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Abstract

The need for processing at the edge the increasing amount of data that is being produced by multitudes of sensors has led to

the demand for mode power efficient computational systems, by exploring alternative computing paradigms and technologies.

Neuromorphic engineering is a promising approach that can address this need by developing electronic systems that faithfully

emulate the computational properties of animal brains. In particular, the hippocampus stands out as one of the most relevant

brain region for implementing auto associative memories capable of learning large amounts of information quickly and recalling

it efficiently. In this work, we present a computational spike-based memory model inspired by the hippocampus that takes

advantage of the features of analog electronic circuits: energy efficiency, compactness, and real-time operation. This model can

learn memories, recall them from a partial fragment and forget. It has been implemented as a Spiking Neural Networks directly

on a mixed-signal neuromorphic chip. We describe the details of the hardware implementation and demonstrate its operation

via a series of benchmark experiments, showing how this research prototype paves the way for the development of future robust

and low-power mixed-signal neuromorphic processing systems.
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Abstract—The need for processing at the edge the increasing
amount of data that is being produced by multitudes of sensors
has led to the demand for mode power efficient computational
systems, by exploring alternative computing paradigms and
technologies. Neuromorphic engineering is a promising approach
that can address this need by developing electronic systems
that faithfully emulate the computational properties of animal
brains. In particular, the hippocampus stands out as one of the
most relevant brain region for implementing auto associative
memories capable of learning large amounts of information
quickly and recalling it efficiently. In this work, we present
a computational spike-based memory model inspired by the
hippocampus that takes advantage of the features of analog
electronic circuits: energy efficiency, compactness, and real-time
operation. This model can learn memories, recall them from a
partial fragment and forget. It has been implemented as a Spiking
Neural Networks directly on a mixed-signal neuromorphic chip.
We describe the details of the hardware implementation and
demonstrate its operation via a series of benchmark experi-
ments, showing how this research prototype paves the way for
the development of future robust and low-power mixed-signal
neuromorphic processing systems.

Index Terms—Hippocampus model, analog memory model,
spiking neural network, neuromorphic engineering, DYNAP-SE

I. INTRODUCTION

IN recent years, the growing need to process the vasts
amounts of data being generated has led to an increasing

demand for computing systems with higher energy efficiency
and in-memory computing abilities. Faced with these chal-
lenges, many research and development efforts have been
devoted to finding solutions to these new needs [1]–[3]. As the
conventional synchronous logic approach of digital computers
leads to relatively high energy consumption requirements [2],
[3], different fields have emerged with alternative approaches
to the problem. Among all, neuromorphic engineering stands
out as a promising field which focuses on implementing brain-
inspired systems, with the ability to solve complex sensory-
processing problems efficiently [4]–[6].

Here we focus on the original definition of neuromorphic
systems [4], which aims to emulate the principle of neural
computation using mixed-signal analog/digital electronic cir-
cuits. In particular, we investigate the computational proper-
ties of Spiking Neural Networks (SNNs) using full-custom
neuromorphic processor chips [7]. These are networks of

D. Casanueva-Morato, A. Ayuso-Martinez, J. P. Dominguez-Morales, and
G. Jimenez-Moreno are with the Robotics and Technology of Computers Lab.,
Universidad de Sevilla, Sevilla, España. G. Indiveri is with the Institute of
Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
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artificial spiking neurons interconnected by synapses. In these
networks, information is transmitted among neurons in the
form of asynchronous pulses (spikes), signals are represented
as mean spike rates, calculated either over time (many spikes)
or space (many neurons) [8]. Computation is carried out
by creating networks with multiple layers and/or recurrent
connections, and by implementing learning algorithms based
on local synaptic plasticity mechanisms [9]. This approach
has great advantages in terms of energy consumption [10],
noise robustness [11]–[13] and real-time operation compared
to conventional computing systems [14], [15].

While neurons produce all or none “digital” spikes, their
dynamics and computational properties are carried out in the
analog domain [16]. There are several advantages of analog
computation in neuromorphic systems that arise from the ex-
ploitation of physical primitives of the computing substrate [8],
[17], [18]. Previous work has shown that analog neuromorphic
hardware can improve performance, energy efficiency, and
scalability over its digital counterpart in multiple domains [11],
[16], [19], [20].

However, analog neuromorphic circuits have the disadvan-
tage that are heterogeneous and noisy, and systems built
using this approach are difficult to configure and debug [11],
[16]. To overcome these issues we take inspiration from the
brain, which faces very similar challenges and solves them
efficiently [11], [21].

In computational systems, memory storage and memory
recall represent key operations. In the brain, there are dif-
ferent regions involved in learning, storing and processing
information, such as external stimuli received by the animal.
Among them, the hippocampus stands out. It is the region
that works as an autoassociative short-term memory capable
of learning and storing a large amount of information from
different cortical regions. In addition, it is able to recall the
complete information from a fragment of the original [22].
When information enters the hippocampus, it encounters the
Dentate Gyrus (DG) brain structure. This region is responsible
for increasing the dimensionality of the input data to facilitate
its learning and subsequent storage. This reformatted and
distributed information arrives at Cornu Ammonis 3 (CA3), a
recurrent collateral network where, after a series of oscillations
and learning processes, information is stored in the form
of memories. Finally, before leaving the hippocampus, this
information reaches Cornu Ammonis 1 (CA1), the region
responsible for reformatting the information and reducing its
dimensionality (close) to its original value. If the information
that reaches the hippocampus is a fragment of a previously
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learned memory, when it reaches CA3, after a series of
oscillations, this region is capable of recalling the complete
memory and returning it to its output.

Models of hippocampal operation using SNNs have already
been proposed in the past. In [23], a spiking hippocampal
memory model capable of learning, recalling and forgetting
memories was presented. Even though this was a software
model, as its principles of operation were based on individual
spikes, it was very sensitive to noise. Other spike-based bio-
inspired hippocampal memory models, such as [24], based
only on the CA3 region of the hippocampus, or [25], [26],
with a sequential approach. However, these models have a low
storage capacity and cannot work with non-orthogonal patterns
(memories whose activity contains activations of neurons in
common) [27], [28]. Alternative bio-inspired hippocampal
memory models proposed in the literature are not ideally suited
to neuromorphic hardware implementations, either because
they are quite abstract with no direct spike-based equivalent
building blocks [29]–[31], or only follow a hybrid rate-
based/spiking approach [32], [33], or are only based on a
direct conversion from Artificial Neural Network (ANN) to
SNN [34]. In [35], the authors proposed an associative spike-
based memory model that sacrifices dynamism when applying
pruning techniques after a first learning phase. Finally, in [36],
a memory system with an operator-based approach similar to
digital gates is proposed.

In short, the characteristics of the hippocampus render it
a promising solution to the problem of building efficient
information processing and storage electronic systems. A
mixed signal analog/digital approach adds more biological
plausibility, and has the potential to improve the system’s
robustness, performance, and energy efficiency compared to
a pure digital approach. Taking this into account, in this paper
we propose an analog/digital spike-based memory model bio-
inspired from the hippocampus able to learning memories,
recall them from partial fragments and forget them, and also
to work with both orthogonal and non-orthogonal patterns.
We made the model robust to noise, overcoming some of the
limitations of analogous pure digital models, by taking advan-
tage of the intrinsic features of its analog components. We
implemented the spike-based memory model on a full-custom
analog hardware platform for emulating neural dynamics.

The rest of the paper is structured as follows: Section II
briefly introduces the computational elements and electronic
hardware used in this work. In Section III, we describe the
proposed model is detailed. The experiments performed to
evaluate the functionality and performance of the proposed
model are explained in Section IV, along with the results
obtained. Then, in Section V, the results of the experiments are
discussed. Finally, the conclusions of the paper are presented
in Section VI.

The source code used in this work is publicly available,
together with the documentation including all the necessary
details regarding the SNN architectures.

II. MATERIALS

A. Spiking Neural Networks

Neuromorphic systems typically implement in hardware
the third generation of neural networks, SNNs [37]. These
networks consist of populations of neurons which process their
incoming signals dynamically and produce action potentials
(spikes) when their integrated inputs reach a threshold. They
transmit their spikes to their target neurons instantaneously,
via synapses. SNNs can be very efficient from a computational
point of view, as they transmit spikes only when they occur,
and they can be configured to carry out complex computations
using very sparse activity both in space and time [38].

Each component of the SNN can be implemented using a
variety of computational models that approximate the biologi-
cal behaviour observed in nature. For neurons, the most widely
used model is the Leaky Integrate-and-Fire (LIF) model [39],
[40]. In this model the sum of the input currents, produced by
the neurons synapses that have been stimulated by incoming
spikes, drives the neuron’s membrane potential. If the total
input current is larger than the neuron’s “leak” current, then
the neuron’s membrane potential increases until a threshold
is reached (and otherwise the membrane potential leaks back
to the neuron’s resting state). Once the threshold is reached,
the neuron produces a short pulse (a spike) and resets its
membrane potential. After generating a spike, the neuron
remains in the reset state for a set period of time (the neuron’s
refractory period), after which it starts integrating its input
current again [41].

Synapses are modelled as connections with direction, delay
and weight. The delay is the time it takes for the spike to get
from the presynaptic neuron to the postsynaptic neuron, the
weight denotes the amplitude of the change in the postsynaptic
neuron’s membrane potential, and the direction determines if
the change is positive (for excitatory synapses) or negative (for
inhibitory ones).

An important aspect of neural networks is given by the
learning rules that govern the process of learning and stor-
ing information. While Spike-Timing-Dependent Plasticity
(STDP) learning rules have been investigated to a great extent
in SNNs [42]–[44], more recent spike-based synaptic plasticity
mechanisms that take into account additional factors (such as
the neuron’s membrane potential or it’s recent firing activity)
have been shown to be more powerful (see [9] for an overview
of rules that are also compatible with neuromorphic hardware).

One of the extensions of the plain STDP rule that can repro-
duce more accurately experimental data from real synapses,
is the triplet STDP rule [45]. While the basic STDP rule
only takes into account pairs of presynaptic and postsynaptic
spikes to calculate the synaptic weight variation (increasing
the weight if the post-synaptic spike is produced after the
pre-synaptic one arrives, and decreasing it in the opposite
case), the STDP triplet rule considers, in addition, the case
of a presynaptic spike followed by a postsynaptic spike and
another presynaptic spike, and the case of a postsynaptic
spike followed by a presynaptic spike and another postsynaptic
spike. The former case results in a decrease in synaptic weight,
while the latter case results in an increase in synaptic weight.
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This learning rule can reproduce the fine spike-timing behavior
of the basic STDP rule for low frequency of input/output
spikes, and can also explain and reproduce the rate-based (or
correlation-based) Hebbian type rules [46] for high frequency
regimes.

B. The DYNAP-SE chip

While there is a wide range of dedicated digital neuromor-
phic processors that can implement SNNs [47]–[49], mixed-
signal analog/digital implementations are still an active area of
research and can only be found as proof-of-concept prototypes.
In this work we use one of such prototypes denoted as
“Dynamic neuromorphic asynchronous processor - scalable”
(DYNAP-SE) [7].

DYNAP-SE is a hardware platform featuring a scalable
multicore architecture with heterogeneous memory structures
for dynamic asynchronous event-based processing. It is as
a hybrid platform that comprises analog circuits which im-
plement the synaptic and neural dynamics, and asynchronous
digital circuits to program the network connectivity and route
the spikes among firing neurons. Each DYNAP-SE chip has
four cores, and each core has 256 neurons. Each neuron has
a fan-in of 64 synapses and a fan-out of 4000 synapses.
The chips were manufactured with 0.18 µm 1P6M CMOS
technology and comprise hierarchical asynchronous routers as
well as integrated full-custom asynchronous SRAM and CAM
memory cells distributed among the cores. In this project we
used a board containing 4 DYNAP-SE chips. All parameters
of the circuits inside each core, such as the leak of the neuron
or its refractory period, are shared, therefore they have the
same nominal value. However, due to device mismatch, the
actual value of each circuit parameter is different. A typical
coefficient of variation for these circuit parameters in the
DYNAP-SE is approximately 20% [11].

The neuron circuits in the DYNAP-SE implement a model
equivalent to the Adaptive-Exponential Integrate and Fire
(AdExp-I&F) [5], [50], whose parameters can be configured to
behave like LIF neurons. Synapses and biophysically realistic
synapse dynamics are implemented using the current-mode
Differential Pair Integrator (DPI) log-domain filter [51], which
can be configured to give rise to 4 possible synapse types:
AMPA (fast, excitatory), NMDA (slow, excitatory), GABA B
(subtractive inhibitory) and GABA A (shunting inhibitory).

III. ANALOG HIPPOCAMPUS COMPUTATIONAL MEMORY
MODEL

A. Architecture

The architecture of the bio-inspired hippocampus memory
model proposed in this work is presented in Fig. 1. The block-
level design is based on the digital memory model previously
proposed in [23]. However, in this work, we propose an analog
design, not only at the level of internal implementation of each
of the blocks, but also at the level of functionality.

The model does not work with individual spikes, but with
spike trains within a time window. Specifically, windows of
between 5 and 10 milliseconds (ms) were considered, within
which 5 to 20 spikes are expected. This gives a higher

Fig. 1: Architecture of the analog hippocampal computational
memory model proposed. The model divides its architecture
into 3 blocks: DG, CA3 and CA1. The word Triplet STDP
marks those synapses that exhibit the triplet implementation
of the STDP learning mechanism.

tolerance to random noise, which may occur both at the input
and within the network. At the same time, this feature makes
the network more robust to the small variations that will be
encountered as a consequence of the hardware platform used
and the analog approach.

The design and implementation of each of the components
of the proposed model are detailed below: DG, CA3 and CA1.

A.1 Dentate gyrus

DG receives an input memory and is responsible for in-
creasing the dispersion of the information in the memory to
facilitate its subsequent learning and storage. In the proposed
model, DG acts as a decoder by partially dispersing the
memory. The part of the memory that is dispersed is called
memory cue, while the rest of the memory content that remains
unchanged is called memory content. Specifically, maximum
sparsity is applied to the cue, i.e., one-hot encoding or sparse
encoding is achieved.

To attain this sparse partial encoding over the memory,
the structure presented in Fig. 2 is used. The content of the
memory will be passed unchanged directly to the next layer
of the model. However, the memory cue will pass through
a structure similar to a cascading filter acting as a Winner
Take All (WTA) network. In this way, for every possible
combination of input neuron activity (minus the absence of
activity of all neurons), an output neuron will be activated,
generating a spike train and inhibiting the rest. Thanks to
this structure, the activity of a set of N input neurons will
be mapped onto 2N − 1 output neurons. Given N input
neurons with binary states (generate spike or not), there are
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Fig. 2: Architecture of the DG model proposed based on a
cascading Winner-Take-All filter network.

2N combinations of possible input states or 2N − 1 input
combinations if the one formed by the inactivity of all input
neurons is discarded. The latter case is omitted since it is not
possible to distinguish whether it is due to an absence of input
activity or to input activity defined by the non-activation of all
neurons.

At each layer of the cascade filter, three main structures
can be distinguished. In the architecture of Fig. 2, there are 3
columns of neurons, starting from right to left:

• On the one hand, there is the Delay Line, a set of pop-
ulations of neurons that are responsible for transmitting
the input activity throughout the network. To this end, in
each layer there is a population of the same size as the
memory cue, with a 1-to-1 excitatory connection with the
same population in the next layer. In the last layer, this
population is omitted, since there is no subsequent layer
that will need the original input cue information.

• On the other hand, there are populations that compute
for each layer a subset of possible combinations of input
activities to calculate the output neuron to be activated.
This population receives direct information from the
input, i.e., it presents excitatory connections from the
input in the first layer or from the Delay Line in the
remaining layers.
In layer i, the input activity combinations consisting
exclusively of i+1 neurons are determined. Thus, in layer
0, all possible combinations of activation of 1 input
neuron are checked, in layer 1 all possible combinations
of activation of 2 input neurons are checked, and so on
and so forth. Consequently, in layer i, the neurons will
have only i+1 excitatory synapses that specify which
input combination they will be activated with, and the
filter will have as many layers as there are inputs to
disperse.

• Finally, it finds the populations that transmit the activity
of the output neurons to the next layers and, finally, to

Fig. 3: Example of the network corresponding to a simple DG
block receiving an input of M neurons, where only the first 2
neurons (i0 and i1) will be disperse and the remaining ones
(i2-iM-1) will pass through unchanged.

the output. It propagates the activity of the output neurons
already computed in previous layers through these same
populations and, at the same time, receives the result
of the new output neurons of the immediately preceding
layer. This means that this population increases in number
of neurons for each layer it passes through, since for each
layer, the subset of output neurons that it must propagate
is larger.
At the synapse level, this operation requires 1-to-1 exci-
tatory synapses from both the output propagation popula-
tion and the output activity computation population of the
immediately preceding layer. However, for everything to
work as a WTA network, it is necessary that at the very
moment that an output neuron is activated, this activity
must inhibit all other output neurons in the network. That
is, both the output computation population activity and
the output propagation activity of one layer will present
inhibitory all-to-all synapses with the output computation
neuron populations in the next layer.

Fig. 3 shows the structure that DG would have in a simple
case where the memory is made up of M neurons and only
the first 2 are used as cue. In this example, DG would take the
activity of those two input cue neurons and disperse it into the
activity of 3 output neurons, while the remaining M-2 neurons
would pass unchanged to the next layer of the model.

A.2 CA3

CA3 is where the learning, storage and recall of the mem-
ories that reach the model takes place. To this end, it receives
the activity corresponding to the dispersed memory via 1-to-1
excitatory synapses from DG. The set of neurons that receive
the information from the cue is called CA3cue, and the set of
neurons that receive the information from the content is called
CA3cont. The neurons of CA3cue present excitatory synapses
with an all-to-all ratio connection with CA3cont.

To achieve memory learning, the STDP triplet learning
mechanism is used in the CA3cue-CA3cont synapses. Thanks
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Fig. 4: Example of the network corresponding to a simple CA1
block, which receives an input from 3 neurons and decodes it
into the activation of 2 neurons in the output. The rest of the
neurons do not perform any operation and, thus, their activity
is unchanged.

to this, when the spike trains from the DG reach both popu-
lations, a variation of the synaptic weight will be produced in
those synapses whose pre- and/or post-synaptic neurons are
activated. This variation will determine learning and subse-
quent recall or forgetting of the input memory.

A.3 CA1

CA1 will act as an encoder to perform the reverse operation
to DG and recover the original format of the input information.
As only the cue of the memory is affected by the DG
information dispersal operation, CA1 will only act on this part
of the memory, and the content will pass unchanged through
this component.

To achieve this functionality, CA1 will have a structure
similar to the DG cascade filter but consisting of a single layer.
All those DG neurons that were activated by input neuron i will
now participate in the activation of output neuron i of CA1.
Thus, given the activation of a cue neuron at the CA1 input,
all those neurons that, in combination, activated that neuron
in DG will be activated. This combination of dispersed cue
neurons activating CA1 output neurons results in excitatory
synapses.

Fig. 4 shows the structure that CA1 would have in a simple
case where the memory is made up of M neurons, only the
first 2 are used as cue and, therefore, CA1 receives the cue
dispersed in the activity of 3 neurons. CA1 will decode the
activity of these 3 neurons in only 2 of them, to recover the
original format of the cue. As the activation of the original
cue neuron 0 participated in the activation of the dispersed cue
neuron 0 and 2 in DG, this CA1 neuron receives excitatory
synapses from the dispersed neurons 0 and 2 from CA3. The
same happens for output neuron 1 with the dispersed cue
neurons 1 and 2.

A.4 Full network

Given all details about the architecture of the proposed
model, Fig. 5 shows an example of a network for a hip-
pocampal memory with a maximum capacity of 3 memories

Fig. 5: Example of the network corresponding to a simple
hippocampal memory with storage capacity for a maximum
of 3 memories at the same time with 6 neurons of activity
for each memory. The memory is formed by the activity of 6
neurons: neurons 0 and 1 act as cue and neurons 2, 3, 4 and
5 as content.

at the same time formed by the activity of 6 neurons. Of the 6
neurons forming the memory, the first 2 act as the cue and the
last 4 as the content. In DG, the activity of the 2 neurons acting
as the cue will be dispersed in 3 neurons, while the activity
of the remaining 4 neurons acting as the content will remain
unchanged. The output neurons of DG are mapped 1 to 1 onto
CA3 neurons in two layers, those receiving the cue and those
receiving the content. The first layer is fully connected to the
second one and it is, at these synapses, where the STDP triplet
learning mechanism is located. Finally, in CA1, the activity of
the 3 neurons encoding the cue in CA3 will be recoded in 2
neurons, recovering their original format, while the remaining
4 neurons encoding the content will pass through unchanged.
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B. Operating principle

The spiking activity of the model is spatially encoded in
time. This encoding is based on the fact that all neural activity
within a sub-population in one time window refers to the same
memory, while neural activity in the same sub-population but
in different time windows refers to different memories.

The proposed model is capable of learning, recalling from
a fragment and forgetting memories. These operations are
performed on the fly automatically based on the input infor-
mation to the network, without the need to make changes to
its architecture to switch between one operation or another.

B.1 Learning

The learning operation starts with the input of the complete
memory to the network via spike trains. This memory will be
partially dispersed in DG and reach CA3. In CA3, thanks to
the use of the STDP triplet learning mechanism at the synapses
connecting CA3cue with CA3cont, learning takes place.

Those synapses that connect cue and content neurons that
are activated as part of the memory will have their weight
increased. The weight increase of the learning mechanism was
configured, as well as the dynamics of the neurons, to work
only with spike trains. To achieve this, the variations produced
at the spike level are small, but at the spike train level,
these small changes are sufficient to learn the input memory.
Specifically, the input of 3 separate spike trains is necessary
to ensure the correct learning of the complete memory. After
passing through CA3, the complete memory will recover its
original format when it reaches CA1 and leave the network.

Between each input spike train, a time separation of ap-
proximately 100 ms is necessary to prevent the learning
rule from mixing the synaptic weight variations of one train
with those of the next. If smaller time separations are taken,
unwanted synaptic weight decrements may occur and it cannot
be ensured that these synaptic weight variations are sufficient
to correctly learn the memory. Therefore, the network will take
300 ms to perform a learning operation.

B.2 Recall

The recall operation begins with the input of a previously
learned memory fragment (cue) to the network. Upon arrival at
CA3, the spike train will activate the corresponding CA3cue
neuron and this, in turn, will be transmitted across the dif-
ferent synapses connecting to CA3cont. Only those content
neurons whose synapses with the input cue neuron present a
sufficiently high synaptic weight will be activated. In other
words, only those content neurons that belong to the memory
that is characterised by the input cue neuron will be activated.
Finally, the activity represented in spike trains of these neurons
will pass through CA1 to recover its original format and
the complete memory will be obtained at the output of the
network.

The time it takes for the network to recall the entire memory
since its cue is entered is 25 ms. This will be the time it will
take for the spike train to navigate the entire network until it
reaches its output after CA1.

B.3 Forget

The forgetting operation does not occur explicitly in the
network, but occurs indirectly by attempting to learn a memory
whose cue is common to another previously learned memory.
When this happens, at the same time that the neural activity of
the new memory reaches CA3, the previously learned memory,
with which it shares the cue, is recalled. In this case, the
network must learn the new memory and forget the previously
learned memory.

On the one hand, as DG is constructed, the content activity
will arrive to CA3 before the dispersed cue activity. This is
because the cue must pass through several layers; for each
layer it passes through, the delay of moving from one layer to
another is accumulated. On the other hand, the neurons that
receive the information about the content of the memory in
CA3 are configured in such a way that the increase of potential
in the arrival of spikes is lower. This causes the spike train to
decrease in frequency and increase its dispersion in CA3cont.

By combining both effects, what is achieved is that, within
the working time window of the learning mechanism, the
activation of the content neurons of the new memory occurs in
the first half and those of the old memory in the second half,
both in a distributed manner throughout this time window.
These properties exploit the advantages of the STDP triplet
implementation by making the synaptic weight variations for
synapses involved in the new memory positive and those
involved in the old memory negative. In short, there is a
decrease in the synapses that store the old memory, causing it
to be forgotten, and an increase in the synapses that store the
new memory, causing it to be learned.

This operation requires the same execution time as a normal
learning operation, i.e., 300 ms.

IV. EXPERIMENTATION AND RESULTS

The proposed bio-inspired hippocampal memory model was
implemented on the DYNAP-SE hardware platform. This hard-
ware implementation of the model presents a capacity to learn
and store up to 7 different memories at the same time, where
each memory is defined by the activity of 11 neurons (also
called memory size). The model with this capacity presents a
network consisting of a total of 56 neurons (30 from DG, 15
from CA3 and 11 from CA1). We used a total of 94 static
excitatory and inhibitory synapses (20 from IN-DG, 33 from
DG-DG, 15 from DG-CA3, 15 from CA3-CA1 and 11 from
CA1-OUT) and 56 dynamic synapses with the STDP triplet
learning mechanism (from CA3cue-CA3cont). All inhibitory
synapses used are GABA B type.

Although this particular implementation was used, the
model was also tested for other network sizes of smaller
and larger capacity in terms of both number of memories
and memory size. In a generic way, if we have a memory
of size M in a memory with a capacity of N memories,
the first ⌈log2(N + 1)⌉ neurons would correspond to the cue
(cueSize) and the remaining M − cueSize would correspond
to the content (contSize). Taking these variables into account,
the model would have a consumption of 3 ∗ M + 2 ∗ N +
cueSize2 ∗ (cueSize−2) neurons, 4∗M +2∗N + cueSize∗



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 6: Computer-in-the-loop hardware setup used in the
experiments.

(cueSize3 − 2 ∗ cueSize2 + 3 ∗ cueSize− 6) static synapses
and N ∗ contSize dynamic synapses with the triplet STDP
learning mechanism. Due to the impossibility of regulating
the delay at the synapses within the hardware platform used,
it is necessary to add additional neurons and synapses in the
circuit. Specifically, these exponential terms derive from the
propagation of the output sparse activity in DG whose number
of neurons, layers and synapses depends on the number of
input neurons to be sparsed. If the model is implemented
on a different platform that allows controlling the delays of
synapses, this resource consumption would be lower, changing
from exponential terms to linear ones.

On the hardware implementation of the model, a set of
experiments were developed to verify its correct functioning.
These experiments consist in stimulating the model by con-
necting its input to a neural activity generator to observe its
behaviour in response to the input of information in the form of
memories. For each experiment, a rasterplot is included, which
summarises the spiking activity of the network during the
experiment from the generated input activity to its output from
the network. The X-axis represents the temporal evolution of
the experiment in ms and the Y-axis represents each neuron of
the network identified by the population that it belongs to and
the internal ID within the population. Each point represents
a spike fired by the neuron marked by the Y-axis at the time
instant marked by the X-axis.

Fig. 6 shows the hardware setup used to carry out the
experiments. The DYNAP-SE hardware platform contains the
desired network implementation. In addition, a computer-in-
the-loop setup is necessary to implement the triplet STDP
learning algorithm in DYNAP-SE [52]. DYNAP-SE returns
the information from the network in real time to the PC and,
based on this information, it calculates the changes of weights
in those synapses with the triplet STDP mechanism. This
information is also communicated in real time to the network
within DYNAP-SE to modify its weights.

A. DG (decoder) and CA1 (encoder)

The first experiments aim to demonstrate the sparse coding
achieved in DG together with the decoding and recovery of the
original format achieved in CA1. To attain this, both compo-
nents are stimulated with a sweep of all possible combinations
of inputs they can receive. The neural activity resulting from

(a)

(b)

Fig. 7: Raster plot of spiking activity of the (a) DG layer and
(b) CA1 layer during a sweep of all possible inputs.

this experiment for DG is shown in Fig. 7a and for CA1 in
Fig. 7b. In both cases, only the neural activity of the part of
the model that works with the cue is considered; the content
part is not of interest for these experiments, as it would simply
pass the input activity to the output unchanged.

Starting with the experiment applied to DG, on the one
hand, neurons with id from 0 to 2 are in charge of generating
the input activity to the network. On the other hand, neurons
with id from 3 to 8 are the neurons of the DG Delay Line
subpopulations in charge of transmitting the input to the
different layers of the model, neurons with id from 9 to 17 are
in charge of computing the sparse output and transmitting it
to the last layer, and neurons with id from 18 to 24 represent
the output activity of the network, that is, the neuronal activity
of the sparse coding after propagating to the last layer.

For a decoder with 3 input neurons, a total of 7 possible
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Fig. 8: Raster plot of spiking activity of the network during the operation test consisting of learning, recalling and forgetting
operations.

combinations of activity are available, which occur at ms
0, 100, 200, 300, 400, 500 and 600. Each time an input is
received, this input pattern is repeated in layer 0 and 1 to be
transmitted to layers 1 and 2, respectively. Then, depending
on the input combination, the neurons will compute which
output neuron should be activated and propagated to the last
layer, and the other output neurons will be inhibited, reaching
the functionality of a WTA network. For each possible input
combination, the activation of only one different output neuron
is obtained in each case.

For the experiment applied to CA1, neurons with id from
0 to 6 are in charge of generating the input activity to the
network and neurons with id from 7 to 9 are in charge of
computing the inputs to generate the output activity. For an
encoder with 7 input neurons, there are a total of 7 possible
input combinations (the activation of each input separately).
These combinations of inputs occur at ms 0, 100, 200, 300,
400, 500 and 600. For each possible input, a different combi-
nation of output neurons is obtained, namely, the combination
of neuronal activity that originated that sparse activity in DG.

B. Learn, recall and forget

This experiment attempts to demonstrate how the different
operations of the model work. To this end, the input neurons to
the network are configured in a way that their activity carries
out the following sequence of operations: learning, recalling,
learning with forgetting and recalling. The resulting network
activity for this experiment is shown in Fig 8.

The experiment begins with the learning of a memory,
characterised in this case by the activation of neurons IN0, IN1,
IN5, IN6, IN9 and IN10 at ms 0, 350 and 700. Neurons with
id IN0 and IN1 represent the memory cue and the remaining
neurons (IN5, IN6, IN9 and IN10) represent the memory con-
tent. The content part will pass unchanged through DG (DG24,
DG25, DG28 and DG29) and reach the CA3cont subpopulation
in CA3 (CA3cont2, CA3cont3, CA3cont6, CA3cont7). The
part corresponding to the cue will be dispersed in DG; the
result of which propagates to the CA3cue subpopulation of
CA3, activating the neuron with id CA3cue2.

At that instant, the spike trains that characterise the cue
and the content of the memory will be in CA3, triggering its
learning. Finally, this activity reaches CA1, where the content
remains unchanged (CA15, CA16, CA19, CA110) and the cue
recovers its original format (CA10 and CA11).

After finishing the learning operation, it is necessary to
verify that the memory has been correctly learned, while also
verifying the recall operation. At ms 1050, the recall operation
begins with the input of the recall fragment corresponding
to the cue (IN0 and IN1). After passing through DG, the
dispersed cue arrives at CA3cue, activating the neuron with
id CA3cue2 and propagating to the CA3cont subpopulation.
In CA3cont, the content neurons associated with that cue
in the previous learning (CA3cont2, CA3cont3, CA3cont6,
CA3cont7) are activated. All this activity will reach CA1,
where the complete memory is observed after the recoding
of the cue.
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Fig. 9: Raster plot of the spiking activity of the network during the operation test consisting of combinations of several
operations.

The following step corresponds to the learning operation
of the memory formed by the activation of neurons with id
IN0, IN1, IN3, IN4 and IN5 at ms 1300, 1650 and 2000.
This memory presents the same cue as the previous memory;
therefore, upon reaching CA3, all the neurons present in
both memories are activated. Due to the sequentiality and
distribution of these activations, the first memory will be
forgotten in the first input of the new memory and the second
memory will be learnt.

To check whether the forgetting had occurred correctly, a
final recall operation is carried out. At ms 2350, the cue that
is common to both memories (IN0 and IN1) is reintroduced
to the network and after the operation is completed, only the
activation of neurons corresponding to the second memory can
be seen in CA1.

C. Combined operations sequence

The last experiment extends the previous one by carrying
out a set of 6 operations: 2 learning, 1 learning with forget-
ting and 3 recallings. The resulting network activity for this
experiment is presented in Fig 9. The aim is to demonstrate
the robustness of the information learned and verify that,
after several operations, regardless of whether or not this
information is involved, it is still stored and can be recalled.

Initially, the learning of two memories takes place: the first
one characterised by the activation of neurons with id IN1, IN4,
IN5 and IN6, and the second one by neurons with id IN1, IN2,
IN6, IN7 and IN8. The learning of the first memory occurs at

ms 0, 250 and 450, and the learning of the second memory at
ms 600, 800 and 1050. Then, at ms 1250 and 1500, the recall
of the first and second memory is given, respectively. For this,
the memory fragment corresponding to the cue, IN1 for the
first one and IN1 and IN2 for the second one, is introduced.
In both cases, it can be observed that the complete memory
is recalled without problems.

Subsequently, a learning operation of a third memory (IN1,
IN2, IN6, IN9, IN10) is carried out, whose cue is common
to that of the second memory. Therefore, at the same time
as the third memory is learnt, the second one is forgotten, as
can be observed in the result of the recall operation initiated
at ms 2450, when the cue common to both (IN1 and IN2) is
introduced.

V. DISCUSSION

The results of the experiments described in Section IV
demonstrate the correct functioning of the analog bio-inspired
hippocampus memory model proposed in this work. The first
experiment verified the ability of DG to encode the input
information to facilitate learning and improve the subsequent
storage capacity of memories, as well as the ability of CA1
to decode and recover the original format of this informa-
tion at its output. The second experiment demonstrated the
network’s ability to learn, recall and forget memories. Finally,
the third experiment verifies the integrity and robustness of the
information learned by the model, which is not forgotten or
corrupted after several intermediate operations from learning
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to recall, or after the recall itself. Furthermore, this set of
experiments demonstrated the network’s ability to work with
both orthogonal and non-orthogonal memories.

The development of the model has been carried out on the
DYNAP-SE hardware platform rather than being simulated
in software. On the one hand, the deterministic behavior of
the digital machines used to run simulators makes it chal-
lenging to simulate certain random characteristics of analog
systems. These limitations can lead to a deviation of the be-
havior obtained from that expected in neuromorphic systems.
Meanwhile, the hardware platform makes use of the physical
analog primitives with which they are built to achieve these
analog principles. Therefore, it allows the construction and
operation of neuromorphic systems in conditions more similar
to those found in the brain. On the other hand, a hardware
implementation of the memory model facilitates input/output
interfacing with other systems. This enhances its integration
and usability in different proposed neuromorphic applications.
In addition, a hardware implementation of the model is more
efficient than a simulation of it in terms of performance, at the
cost of being more complex and time-consuming to develop.
Thanks to this, it is possible to achieve real-time operation,
which is not possible on a simulator.

The decision to use spike trains instead of individual spikes
as the operating principle of the network makes the model
more noise tolerant and robust to variations from the expected
behaviour. In case of receiving individual unexpected spikes
(noise) from different sources, such as mismatch of board
parameter values, noise in the input data or externally induced
noise within the network, it will be ignored or will have a
minimal impact within an activity flow characterised by spike
trains.

At the same time, for the learning operation, several short
spike trains in small time windows were used over a single
spike train with a large time window. If a single spike train was
used, the learning mechanism would have to be configured to
perform large and fast changes. This would make it unstable
and susceptible to individual spike noise. The use of multiple
spike trains, on the other hand, allows the learning mechanism
to be configured to make this operation more progressive
over time. Each spike train will result in small increments
in synaptic weights, which in sum will result in a complete
learning of the memory. In addition, this ensures that small,
unexpected changes in activity and/or noise are not learned by
requiring a persistent and long-lasting adaptation over time.

There is biological evidence to support these characteristics.
Mammals learn by repetition, with each repetition usually
taking small periods of time. In addition, long-term mem-
ory formation occurs through the use of constant repetition
of the memory over time, while memories that are rarely
used are quickly forgotten to make room for new memories
[22]. However, these features come with the disadvantage of
needing more time to perform the operations correctly. This is
more accentuated in the learning and forgetting operations by
needing a temporary window of rest between each spike train
to avoid mixing operations with each other.

The learning operation in the model has a dual purpose: the
ability to learn new memories and to forget old memories. To

TABLE I: Comparison between the digital ( [23]) and analog
(proposed in this paper) design of spike-based bio-inspired
hippocampal memory models.

[23] This work
Paradigm Digital Analog

Implementation Software simulation on
hardware platform

Hardware implementation on
hardware platform

Resource usage Linear as a function
of capacity

Linear as a function
of capacity *

Noise effect Highly sensitive to noise Noise resistant and robust
to punctual variations

Learning rule STDP Triplet STDP
Temporal performance
(learn and recall) 7-6 ms 300-25 ms

Storage capability High High

Type of patterns Orthogonal and
non-orthogonal

Orthogonal and
non-orthogonal

Functionality Learn, recall and forget Learn, recall and forget

Content persistence Leaks unused content after
some operations Content without leakage

Neural network SNN SNN
Bio-inspiration Medium High
* Ignoring the restrictions of the hardware platform used (more information in Section IV).

achieve this functionality, the triplet STDP mechanism was
used, which is not only closer to biology than the standard
STDP, but is also the most appropriate when working with
hippocampal information, as it is able to better extract the
dynamics of this type of network [45].

Another highlight is the design of DG as a multi-layer
structure that functions as a cascaded filter. If a single-layer
structure were used to compute all outputs at the same time, as
a consequence of the use of spike trains, the output would be
noisy. This would be due to the time it takes for the inhibitory
synapses that connect the neurons to each other, thus, once an
output is reached, it inhibits the others, resulting in a WTA
selection. In the case of a single layer, this inhibition would be
late and would result in the activation of neurons of unwanted
outputs. At the same time, the use of inhibitory GABA B
synapses was necessary in the implementation. Thanks to
their temporal behaviour and intensity, this type of inhibitory
synapse was better suited to the network’s input activity flow
and to the proposed architecture itself.

Comparing the model described in this paper with the
proposals of other authors, we are going to focus on those
articles mentioned in Section I. The proposed model is able
to work with both orthogonal and non-orthogonal patterns and
presents a great capacity for learning and configurable storage,
unlike [24]–[28]. [32] and [33] propose hybrid models between
SNN and ANN, [34] perform a direct conversion from ANN to
SNN, and [30] and [31] are not directly spike-based, while the
proposed model is purely spike-based, making use of SNNs
and taking all the advantages that this type of network offers.

The proposed model provides fully dynamic and real-
time operation, whereas [35] sacrifices these characteristics
by using offline pruning techniques. This work presents an
analog implementation based on spike trains, and thus more
robust to noise and anomalous variations in the information
or the network, while works such as [23] and [36] present
implementations in digital simulation platforms of SNNs and
with an operation based on individual spikes, i.e., sensitive to
any type of noise. Specifically, this model presents a functional
analog alternative to the proposal given in [23]. A more
detailed comparison is shown in Table I.
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VI. CONCLUSIONS

In this work, a fully functional analog spike-based memory
model bio-inspired by the hippocampus was proposed. This
model was not only simulated in software, but also imple-
mented with SNNs on the DYNAP-SE hardware platform.
Through a set of experiments, the ability of the memory model
to learn memories, recall them from a fragment of themselves
and forget them was demonstrated. All these operations are
performed automatically, depending on the input information,
in a single simulation for each experiment, without interrup-
tions or changes in the network between different operations.
Although a concrete implementation of the model was shown,
its parameterised design enables the implementation of mem-
ories with greater or lesser capacity.

The result of the experiments led to the discussion of their
similarities with its biological counterpart. The design of the
model based on DG, CA3 and CA1, the use of the triplet
STDP learning mechanism in CA3 for learning, the cascade
filter structure of DG and the functioning as an autoassociative
memory, among other features, makes the proposed model
resemble the biological model. Furthermore, a comparison of
the proposed model with other computational models found
in the literature was carried out. This work presents the
first hardware implementation on a special-purpose hardware
platform for SNNs of a fully functional spike-based bio-
inspired hippocampal analog memory model, paving the road
for the development of future more complex neuromorphic
systems.

Nevertheless, the memory model still has room for improve-
ment and extensions that remain for future work. Currently, the
dispersion achieved in DG is the same as that of a deterministic
WTA system. A possible extension would be to model DG as
another type of information dispersion structure present in the
literature and compare both designs in terms of time, resource
consumption and robustness. This model could be applied
within neuromorphic robotic navigation and control systems as
a memory system capable of learning and recalling sequences
of movements, the navigation environment, trajectories toward
a goal position, etc. Furthermore, it would be interesting to
carry out a detailed study of the tolerance and robustness of
the model to constant and even periodic random noise and
compare it to its spike-based but digital counterparts under
the same conditions.

The source code of the implemented model and the exper-
iments and simulations performed is available on an open-
source GitHub repository1.

ACKNOWLEDGMENTS

This work is part of the project SANEVEC TED2021-
130825B-I00, funded by the Ministerio de Ciencia e Inno-
vación (MCIN), Agencia Estatal de Investigación (AEI) of
Spain, MCIN/AEI/10.13039/501100011033, and by the Euro-
pean Union NextGenerationEU/PRTR, and was partially sup-
ported by project PID2019-105556GB-C33 funded by MCIN/
AEI /10.13039/501100011033. D. C.-M. was supported by

1https://github.com/dancasmor/A-bio-inspired-hardware-implementation-o
f-a-analog-spike-based-hippocampus-memory-model

a ”Formación de Profesorado Universitario” Scholarship and
by ”Ayudas complementarias de movilidad” from the Spanish
Ministry of Education, Culture and Sport.

D. Casanueva-Morato would like to thank Giacomo Indiveri
and his group for hosting him during a three-month internship
between 1st June 2023 and 31th August 2023, during which
the idea of this paper was originated and most of the results
presented in this work were obtained.

REFERENCES

[1] A. Vanarse, A. Osseiran, and A. Rassau, “Neuromorphic engineering—a
paradigm shift for future im technologies,” IEEE Instrumentation &
Measurement Magazine, vol. 22, no. 2, pp. 4–9, 2019.

[2] S. Soman and M. Suri, “Recent trends in neuromorphic engineering,”
Big Data Analytics, vol. 1, pp. 1–19, 2016.

[3] F. Zenke, S. M. Bohté, C. Clopath, I. M. Comşa, J. Göltz, W. Maass,
T. Masquelier, R. Naud, E. O. Neftci, M. A. Petrovici et al., “Visualizing
a joint future of neuroscience and neuromorphic engineering,” Neuron,
vol. 109, no. 4, pp. 571–575, 2021.

[4] C. Mead, “Neuromorphic engineering: In memory of misha mahowald,”
Neural Computation, vol. 35, pp. 343–383, 2023.

[5] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri, “Neuromorphic
electronic circuits for building autonomous cognitive systems,” Proceed-
ings of the IEEE, vol. 102, no. 9, pp. 1367–1388, Sep. 2014.

[6] Z. Sun, V. Cutsuridis et al., “Brain simulation and spiking neural
networks,” Cognitive Computation, pp. 1–3, 2023.

[7] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore
architecture with heterogeneous memory structures for dynamic neu-
romorphic asynchronous processors (dynaps),” IEEE Transactions on
Biomedical Circuits and Systems, vol. 12, no. 1, pp. 106–122, 2018.

[8] G. Indiveri and Y. Sandamirskaya, “The importance of space and time
for signal processing in neuromorphic agents,” IEEE Signal Processing
Magazine, vol. 36, no. 6, pp. 16–28, 2019.

[9] L. Khacef, P. Klein, M. Cartiglia, A. Rubino, G. Indiveri, and
E. Chicca, “Spike-based local synaptic plasticity: a survey of
computational models and neuromorphic circuits,” Neuromorphic
Computing and Engineering, vol. 3, no. 4, p. 042001, Nov. 2023.
[Online]. Available: http://dx.doi.org/10.1088/2634-4386/ad05da

[10] S. Kim, S. Park et al., “Spiking-yolo: spiking neural network for energy-
efficient object detection,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 34, no. 07, 2020, pp. 11 270–11 277.

[11] D. Zendrikov, S. Solinas, and G. Indiveri, “Brain-inspired methods for
achieving robust computation in heterogeneous mixed-signal neuromor-
phic processing systems,” Neuromorphic Computing and Engineering,
vol. 3, no. 3, p. 034002, 2023.

[12] S. Kundu, M. Pedram, and P. A. Beerel, “Hire-snn: Harnessing the
inherent robustness of energy-efficient deep spiking neural networks
by training with crafted input noise,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 5209–5218.

[13] W. Guo, M. E. Fouda et al., “Neural coding in spiking neural networks:
A comparative study for robust neuromorphic systems,” Frontiers in
Neuroscience, vol. 15, p. 638474, 2021.

[14] K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine
intelligence with neuromorphic computing,” Nature, vol. 575, no. 7784,
pp. 607–617, 2019.

[15] J. Zhu, T. Zhang, Y. Yang, and R. Huang, “A comprehensive review
on emerging artificial neuromorphic devices,” Applied Physics Reviews,
vol. 7, no. 1, p. 011312, 2020.

[16] D. Ivanov, A. Chezhegov, M. Kiselev, A. Grunin, and D. Larionov, “Neu-
romorphic artificial intelligence systems,” Frontiers in Neuroscience,
vol. 16, p. 1513, 2022.

[17] R. Sarpeshkar, “Analog versus digital: extrapolating from electronics to
neurobiology,” Neural computation, vol. 10, no. 7, pp. 1601–1638, 1998.

[18] G. Indiveri, B. Linares-Barranco, T. J. Hamilton et al., “Neuromorphic
silicon neuron circuits,” Frontiers in neuroscience, vol. 5, p. 73, 2011.

[19] I. Kataeva, S. Ohtsuka, H. Nili, H. Kim, Y. Isobe, K. Yako, and
D. Strukov, “Towards the development of analog neuromorphic chip
prototype with 2.4 m integrated memristors,” in 2019 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2019, pp. 1–5.

[20] B. Cramer, S. Billaudelle, S. Kanya, A. Leibfried, A. Grübl,
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