD− ˜γthΩ̃RE )
,

ṽ37 = ṽ36
( ˜γth,eΩ̃SD−− ˜γthΩ̃SE )

( ˜γth,eΩ̃SR− ˜γthΩ̃SE )
.

We establish convexity with βR by finding
d2 pIDF

os,1 (βS ,βR )

dβ2
R

,
d2 pIDF

os,3 (βS ,βR )

dβ2
R

and
d2 pIDF

os,2 (βS ,βR )

dβ2
R

using (70), (71), and (73)
respectively.

d2 pIDF
os,1 (βS ,βR)

dβ2
R

= 0,
d2 pIDF

os,3 (βS ,βR)

dβ2
R

= 0, (74)

d2 pIDF
os,2 (βS ,βR)

dβ2
R

≈ b1 TSR

d2TRD

dβ2
R

−b2 TSD

d2TRD

dβ2
R

+b5 TO

d2TRE

dβ2
R

−b6 TSE

d2TRE

dβ2
R

−b7 TSR

d2TRE

dβ2
R

−b8 TSE

d2TRD

dβ2
R

−b9 TSD

d2TRE

dβ2
R

. (75)

We find d2TRD
dβ2

R
and d2TRE

dβ2
R

using [32, 5.1.26] as follows:

dTRD

dβR

=−
( 1

β2
R

+
˜γth

Ω̃RD β3
R

)
TRD +

1
β2

R

, (76)

d2TRD

dβ2
R

=−
( 1

β4
R

+
2 ˜γth

Ω̃RD β5
R

+
2
β3

R

+
3 ˜γth

Ω̃RD β4
R

+
˜γth

2

Ω̃RD β6
R

)
TRD

− 1
β4

R

−
˜γth

Ω̃RD β5
R

− 2
β3

R

, (77)

dTRE

dβR

=−
( 1

β2
R

+
˜γth,e

Ω̃RE β3
R

)
TRE +

1
β2

R

,

d2TRE

dβ2
R

=−
( 1

β4
R

+
2 ˜γth,e

Ω̃RE β5
R

+
2
β3

R

+
3 ˜γth,e

Ω̃RE β4
R

+
˜γth,e

2

Ω̃RE β6
R

)
TRE

− 1
β4

R

−
˜γth,e

Ω̃RE β5
R

− 2
β3

R

. (78)

We further observe b5 ,b6 ≫ b1 ,b2 ,b7 ,b8 ,b9 . So, (75) can

be approximated to obtain
d2 pIDF

os (βS ,βR )

dβ2
R

as

d2 pIDF
os (βS ,βR)

dβ2
R

=
d2 pIDF

os,2 (βS ,βR)

dβ2
R

≈ b5 TO

d2TRE

dβ2
R

−b6 TSE

d2TRE

dβ2
R

. (79)

Further T (x) = 1
βS

exE1(x) is decreasing function of x,

x∈ { ˜γth

Ω̃βS
,

˜γth,e

Ω̃SE
} . Since, ˜γth

Ω̃βS
<

˜γth,e

Ω̃SE βS
(widely studied scenario

in literature). Hence TO > TSE . Also, b6 = b5

( ˜γth,e ˜ΩSR− ˜γth,eΩ̃)

( ˜γth,e ˜ΩSR− ˜γthΩ̃SE )
,

resulting in |b5 | ≈ |b6 |. Since, b5 ,b6 < 0 and d2TRE
dβ2

R
< 0

resulting in d2 pIDF
os

dβ2
R

> 0.

Proof of convexity with βS : In order to proof convexity

of pIDF
os,approx. with βS , we find

d2 pIDF
os,1 (βS ,βR )

dβ2
S

,
d2 pIDF

os,3 (βS ,βR )

dβ2
S

and
d2 pIDF

os,2 (βS ,βR )

dβ2
S

using (70), (71), and (73) respectively.

Expressions for
d2 pIDF

os,1 (βS ,βR )

dβ2
S

and
d2 pIDF

os,3 (βS ,βR )

dβ2
S

is expressed
using following defined term Si and its first and second
derivative with βS , i ∈ {1,2,3,4} using [32, 9.6.27, 9.6.29].

Si = β̃iβ
−1/2
S

K1(β̃iβ
−1/2
S

),

dSi

dβS

=−(1/2)β̃iβ
−3/2
S

K1(β̃iβ
−1/2
S

)+(1/4)β̃2
i β

−2
S

K0(β̃iβ
−1/2
S

)

+(1/4)β̃2
i β

−2
S

K2(β̃iβ
−1/2
S

),

d2Si

dβ2
S

=−(5/8)β̃i β
−3
S

K1

(
β̃iβ

−1/2
S

)
+(3/4)β̃i β

−5/2
S

+(1/16)β̃3
i
β
−7/2
S

K1

(
β̃iβ

−1/2
S

)
− (5/8)β̃2

i
β
−3
S

K2

(
β̃iβ

−1/2
S

)
+(1/16)β̃3

i
β
−7/2
S

K3

(
β̃iβ

−1/2
S

)
, (80)

Hence,
d2 pIDF

os,1

dβ2
S

=
d2S1

dβ2
S

,
d2 pIDF

os,3

dβ2
S

=−d2S2

dβ2
S

− d2S3

dβ2
S

+
d2S4

dβ2
S

, (81)

d2 pIDF
os,2

dβ2
S

≈ b1

d2TSR

dβ2
S

TRD −b2

d2TSD

dβ2
S

TRD +b3

d2TO

dβ2
S

−b4

d2TSR

dβ2
S

+b5

d2TO

dβ2
S

TRE −b6

d2TSE

dβ2
S

TRE −b7

d2TSR

dβ2
S

TRE −b8

d2TSE

dβ2
S

TRD

−b9

d2TSD

dβ2
S

TRE . (82)

As before, we find
dTi
dβS

,
d2Ti
dβ2

S
for i ∈ {SR,SD,O} and

dTj
dβS

,
d2Tj
dβ2

S
for j ∈ {SE,E} using [32, 5.1.26] as follows

dTi

dβS

=−
( 1

β2
S

+
˜γth

Ω̃i β
3
S

)
Ti +

1
β2

S

,

d2Ti

dβ2
S

=−
( 1

β4
S

+
2 ˜γth

Ω̃i β
5
S

+
2
β3

S

+
3 ˜γth

Ω̃i β
4
S

+
˜γth

2

Ω̃i β
6
S

)
Ti

− 1
β4

S

−
˜γth

Ω̃i β
5
S

− 2
β3

S

, i ∈ {SR,SD,O}, (83)

dTj

dβS

=−
( 1

β2
S

+
˜γth,e

Ω̃ j β
3
S

)
Tj +

1
β2

S

,

d2Tj

dβ2
S

=−
( 1

β4
S

+
2 ˜γth,e

Ω̃ j β
5
S

+
2
β3

S

+
3 ˜γth,e

Ω̃ j β
4
S

+
˜γth,e

2

Ω̃ j β
6
S

)
Tj

− 1
β4

S

−
˜γth,e

Ω̃ j β
5
S

− 2
β3

S

, j ∈ {SE,E}. (84)
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We observe that
d2 pIDF

os,2
dβ2

S
≫ d2 pIDF

os,1
dβ2

S
,

d2 pIDF
os,3

dβ2
S

. So, d2 pIDF
os

dβ2
S

≈
d2 pIDF

os,2
dβ2

S
. Also the terms involving b1 ,b5 ,b8 are positive terms,

among which b5 ≫ b1 ,b8 . Hence the dominating positive

term is b5

d2TO
dβ2

S
TRE . Similarly the dominating negative term

is b3

d2TO
dβ2

S
. So we can further approximate

d2 pIDF
os,2

dβ2
S

as follows

d2 pIDF
os,2

dβ2
S

≈ b5

d2TO

dβ2
S

TRE +b3

d2TO

dβ2
S

. (85)

We observe that |b5 | > |b3 |, b5 < 0 and TRE > 1. Hence

(b5TRE +b3)< 0 and
d2TO
dβ2

S
< 0. Hence, d2 pIDF

os
dβ2

S
≈ d2 pIDF

os,2
dβ2

S
> 0.

APPENDIX F
Proof of Lemma 8: To establish joint convexity of pIDF

os
with βS and βR , we need to show that the Hessian matrix H
defined as follows is positive definite

H =

 d2 pIDF
os

dβ2
S

d2 pIDF
os

dβS dβR
d2 pIDF

os
dβR dβS

d2 pIDF
os

dβ2
R

=

[
a11 a12
a21 a22

]
. (86)

In order to show H is positive definite, it is sufficient to
show that trace(H) = d2 pIDF

os
dβ2

S
+ d2 pIDF

os
dβ2

R
> 0 and det(H) > 0.

We have already established that d2 pIDF
os

dβ2
R

> 0 (shown in

Appendix E) and d2 pIDF
os

dβ2
S

> 0, so trace(H) > 0. We now

proof det(H) > 0. Note that det(H) = a11a22 − a12a21 =

a11a22 −a2
12 > 0, since a12 = a21. We find a12 =

d2 pIDF
os

dβS dβR
as

follows
d2 pIDF

os
dβS dβR

= b1

dTSR

dβS

dTRD

dβR

−b2

dTSD

dβS

dTRD

dβR

+b5

dTO

dβS

dTRE

dβR

−b6

dTSE

dβS

dTRE

dβR

−b7

dTSR

dβS

dTRE

dβR

−b8

dTSE

dβS

dTRD

dβR

−b9

dTSD

dβS

dTRE

dβR

. (87)

We observe that b5 ,b6 ≫ b1 ,b2 ,b7 ,b8 ,b9 . Hence, we can
approximate d2 pIDF

os
dβS dβR

as

a12 =
d2 pIDF

os
dβS dβR

≈
(

b5

dTO

dβS

−b6

dTSE

dβS

)
dTRE

dβR

. (88)

Using a11 =
d2 pIDF

os
dβ2

S
from (85) and a22 =

d2 pIDF
os

dβ2
R

from (79),
we have

a11 ≈ (b5 TRE +b3)
d2TO

dβ2
S

, a22 ≈ (b5 TO −b6 TSE )
d2TRE

dβ2
R

. (89)

Since |b5| ≈ |b6 |, a12 in (88) reduces to a12 ≈
|b5 |
(

dTO
dβS

− dTSE
dβS

)
dTRE
dβR

, while a22 in (89) reduces to a22 ≈

|b5 |(TO −TRE )
d2TRE
dβ2

R
. Also, |(TO − TSE )

d2TRE
dβ2

R
| > | d2TRE

dβ2
R
| >

| dTRE
dβR

|2. Further | dTRE
dβR

|2 and | dTRE
dβR

|| dTO
dβS

− dTSE
dβS

| are of same
order, so a22 > |a12|. Similarly, terms (b5TRE + b3) and
(b5TO − b6TSE ) defined in (89) are of same order, and the

dominating terms in a11 and a12 are
d2TO
dβ2

S
and d2TRE

dβ2
R

respec-

tively. Note that TO and TRE are of the form T (x) = exE1(x),
x ∈ { γth

Ω̃βS
,

γth,e
Ω̃RE βR

}. Since T (x) is a decreasing function of

x, TO > TRE since ˜γth
Ω̃βS

<
˜γth,e

Ω̃RE βR
. Further, | d2TO

dβ2
S
| > | d2TRE

dβ2
R
|.

Hence a11 > a22. Combining this result with a22 > |a12|, we
get a11 > a22 > |a12|. Therefore, a11a22 > a2

12 resulting in
det(H)> 0.

APPENDIX G
Proofs of Lemmas 9: Using Pr(A∩B) = Pr(A|B)Pr(B) in

(45), we get

pIDF
OP =Pr{(ISD < Rt)∩min(ISR , ISRD)≤ Rt} . (90)

Further using the identity Pr{A∩B}= Pr{A}−Pr{A∩ B̄},
we get

pIDF
OP = Pr{ISD < Rt}−Pr{(ISD < Rt)∩min(ISR , ISRD)> Rt} . (91)

We then simplify (91) by substituting for ISR , ISD and ISRD
from (9), (10), and (17) respectively to get

pIDF
OP = Pr{gS gSD ΩSD ≤ γth}

−Pr{gS gSD ΩSD ≤ γth,gS gSR ΩSR > γth,X > γth}. (92)

Exploiting independence of gSR , gSD and gRD , further
simplifying by conditioning on gS and gR gives

pIDF
OP|gS ,gR

= Pr{gS gSD ΩSD ≤ γth}︸ ︷︷ ︸
po,1|gS

−Pr{gS gSR ΩSR ≥ γth}︸ ︷︷ ︸
po,2|gS

Pr{X ≥γth,gS gSD ΩSD ≤ γth}︸ ︷︷ ︸
po,3|gS ,gR

. (93)

We simplify the expressions of po,1|gS
and po,2|gS

as po,1|gS
= γ(N, γth

gS ΩSD
) and po,2|gS

= e
− γth

gS ΩSR . Further
po,3|gS ,gR

can be simplified by also conditioning the expres-
sion over gSD . Using PDF of X from (97), po,3|gS ,gR ,gSD

=
∞∫

γth

fX (x)dx. Now, averaging above expression over gSD in

region 0 ≤ gSD ≤ γth
gS ΩSD

, we get po,3|gS ,gR ,gSD
. So, pIDF

OP is
obtained by substituting the expressions of po,1|gS

, po,2|gS
and po,3|gS ,gR

in (93). Then averaging over channels gS and
gR we obtain (47).

APPENDIX H
Proof of Lemma 10: We substitute the information rates

ISD and ISRD in pIDF
IP to get

pIDF
IP = Pr{gS gSD ≥ γth/ΩSD ,gS gSE > γth/ΩSE }︸ ︷︷ ︸

pi,1

+Pr{gS gSD < γth/ΩSD ,Y > γth}︸ ︷︷ ︸
pi,2

. (94)

Conditioning the expression pi,1 on channel gain gS , we get

pi,1|gS
= Pr{gS gSD ≥ γth/ΩSD}Pr{gS gSE > γth/ΩSE }

= Γ

(
N,

γth

gS ΩSD

)
Γ

(
L,

γth

gS ΩSE

)
. (95)

Using the series expansion of upper incomplete gamma
function [31, 8.352.2] and averaging on the channel gain gS
and using the integral in [31, 3.471.9], we get first double
summation term in (48). To simplify pi,2, we condition the
expression on channels gS and gR to get

pi,2|gS ,gR
= Pr{gS gSD < γth/ΩSD}Pr{Y > γth}. (96)

Similar to PDF of X , defined in (97), we can express PDF
of Y by replacing N, ΩSD , and ΩRD by L, ΩSE , and ΩRE
respectively in (97).
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fY |gS ,gR
(y) =

e
− y

gR ΩRE

Γ2(L)

L−1

∑
r=0

(
L−1

r

)
yr(−1)L−1−r

Γ
(
2L− r

)
× (gS gR ΩSE ΩRE )

L−r−1

(gR ΩRE −gS ΩSE )
(2L−r−1)

− e
− y

gR ΩRE

Γ2(L)

L−1

∑
r=0

(
L−1

r

)
×yr(−1)L−1−r (gS gR ΩSE ΩRE )

L−r−1γ
(
2L− r

)
(gR ΩRE −gS ΩSE )

(2L−r−1)

×e
− y(gR ΩRE −gS ΩSE )

gS ΩSE gR ΩRE

2L−r−2

∑
k=0

yk(gR ΩRE −gS ΩSE )
k

(gS ΩSE gR ΩRE )
kk!

. (97)

Therefore, first probability term in (96) will be
Pr{gS gSD < γth/ΩSD}= γ(N,γth/ΩSD) . The second term Pr{Y >

γth} is obtained as
∞∫

γth

fY |gS ,gR
(y)dy. Further averaging

pi,2|gS ,gR
over gS and gR , we obtain second and third term

in (48).
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