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 Abstract—Electroencephalography (EEG) biometrics has 

garnered significant attention in recent years owing to its non-

intrusive nature, real-time detection capabilities, concealment, 

and high complexity. Despite these promising attributes, the 

practical deployment of EEG-based identity recognition systems 

remains hindered by limited cross-day recognition performance. 

While some studies have reported cross-day recognition, they 

often suffer from slow recognition speeds, failing to meet the 

basic requirements for practical applications. To address this 

issue, we propose an unsupervised domain adaptation algorithm 

based on spatial pattern alignment for visual-evoked potential 

(VEP)-based identity recognition. This method employs 

rotational alignment of spatial patterns to correct cross-day 

spatial filters and utilizes forward selection to identify optimal 

sub-bands. By utilizing this approach, significant improvements 

of speed and accuracy in cross-day recognition can be achieved. 

We validate the proposed algorithm on three existing VEP 

datasets: Dataset I (25 subjects across 30 days), Dataset II (21 

subjects across 5 days), and Dataset III (15 subjects across 200 

days). The results demonstrate a significant superiority over the 

compared algorithms. Furthermore, we conduct online 

experiments with 15 individuals across over 1000 days, and the 

outcomes remain consistent. Analyzing the dataset over nearly 

three years in terms of temporal dimension, we observe evident 

template aging effect: 30 days > 200 days > 1000 days. However, 

the proposed method effectively mitigates template aging, 

resulting in minimal performance differences among the various 

datasets. The introduced algorithm substantially enhances speed 

and accuracy in cross-day recognition, paving the way for the 

long-term stability and practicality of online brainwave 

recognition systems. 

Index Terms—Electroencephalography, Biometrics, Transfer 

Learning, Domain Adaptation, Aging Effect. 
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I. INTRODUCTION 

N today's highly digitized and interconnected society, the 

security of identity information is of paramount 

importance for both individuals and society. Biometric 

methods such as fingerprint identification, facial 

authentication, and iris detection have become commonplace 

of security authentication in daily life. However, these 

methods still exhibit certain security vulnerabilities [1]. For 

instance, due to the natural secretion of oils by the human 

body, fingerprints are prone to being left behind and could 

potentially be acquired by malicious individuals for illicit 

purposes, such as gummy fingers, thus compromising security 

protocols [2]. Similarly, facial authentication is not foolproof 

in ensuring liveness detection, as it can be deceived by 

methods like using masks [3]. Additionally, iris detection 

could be deceived by contact lenses engraved with iris patterns 

[4]. In contrast, electroencephalography (EEG)-based 

recognition, with its characteristics of excellent concealment, 

high complexity, and live detection, is considered to overcome 

the aforementioned drawbacks and is widely regarded as a 

more secure biometric method [5-7]. Furthermore, its 

portability, non-invasiveness, and cost-effectiveness in data 

collection [8] have contributed to its increasing popularity. 

However, existing research has yet to fully meet the 

requirements for practical real-world applications, as it often 

suffers from slow recognition speed and template aging 

effects, with very few deployments of online systems [8].  

Most of the earlier studies in EEG biometrics [9-13] have 

primarily reported excellent speed and accuracy of within-day 

recognition; however, it remains unknown whether the cross-

day recognition performance aligns with the requirements of 

practical scenarios. Subsequent studies reported satisfactory 

cross-day recognition accuracy [8], [14-18], yet the persistent 

challenge of slow recognition speed has hindered practical 

implementation [19], [20]. The primary cause of poor cross-

day recognition lies in the non-stationarity of EEG signals, 

where data collected at different times exhibit variations due 

to factors like lighting conditions, electrode placement, and 

impedance [17]. This is a common challenge in long-term 

brain-computer interface (BCI) research [21], often referred as 

transductive transfer learning, where the source domain has 

labeled data, but the target domain's labels are unknown, yet 

tasks are the same across domains [22].  

On one hand, in research of steady-state visual evoked 

potentials (SSVEP), several studies have explored novel 

methodologies in transfer learning. For instance, Yuan et al 
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utilized transfer template-based canonical correlation analysis 

(ttCCA) to transfer templates from other subjects, significantly 

enhancing SSVEP detection accuracy [23]. They also 

developed an online algorithm, online transfer template-based 

CCA (ott-CCA), which adaptively updates the EEG templates. 

Nakanishi et al employed a least-squares template 

reconciliation (LST)-based TRCA method to effectively 

improve cross-device SSVEP detection accuracy [24]. In [25], 

[26], the Align and Pool for EEG Headset Domain Adaptation 

(ALPHA) method was employed, resulting in enhanced 

SSVEP detection accuracy across electrodes and days.  

On the other hand, in the realm of emotion recognition, 

numerous cross-day investigations have been conducted. For 

example, in [27], Chai et al employed subspace alignment 

(SA) on six publicly available datasets to detect three types of 

emotion, achieving impressive outcomes. Additionally, cross-

day research plays a pivotal role in motor imagery studies. In 

[28], He and Wu employed Euclidean-space alignment (EA) 

for motor imagery classification, surpassing Riemannian 

space-based methods and attaining commendable results. 

However, to the best of our knowledge, such research is rare 

in the context of EEG-based identity recognition [29], [30].  

To bridge this gap and achieve domain adaptation for 

enhancing cross-day performance, we propose a domain 

adaptation algorithm based on spatial pattern alignment for 

visual-evoked potential (VEP)-based identity recognition. In 

particular, we adjust spatial filters that have been initially 

trained on the source domain by leveraging unlabeled data 

from the target domain. This process aims to enhance their 

alignment with the target domain, consequently leading to an 

enhancement in classification accuracy. Additionally, we 

optimize the selection of sub-bands using a forward selection 

approach, which enhancing cross-day performance on existing 

data. Finally, we validate the effectiveness of the algorithm 

through online experiments, demonstrating consistency with 

established dataset performance levels.  

The innovations and contributions of this paper include: (1) 

introducing a novel unsupervised domain adaptation algorithm 

based on spatial pattern alignment, which reduces differences 

between data distributions of different sessions; (2) proposing 

a forward selection-based parameter optimization method that 

improves cross-day performance; (3) achieving excellent 

performance on three cross-day datasets; (4) establishing an 

online experimental system that validates the algorithm's 

online performance; (5) showcasing the algorithm's significant 

impact in mitigating the template aging issue. 

The subsequent sections of the paper are structured as 

follows. The Methodology section details the mathematical 

expression of the proposed algorithm, parameter optimization 

methods, and performance evaluation strategies. The Results 

section presents comprehensive cross-day results, feature 

analysis, and parameter analysis across various datasets. The 

Discussion section outlines the limitations of this work and 

suggests future research directions. The Conclusion section 

summarizes the main achievements of the paper. 

II. METHODS 

A. Template-matching Framework 

In our previous studies on VEP-based person identification 

[8, 31], we employed a template-matching classification 

method based on spatial filtering algorithms. Here, we provide 

a brief overview. We begin by preprocessing the raw EEG 

data in several steps: 

1. Extracting data epochs from the raw EEG data based on 

event triggers. 

2. Establishing a consistent starting point for stimuli by 

considering a 0.14s delay in the visual pathway [32]. 

3. Downsampling the data from 1000Hz to 250Hz. 

4. Correcting baseline by subtracting the data's mean value. 

5. Applying a filter bank method [33] using Chebyshev 

Type I filters to divide the data into multiple sub-bands. 

Subsequently, we proceed with the training phase 

(enrollment step). After subjecting all first-day data (labeled as 

Xs) to the aforementioned preprocessing steps, we utilize the 

algorithm framework depicted in Figure 1. For each sub-band, 

canonical correlation analysis (CCA) algorithm is 

independently applied to compute spatial filters, resulting in 

the creation of signal templates (average waveforms). This 

process forms the EEG template library, with each subject 

possessing their corresponding spatial filters and EEG 

templates. Finally, the testing phase (identification step) 

involves processing unknown identity data (labeled as Xt in 

Figure 1). We multiply the spatial filters of all subjects and 

apply the proposed Align Spatial Pattern (ASP) algorithm with 

the unknown data. Then we compute the correlation 

coefficient r between them and the spatially filtered EEG 

templates. This yields a set of features representing the 

correlation between the unknown data and templates of each 

subject. The subject with the highest feature value is 

determined as the identity of the unknown data. Notably, for 

cases involving multiple trials (N), our approach computes an 

independent feature value r for each trial (i) and then 

aggregates them to represent the features of the entire signal 

segment 𝑅 =  ∑ 𝑟𝑖
𝑁
𝑖=1 . 

B. Task-Related Component Analysis (TRCA) 

TRCA (Task-Related Component Analysis) is a spatial 

filtering method used to effectively extract task-related 

components by maximizing signal reproducibility during the 

task period [34]. TRCA is frequently employed in 

classification of SSVEP signals [35]. The basic assumption is 

that the signals can be divided into two source spaces: (1) 

task-related signals 𝑠(𝑡) ∈ ℝ  and (2) task-unrelated signals 

𝑛(𝑡) ∈ ℝ . The linear observation model for multi-channel 

EEG signals 𝒙(𝑡) ∈ ℝ𝑁𝑐 is represented as: 

𝑥𝑗(𝑡) = 𝑎1,𝑗𝑠(𝑡) + 𝑎2,𝑗𝑛(𝑡), 𝑗 = 1,2, … , 𝑁𝑐       (1) 

Here, j represents the channel index, and 𝑎1,𝑗  and 𝑎2,𝑗  are 

coefficients that project the source signals onto the EEG 

signals. For solving the task-related component 𝑠(𝑡) from the 

linear observation signal 𝒙(𝑡), the equation is expressed as: 



Xs

Xt

Sub-Band 1

Sub-Band 2

...

Sub-Band Nm

CCA

CCA

CCA

CCA

Forward Selection

ASP

ASP

ASP

ASP

Figure 1. Flow chart of the identification algorithm: the algorithm integrates filter bank analysis with spatial filter algorithm based on a template-matching 

approach, where CCA stands for Canonical Correlation Analysis and ASP stands for Spatial Pattern Alignment. This amalgamation aims to identify the subject 

by detecting code-modulated VEP. 

Ideally, the solution to the equation should satisfy 

∑ 𝑤𝑗𝑎1,𝑗
𝑁𝑐
𝑗=1 = 1  and ∑ 𝑤𝑗𝑎2,𝑗 = 0

𝑁𝑐
𝑗=1 , resulting in 𝑦(𝑡) =

𝑠(𝑡). In practice, this equation could be solved by maximizing 

the inter-trial covariance. For the EEG signals of the h-th trial 

and the estimated task-related component, denoted as 𝒙(ℎ)(𝑡) 

and 𝑦(ℎ)(𝑡), ℎ = 1,2, … , 𝑁𝑡 , the duration of 𝑦(ℎ)(𝑡)  is fixed 

within 𝑡 ∈ [𝑡ℎ, 𝑡ℎ + 𝑇], where T is the duration of each trial. 

The correlation coefficient between h1 and h2 of 𝑦(𝑡)  is 

expressed as: 

(3) 

The sum over all possible combinations of trials is given by: 

∑ 𝐶ℎ1ℎ2

𝑁𝑡

ℎ1,ℎ2=1
ℎ1≠ℎ2

= ∑ ∑ 𝑤𝑗1
𝑤𝑗2

Cov

𝑁𝑐

𝑗1,𝑗2=1

(𝑥𝑗1

(ℎ1)
(𝑡), 𝑥𝑗2

(ℎ2)
(𝑡))

𝑁𝑡

ℎ1,ℎ2=1
ℎ1≠ℎ2

 

= 𝒘𝑇𝑺𝒘.                                                         (4) 

The matrix 𝑺 = (𝑆𝑗1𝑗2
)

1≤𝑗1,𝑗2≤𝑁𝑐
 is defined as: 

𝑆𝑗1𝑗2
= ∑ Cov (𝑥𝑗1

(ℎ1)(𝑡), 𝑥𝑗2

(ℎ2)(𝑡)) .
𝑁𝑡
ℎ1,ℎ2=1
ℎ1≠ℎ2

           (5) 

To obtain a feasible solution, we constrained the variance of 

𝑦(𝑡): 

Var(𝑦(𝑡)) = ∑ 𝑤𝑗1
𝑤𝑗2

Cov

𝑁𝑐

𝑗1,𝑗2=1

(𝑥𝑗1
(𝑡), 𝑥𝑗2

(𝑡)) 

                            =  𝒘𝑇𝑸𝒘  
                         = 1                                                           (6) 

The solution to this constrained optimization problem is: 

�̂� = arg max
𝒘

𝒘𝑇𝑺𝒘

𝒘𝑇𝑸𝒘
.                                 (7) 

The largest eigenvector of the matrix 𝑸−1𝑺  is the optimal 

spatial filter, and the correlation coefficient is calculated 

between the EEG template and the projected test data as 

shown in Equation (8): 

𝑟𝑛
(𝑚)

= 𝜌 (�̅�(𝑚)𝑇
𝒘𝑛

(𝑚)
, �̅�𝑛

(𝑚)𝑇
𝒘𝑛

(𝑚)
)                        (8) 

𝑦(𝑡) = ∑ 𝑤𝑗𝑥𝑗(𝑡)

𝑁𝑐

𝑗=1

 

 

(2) 

 = ∑ (𝑤𝑗𝑎1,𝑗𝑠(𝑡) + 𝑤𝑗𝑎2,𝑗𝑛(𝑡))

𝑁𝑐

𝑗=1

 

𝐶ℎ1ℎ2
 = Cov (𝑦(ℎ1)(𝑡), 𝑦(ℎ2)(𝑡)) 

 = ∑ 𝑤𝑗1
𝑤𝑗2

Cov

𝑁𝑐

𝑗1,𝑗2=1

(𝑥𝑗1

(ℎ1)(𝑡), 𝑥𝑗2

(ℎ2)(𝑡)). 



C. Align Spatial Pattern Algorithm (ASP) 

Inspired by [25], we apply the ASP algorithm to brainwave 

recognition. Specifically, we first use template-based CCA to 

obtain spatial filters SFs and SFt. Corresponding spatial 

patterns could then be obtained using Equation (9): 

𝑆𝑃𝑠   =   𝑆𝐹𝑠
−𝑇                                

𝑆𝑃𝑡   =   𝑆𝐹𝑡
−𝑇                                  (9) 

We believe that the changes in spatial patterns caused by the 

non-stationarity of brainwave signals can be corrected through 

rotational symmetry. Therefore, we need to use the estimated 

spatial pattern SPt to find an orthogonal transformation matrix 

Q that aligns SPs, as defined in the optimization problem of 

Equation (10): 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑄
  ||𝑆𝑃𝑠 − 𝑆𝑃𝑡𝑄𝑇||𝐹

2  

𝑠. 𝑡.    𝑄𝑄𝑇 =  𝐼                               (10) 

The equation belongs to the typical Orthogonal Procrustes 

Problem [37]. The solution is given by multiplying the left (L) 

and right (R) singular vectors of SPs
TSPt, resulting in: 

   𝑄  =   𝐿𝑅𝑇                                  (11) 

Then, we can obtain the transformed spatial filter: 

𝑆𝐹𝐴𝑆𝑃   =    𝑆𝐹𝑡𝑄𝑇                           (12) 

In practical usage, we modify the method of obtaining spatial 

filters 𝑆𝐹𝑋𝑠�̅�  for training data to be 𝐶𝐶𝐴(𝑋𝑠, 𝑋𝑠
̅̅ ̅) , and the 

method of obtaining spatial filters 𝑆𝐹𝑋𝑡�̅�  for test data to be 

𝐶𝐶𝐴(𝑋𝑡 , 𝑋𝑠
̅̅ ̅). The alignment process is similar to the above 

procedure, and the method of obtaining correlation 

coefficients is defined by Equation (13): 

𝑅 =  𝑐𝑜𝑟𝑟(𝑆𝐹𝑋𝑠�̅��̅�𝑠, 𝑆𝐹𝑋𝑡�̅�
𝐴𝑆𝑃𝑇

𝑋𝑡)              (13) 

D. Parameter Optimization 

As mentioned earlier, we commonly use a filter bank 

approach [33] in the template-matching framework with a 

structure shown in Figure 2. The weights are typically 

determined using the empirical formula from [33]: a(m) = m−

1.25+0.25. However, this formula may not be universally 

suitable, prompting some studies to perform search and 

optimization [38]. In this paper, we initially adopt the grid 

search method from [31] to optimize parameters of the filters, 

which starts by searching for the lower and upper limits of the 

basic band, and then a grid search is performed to determine 

the number of filters and their frequency intervals.  

Furthermore, we introduce a novel frequency band selection 

algorithm based on Forward Selection [39]. The approach 

involves individually classifying the features of each sub-band 

to obtain accuracy results: ACCsb1, ACCsb2, ..., ACCsbn. For 

each sub-band, a curve is plotted using the data length 

(number of trials) as the x-axis and accuracy as the y-axis. The 

area under the curve (AUC) is used as the evaluation metric, 

denoted as Score. The algorithm begins by selecting the sub-

band with the highest Score as the first frequency band. 

Subsequently, the combination of two sub-bands, which 

contains each band merged with the first frequency band, with 

the highest Scores is selected, and this process continues 

iteratively. The algorithm stops when the Score no longer 

increases or increases by less than 0.0001. Once the frequency 

Sub-band 1

Sub-band 2

Sub-band 3

Sub-band Nm

...

fhfl fl+d fl+2d ... ...
 

Figure 2. Representative frequency structure for all sub-bands in filter bank 

design. Here, 'fl' and 'fh' denote the lower and upper bounds of frequencies, 

respectively, with 'd' representing the frequency interval between two adjacent 

sub-bands. 

 

Algorithm 1. Forward Sub-band Selection 

Input: Sub-band 1, sub-band 2, …, sub-band Nm 

Process:  

I. Calculate the score for each individual sub-band.  

II. Sort the scores in descending order and select the highest 

one (S1).  

III. Calculate the score for each pair combination with S1.  

IV. Sort the scores of the combinations in descending order 

and select the highest one (S1-S2).  

... 

V. Repeat the process until the score either stabilizes or 

increases by less than 0.0001. 

Output: Selected combination of sub-bands [a, b, c, ...] 

 

bands are selected through forward selection, the weights of 

all selected frequency bands are set to 1, resulting in the final 

set of parameters. 

E. Performance Evaluation 

(1) Existing Datasets: We have accumulated a significant 

amount of data in our previous studies. In [31], we collected 

cross-day data from 25 individuals. The recording channels 

included 9 electrodes in the occipital region (Pz, PO3/4, 

PO5/6, POz, Oz, and O1/2), with an average interval of 30 

days between sessions. The stimulation consisted of 63-bit M-

sequences, and each trial lasted 1.05 seconds. There were 8 

different stimulation modes (M1-M6, Mx4, Mx6). This dataset 

is referred to as ‘Dataset I’. In another study [8], we collected 

cross-day data from 21 individuals and compared the 

effectiveness of three types of Visual Evoked Potentials 



(VEP): Flash VEP (FVEP), Steady-State VEP (SSVEP), and 

Code-modulated VEP (CVEP) for identity recognition. Each 

trial lasted 1.05 seconds, and the average time interval 

between sessions was 5 days. This dataset is referred to as 

‘Dataset II’. We also conducted online experiments on 15 

participants from the [31] study, using a stimulus sequence of 

M5 and an average time span of 200 days. The templates for 

this experiment were taken from the first day (D1) of Dataset 

I. This dataset is labeled as ‘Dataset III’. These studies 

achieved promising results, and for more details, please refer 

to the original papers [8], [31]. We will now use these datasets 

to evaluate the performance of the proposed algorithm. The 

characteristics of these datasets are summarized in Table 1. 

Table 1. Details of three existing cross-day CVEP datasets 

Dataset 
Number of 

subjects 

Time span 

(average) 
References 

Dataset I 25 30 days [31] 

Dataset II 21 5 days [8] 

Dataset III 15 200 days [8] 

(2) Online Experiment: In addition to the existing datasets 

mentioned above, we conducted new online experiments with 

recruited participants. We invited 15 participants from Dataset 

II to participate in online experiments. This group consisted of 

4 males and 11 females, with an average age of 28.3 (ranging 

from 26 to 31). The average time interval between their initial 

participation and the online experiment was 1009 days 

(ranging from 1001 to 1017 days). All participants had normal 

or corrected-to-normal vision. Each participant read and 

signed an informed consent form approved by the Institution 

Review Board of Tsinghua University (NO. 20230058) before 

the experiment. For the online experiment, we used the 

stimulus pattern described in [8], specifically the CVEP-M5 

sequence, and the experimental setup is depicted in Figure 3. 

The online recognition process involved real-time feedback 

based on the algorithm's output, which presented the 

participant's identity. Each participant underwent an offline 

experiment consisting of 100 trials for in-day evaluation 

before proceeding to an online experiment involving 50 runs 

(with a total of 500 trials). A run comprised 10 trials, and after 

each run, the system provided feedback on the recognition 

result. The inter-trial rest time was 0.7 seconds, and there was 

a pause between two consecutive runs. Participants could 

resume the experiment by pressing the space bar when they 

were ready. The electrode positions for data collection were 

the classic occipital region with 9 channels, as described 

above. We refer to this dataset as ‘3Y’. 

(3) Performance Assessment: For parameter optimization, 

we employed a classical wrapper method [40], which means 

all our optimizations were based on the cross-day recognition 

results of the 25 individuals' data from [31], specifically using 

the M5 stimulation mode. The obtained algorithm parameters 

were then applied to other datasets. Performance evaluation 

primarily focused on comparing cross-day accuracy under 

equivalent data lengths. We used five domain adaptation  
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Figure 3. Diagram of the online VEP-based brainwave recognition system. 

algorithms suitable for this paradigm as benchmarks. 

Individual Template Canonical Correlation Analysis (itCCA) 

is a widely-used classification algorithm in BCI applications. 

Based on CCA, it seeks linear combinations of brain signals 

that maximize correlation with corresponding intentions or 

actions, facilitating classification and decoding of brain 

signals [36]. Least Squares Template (LST) reconciliation is 

another commonly used technique that aims at estimating and 

correcting differences by fitting a linear model. It has been 

employed to enhance the classification performance of SSVEP 

in cross-device scenarios [24]. Euclidean Alignment (EA) is a 

popular data alignment method used to align data from 

different sources or devices into a common reference 

framework. It operates by mapping data onto a common 

Euclidean space, enabling alignment of data collected from 

diverse sources or devices to similar positions within this 

space [28]. Kernel Principal Component Analysis (KPCA) is a 

nonlinear extension of traditional PCA, widely applied for 

dimensionality reduction and feature extraction across various 

domains, including pattern recognition, image processing, and 

machine learning. This algorithm is commonly employed as a 

transfer learning method. TRCA is the method we used for 

individual identification in our previous research [8], [31]. All 

cross-day performance evaluations were conducted using the 

first day's data for training and the second day's data for 

testing, with no overlaps by any algorithm. Additionally, we 

utilized in-day performance as reference in some cases. For in-

day classification accuracy, we employed the TRCA algorithm 

(as in-day results rapidly saturate, with minimal differences 

among algorithms) using leave-one-out cross-validation, i.e., 

using a sliding window to pick n trials for testing and using 

the remaining (100-n) trials for training. 

(4) Feature Evaluation: We performed an analysis of the 

effectiveness of the ASP algorithm features. First, we 

analyzed the R2 feature values [35] , [41]. We compared two 

scenarios: using ASP-based alignment with feature value 

𝑅1 = corr(𝑆𝐹𝑋𝑠�̅�X̅𝑠 , SF𝑋𝑡�̅�
𝐴𝑆𝑃𝑇

X𝑡) and using CCA without ASP, 

resulting in feature value 𝑅2 = corr(𝑆𝐹𝑋𝑠�̅�X̅𝑠, 𝑆𝐹𝑋𝑠�̅� X𝑡). For 

visualization purposes, we applied t-distributed stochastic 

neighbor embedding (t-SNE) [42] to project the feature 

distributions of several typical participants into a lower-

dimensional space. 



   
    (a)                                                   (b) 

Figure 4. Dataset I’s performance comparison of (a) fsASP and other 

comparative methods in cross-day identification, where black stars indicate 

the significance of fsASP compared to EA (black), while red stars indicate the 

significance of fsASP compared to TRCA (red), (b) fsASP in cross-day 

identification, TRCA in cross-day and within-day identification, where blue 

stars indicate the significance of InDay-TRCA compared to CrossDay-fsASP 

(blue), while black stars indicate the significance of InDay-TRCA compared 

to Baseline-TRCA(black).  

(5) Filter Bank: As previously mentioned, using a filter bank 

is a common approach in BCIs to enhance performance, and 

weighting coefficients are determined empirically [33]. Here, 

we applied the proposed method to reselect and optimize filter 

bank parameters. Then, we compared the performance of the 

classical setup against that of the forward selection. 

III. RESULTS 

1. Performance Evaluation  

Dataset I (with 25 Participants across 30 Days): As shown 

in figure 4(a), we compared the cross-day recognition accuracy of 

various algorithms for the M5 stimulus. It's evident that the 

accuracy obtained using fsASP (Forward Selection combing 

Align Spatial Pattern) is superior to other benchmark algorithms. 

Paired t-test demonstrated significant superiority of fsASP over 

TRCA for 1 to 5 trials (p-values: 0.0322, 0.0129, 0.0312, 0.0253, 

0.0349). For 1 to 2 trials, fsASP outperformed EA significantly 

(p-values: 0.0036, 0.0321), while no significant difference was 

observed between EA and TRCA. fsASP achieved a cross-day 

accuracy of 92.08% with 1 trial, 99.63% with 5 trials, and 100% 

with 10 trials, signifying a remarkable improvement in cross-day 

recognition. All fsASP results were achieved using the optimal 

parameters specific to each scenario, which will be elaborated on 

in subsequent sections. Here, we first present the parameters used: 

all fsASP subspace numbers (Nk) are set to 4, sub-band weighting 

coefficients are all set to 1, the number of sub-bands [8] for M5 is 

3, which decided by forward selection, and filter group 

parameters chosen are [4, 93], [20, 93], [24, 93]. These 

parameters are also used for subsequent results. LST, SA, and 

KPCA exhibited similar performance results, with no significant 

differences among them 1-10 trials: p > 0.05), and paired t-tests 

indicated that all three were significantly lower than TRCA, LST 

vs TRCA: p < 0.0001 (1-trial), p < 0.01 (2-trials); SA vs TRCA: p 

< 10-5 (1-trial), p < 0.01 (2-trials), p < 0.05 (3-trials); KPCA vs 

TRCA: p < 10-5 (1-trial), p < 0.001 (2-trials), p < 0.01 (3-trials), p 

< 0.05 (4-trials). However, itCCA demonstrated the poorest 

performance, significantly worse than all other methods. In figure 

4(b), a comparison between fsASP results, TRCA results as the 

baseline, and in-day recognition using the TRCA algorithm is  

   
   (a)                                                  (b) 

Figure 5. Dataset II’s performance comparison of (a) fsASP and other 

comparative methods in cross-day identification, where black stars indicate 

the significance of fsASP compared to EA (black), while red stars indicate the 

significance of fsASP compared to TRCA (red), (b) fsASP in cross-day 

identification, TRCA in cross-day and within-day identification, where blue 

stars indicate the significance of InDay-TRCA compared to CrossDay-fsASP 

(blue), while black stars indicate the significance of InDay-TRCA compared 

to Baseline-TRCA(black). 

presented. The results show that fsASP outperformed the 

baseline, with a significantly reduced gap between cross-day and 

in-day recognition accuracy, and no significant difference was 

observed between 2 and 10 trials. 

Dataset II (with 21 Participants across 5 Days): In figure 

5(a), we conducted a similar analysis on Dataset II using the 

CVEP (M5) stimulus. The results demonstrate significant 

improvement in cross-day recognition achieved by the proposed 

algorithm. Specifically, the proposed fsASP algorithm 

significantly outperformed the TRCA algorithm in cross-day 

recognition accuracy for 1 to 7 trials (1-trial: p < 0.001, 2 and 3 

trials: p < 0.01, 4 to 7 trials: p < 0.05), which achieved a cross-day 

accuracy of 94.98% with 1 trial, and 100% accuracy with 5 and 

10 trials. Paired t-tests results indicated no significant difference 

between LST, EA, and SA (1-10 trials: p > 0.05), while paired t-

tests showed that their performance was significantly lower than 

fsASP: fsASP vs LST: p < 0.01 (1 and 3 trials), p < 0.05 (2, 4, 5 

trials); fsASP vs SA: p < 0.001 (1 trial), p < 0.01 (2 to 4 trials), p 

< 0.05 (5 trials); fsASP vs EA: p < 0.01 (1 to 3 trials), p < 0.05 (4 

trials). However, itCCA and KPCA exhibited relatively poorer 

performance. Figure 5(b) presents a comparison between fsASP 

results, TRCA results as the baseline, and in-day recognition 

using the TRCA algorithm on Dataset II. It's clear that the 

proposed algorithm significantly improved cross-day recognition 

accuracy compared to the baseline. Additionally, fsASP achieved 

results close to in-day recognition, with only minor differences 

observed. Significant differences were observed only in 1-2 trials, 

and the accuracy differences were less than 5%. 

Dataset III (with 15 Participants across 200 Days): Figure 

6(a) depicts the results obtained from the online experiment with 

15 participants across 200 days in Dataset III. Training was 

conducted using Dataset I data, while the online experiment data 

were utilized for testing purposes. The results show a significant 

enhancement in cross-day recognition accuracy achieved by the 

proposed fsASP algorithm. Specifically, the fsASP algorithm 

outperformed TRCA significantly in 1 to 2 trials (p-values: 

0.0017 and 0.031). While fsASP showed no significant difference 

compared to EA, it demonstrated slightly higher accuracy than 

EA for 3 to 10 trials. The fsASP algorithm achieved a cross-day  



   
(a)                                               (b) 

Figure 6. Dataset III’s performance comparison of (a) fsASP and other 

comparative methods in cross-day identification, where black stars indicate 

the significance of fsASP compared to EA (black), while red stars indicate the 

significance of fsASP compared to TRCA (red), (b) fsASP in cross-day 

identification, TRCA in cross-day and within-day identification, where blue 

stars indicate the significance of InDay-TRCA compared to CrossDay-fsASP 

(blue), while black stars indicate the significance of InDay-TRCA compared 

to Baseline-TRCA(black). 

recognition accuracy of 83.07% with 1 trial, 99.60% with 5 trials, 

and 99.73% with 10 trials. P indicated no significant difference 

between LST, TRCA, SA, and KPCA (1-10 trials: p > 0.05), 

while itCCA continued to exhibit significantly lower performance 

compared to all other methods. As shown in figure 6(b), we 

compared the in-day and cross-day recognition accuracy. Using 

TRCA results as the baseline, the results demonstrate a significant 

improvement brought by the proposed algorithm compared to the 

baseline. Furthermore, the gap between cross-day and in-day 

performance is substantially reduced by fsASP, with no 

significant difference between cross-day and in-day performance 

for trials 3 to 10. 

3Y (with 15 Participants across 1000 Days): The 

performance evaluation was conducted on the newly collected 

online experiment data referred to as the 3Y dataset. Training was 

carried out using the CVEP-M5 from Dataset II to create 

templates. The average cross-day recognition accuracies for the 

15 participants are depicted in figure 7(a). The results indicate 

that the proposed algorithm significantly outperforms other 

methods. Paired t-tests revealed that, for 1 to 4 trials, fsASP is 

significantly better than TRCA (p < 0.01 for 1-trial, p < 0.05 for 

2-4 trials), and for 1 to 6 trials, it is significantly better than EA (p 

< 0.01 for 1-trial, p < 0.05 for 2-6 trials). fsASP achieved a cross-

day recognition accuracy of 88.13% with 1 trial, 99.60% with 5 

trials, and 100% with 10 trials. EA, LST, TRCA, and SA 

exhibited no significant differences in their results, whereas 

itCCA still performed poorly and KPCA had lower performance 

levels in the first 6 trials. Comparative results between in-day and 

cross-day recognition are shown in figure 7(b), with TRCA 

serving as the baseline. The results indicate a significant 

enhancement in cross-day performance by fsASP compared to 

the baseline, and a substantial reduction in the gap between cross-

day and in-day performance. For trials 3 to 10, the cross-day 

performance of fsASP is comparable to in-day performance. 

Initially, parameter optimization was performed using the 

Dataset I featuring M5 stimuli. Subsequently, the optimized 

parameters were applied to the Dataset II, Dataset III, and 3Y 

datasets. The performance evaluation across all four datasets 

consistently demonstrated the superior performance of the fsASP  
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Figure 7. 3Y dataset’s performance comparison of (a) fsASP and other 

comparative methods in cross-day identification, where black stars indicate 

the significance of fsASP compared to EA (black), while red stars indicate the 

significance of fsASP compared to TRCA (red), (b) fsASP in cross-day 

identification, TRCA in cross-day and within-day identification, where blue 

stars indicate the significance of InDay-TRCA compared to CrossDay-fsASP 

(blue), while black stars indicate the significance of InDay-TRCA compared 

to Baseline-TRCA(black). 

algorithm in cross-day recognition compared to the contrastive 

algorithms. Noticeably, the fsASP algorithm not only 

significantly improved cross-day recognition accuracy but also 

effectively narrowed the performance gap between cross-day and 

in-day recognition, particularly when compared against TRCA as 

the baseline. Notably, when the number of trials exceeded three, 

the cross-day performance of the fsASP algorithm exhibited no 

significant difference from the in-day performance. However, it is 

noteworthy that while EA and LST algorithms exhibited 

relatively enhanced performance compared to the TRCA 

algorithm, their improvement effects were not consistently stable, 

implying that their performance improvements are limited under 

specific circumstances, potentially leading to performance 

degradation. In contrast, the effectiveness of SA and KPCA 

algorithms in enhancing performance is not universally observed, 

possibly due to their shared utilization of the PCA subspace 

decomposition method, which may exhibit suboptimal 

performance in certain contexts. Conversely, the itCCA algorithm 

consistently demonstrated inferior performance to the TRCA 

algorithm across all scenarios, suggesting its subpar classification 

proficiency. 

2. Feature Evaluation  

(1) R2 Evaluation: On the 3Y dataset, we compared the 

distribution of R2 values before and after employing the ASP 

algorithm. As depicted in figure 8(a), there is a substantial 

enhancement in the self-correlation values across the 15 

participants. Simultaneously, as shown in figure 8(b), there is a 

slight improvement in the average correlation values between 

individuals (others). Further analysis of the enhancement 

magnitudes for these two types of correlations, presented in figure 

8(c), reveals a significant difference in favor of self-correlation 

enhancement (p < 0.001). This observation underscores that the 

utilization of the ASP algorithm leads to a notable increase in 

feature value disparities, consequently contributing to the 

enhancement of classification performance. 

(2) t-SNE Evaluation: We conducted t-SNE analysis on a subset 

of individuals from the 3Y dataset who exhibited substantial 

enhancement. In figure 9, the red points represent the centers of 

training data, the green points depict the feature distribution prior  
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Figure 8. The R-squared statistics for correlation coefficients of (a) Target 

self-correlation with or without ASP, (b) Non-target average correlation with 

or without ASP, and (c) improvement of self-correlation applying ASP. 

to applying the ASP algorithm, and the blue points illustrate the 

feature distribution post-ASP algorithm application. Clearly 

visible is the phenomenon where the feature distribution before 

applying the proposed ASP algorithm is more dispersed. 

However, with the use of the ASP algorithm, the feature 

distribution becomes more concentrated around the central region, 

simplifying the classification task and thereby contributing to the 

improvement of cross-day recognition performance.  

3. Filter Bank 

Employing the classical feature selection technique of forward 

selection, we further optimized the grid-params (fliter bank 

parameters decided by grid search method from [31]). The  

     

     

Figure 9. The low dimensional feature space projected by t-SNE of four 

typical subjects. The embeddings of training data are represented by red dots, 

and the feature distribution before/after applying the ASP algorithm are 

represented by green/blue dots. The test embeddings are moved toward the 

template embeddings with the help of ASP algorithm. 
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Figure 10. All datasets’ performance comparison of using (a) TRCA 

algorithm, and (b) fsASP algorithm in cross-day identification. 

outcome of this optimization yielded a set of parameters, denoted 

as ‘fs-params’, consisting of 3 filter sub-bands with parameters [4, 

93], [20, 93], [24, 93], all weighted equally at 1. A comparison of 

results is presented in Table 2, indicating a noticeable 

improvement in performance across all datasets when using fs-

params as compared to grid-params. Notably, the largest 

enhancement was observed in the 3Y dataset, with an average 

increase of approximately 0.3% (average of gap) in cross-day 

recognition accuracy. 

4. Template Aging Analysis 

We conducted a template aging analysis using the four datasets. 

Dataset II and 3Y share the same training template, originating 

from the first day's (D1) data of the same group of subjects. 

However, they differ in the interval between data collection. 

Dataset II has an average interval of 5 days (D1-D2: 5 days), 

whereas 3Y exhibits an average interval of more than 1000 days 

(D1-D3: 1009 days). Applying the existing algorithm framework, 

we observed pronounced template aging effects, with a 

significant overall decline in performance for the 3Y dataset 

compared to Dataset II, particularly evident in the 5-10 trial 

range. Furthermore, as depicted in figure 10(a), there exists a 

strong consistency between the order of cross-day recognition 

accuracy and the length of time intervals. Specifically, the order 

of performance is Dataset I-30 >Dataset III-200 > 3Y-1000, with 

statistical significance observed across 1, 3-10 trials. But when 

considering Dataset II, the regularity and statistical significance 

slightly diminishes, although its intervals are only 5 days, which 

are not on the same order of magnitude as the intervals of the 

other datasets. On the other hand, the results achieved using the 

proposed fsASP algorithm demonstrate similar performance 

levels across all datasets as shown in figure 10(b). ANOVA 

analysis indicates no significant differences in the 2-6, and 9 trial 

range, suggesting that the fsASP algorithm partially mitigates the 

effects of template aging. Further paired t-test suggests that 

Dataset II-5 significantly outperformed 3Y-1000 in 1 trial 

situation (p < 0.05) and Dataset III-200 in 1-3, 5, 7 trials situation 

(p < 0.05), Dataset I-30 significantly outperformed Dataset III-

200 in 1 and 8 trials situation (p < 0.05), and 3Y-1000 

significantly outperformed Dataset III-200 in 1 trial situation (p < 

0.05).



Table 2. Four dataset’s performance comparison in cross-day identification with grid search parameters or forward selection parameters. 

Acc (%) Dataset I Dataset II Dataset III 3Y 

Trial grid-params fs-params gap grid-params fs-params gap grid-params fs-params gap grid-params fs-params gap 

1 92.6000  92.0800  -0.5200  95.6567  94.9765  -0.6803  82.5333  83.0667  0.5333  88.4000  88.1333  -0.2667  

2 96.8485  97.4141  0.5657  99.1104  98.8488  -0.2616  95.0667  94.4000  -0.6667  96.2667  97.0667  0.8000  

3 98.4898  98.7755  0.2857  99.6860  99.7907  0.1047  97.0667  97.4667  0.4000  98.4000  98.9333  0.5333  

4 99.0103  99.0928  0.0825  99.8953  99.9477  0.0523  98.2667  98.8000  0.5333  98.9333  99.6000  0.6667  

5 99.3333  99.6250  0.2917  99.9477  100.0000  0.0523  99.0667  99.6000  0.5333  99.0667  99.6000  0.5333  

6 99.4526  99.7474  0.2947  99.9477  100.0000  0.0523  99.6000  99.2000  -0.4000  99.6000  99.7333  0.1333  

7 99.4894  99.8723  0.3830  100.0000  100.0000  0.0000  99.7333  99.3333  -0.4000  99.6000  100.0000  0.4000  

8 99.6559  99.9570  0.3011  100.0000  100.0000  0.0000  99.7333  99.0667  -0.6667  99.8667  100.0000  0.1333  

9 99.5652  100.0000  0.4348  100.0000  100.0000  0.0000  99.8667  99.6000  -0.2667  99.8667  100.0000  0.1333  

10 99.6923  100.0000  0.3077  100.0000  100.0000  0.0000  99.7333  99.7333  0.0000  100.0000  100.0000  0.0000  

IV. DISCUSSION 

We introduced an EEG biometric recognition algorithm based 

on ASP, which demonstrated significant improvements across 

all four datasets. Concerning the filter bank, we introduced a 

novel parameter optimization method that led to performance 

improvements. Originally, the filter bank structure was 

inspired by SSVEP-based spelling classification  [33], [35], 

[43], [44]. SSVEP stimuli are characterized by frequency-

phase locking, where both the fundamental and harmonic 

frequencies are predictable. For instance, in a 10Hz SSVEP 

stimulus, responses can be predicted for the fundamental 

frequency at 10Hz and harmonic frequencies at 20Hz, 30Hz, 

40Hz, and so on. Therefore, the structure illustrated in Figure 

2 is logical and effective, with filter parameters like [8, 92], 

[18, 92], [28, 92], etc. However, we utilized a CVEP 

stimulation mode depicted in Figure 11, in which case, 

responses exhibit an approximately broadband signal profile, 

and there is no decay in harmonic frequencies. Consequently, 

the optimized filter parameters we obtained actually represent 

more concentrated frequency ranges of the stimulus. 

Additionally, the intensity differences between adjacent 

frequency bands are not substantial. To reflect this, we 

adopted equal weighting. Interestingly, as shown in Table 2, in 

a few cases, the results using fs-params showed slight 

decreases: Dataset I: 1-trial, Dataset II: 1st and 2nd trials, 

Dataset III: 2nd, 6th, 7th, 8th, and 9th trials, 3Y: 1-trial. This  

 

Figure 11. Amplitude responses for a typical c-VEPs. 

can be explained by the fact that a weighting factor of 1 is not 

necessarily optimal, and there remains marginal room for fine-

tuning. However, our rationale behind this approach lies in 

significantly reducing computational complexity. While grid-

params required 7 sub-bands, fs-params only needed 3 sub-

bands, resulting in a reduction of computational load to less 

than half. This reduction is of paramount importance for real-    

time communication, system implementation, and enabling 

online deployment of EEG biometric recognition systems in 

practical scenarios. 

Our proposed algorithm significantly enhances cross-day 

recognition performance in EEG biometric identification 

while narrowing the performance gap between in-day and 

cross-day scenarios. Furthermore, it effectively alleviates the 

template aging phenomenon. Particularly, under single-trial 

conditions, which last approximately 1 second, our existing 

system achieved a cross-day recognition accuracy of nearly 

90%. In terms of performance, to the best of our knowledge, 

this stands as the current best online performance level, and 

the potential implications of achieving 90% accuracy in just 1 

second are considerable. This allows for the possibility of 

integrating our system into BCIs, where communication and 

authentication occur concurrently, ensuring personal 

information security and user privacy in BCI systems. 

Moreover, the integration of BCI systems and brain biometric 

recognition doesn't burden the users any further, as the 

stimulation tasks can be carried out simultaneously. This 

combination has the potential to achieve encrypted 

communication through brainwave signals, thereby enhancing 

information confidentiality and resistance to attacks, which, in 

turn, bolsters the security of BCI systems. 

Our ASP-based algorithm operates under the assumption 

that spatial patterns can be aligned through rotation. This 

assumption is both a mathematical premise and a deduction 

from practical experimental operations. During EEG data 

collection, efforts are made to maintain the relative stability of 

EEG cap positions (e.g., measuring distances front-to-back, 

checking left-right symmetry, ensuring minimal deviation in 

electrode coverage, etc.). However, slight differences are 

inevitable due to variations in the penetration and diffusion of 

conductive gel (as we employ wet electrodes), slight 

disparities in EEG cap shapes, and varying levels of electrode 

contact quality and participants' hair thickness. The 



algorithm's corrective measures hold practical significance. 

The spatial pattern variations are an aspect deserving further 

research attention. Future studies could include higher 

electrode densities to cover larger brain areas [45], potentially 

leading to more comprehensive mathematical models with 

enhanced interpretability and precision. Furthermore, other 

algorithms under certain conditions also have the potential to 

yield improvements, such as EA, LST, etc. In the future, we 

intend to develop integrated algorithms to further enhance 

performance, provided the complexity remains acceptable. 

We conducted an analysis of template aging effects using 

data spanning intervals of over 1000 days. Our proposed 

algorithm effectively mitigated this phenomenon. However, 

our research has been limited to several types of VEP signals, 

including classic SSVEP and various CVEP modes. The 

universality of the proposed algorithm requires further 

exploration and extension. For instance, applying it to resting-

state signals like RO or RC, or ERP signals elicited by RSVP 

stimuli, and the promising AEP signals, which have shown 

promising performance of identity recognition in recent years. 

Our study was based on datasets involving 15-25 participants, 

with the longest time span being 1000 days, and the 

stimulation modes being somewhat limited. There are existing 

studies with larger participant numbers and longer spans, e.g., 

with over 100 participants' data in [11], spanning three years 

with multiple stages in [17], encompassing cross-day data for 

12 different stimuli in [46]. Therefore, we aim to collect larger 

datasets, delve into longer-term template aging effects, and 

explore their implications.  

V. CONCLUSION 

We have introduced an ASP-based domain adaptation 

algorithm employing spatial pattern alignment and forward 

selection. This approach substantially enhances cross-day 

recognition accuracy and speed in VEP-based person 

identification. We validated our method on three existing 

datasets (Dataset I: 25 participants across 30 days, Dataset II: 

21 participants across 5 days, Dataset III: 15 participants 

across 200 days) as well as a newly acquired online 

experiment dataset (3Y: 15 participants across 1000 days). 

The results of the proposed algorithm consistently outperform 

the existing TRCA algorithm and other comparative methods. 

Template aging effects were evident in the original framework: 

30 days > 200 days > 1000 days. However, the proposed 

method effectively mitigates this template aging effect, 

resulting in near-equal performance across all datasets. The 

algorithm's substantial enhancement of cross-day recognition 

accuracy offers the potential for the deployment of online 

EEG biometric recognition systems towards long-term use. 
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