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Abstract

System level simulation of neuro-memristive circuits under variability are complex and follow a black-box neural network

approach. In realistic hardware, they are often difficult to cross-check for accuracy and reproducible results. The accurate

memristor model prediction becomes critical to decipher the overall the circuit function in wide range of non-ideal and practical

conditions. In most neuro-memristive systems, crossbar configuration is essential for implementing multiply and accumulate

calculations, that forms the primary unit for neural network implementations. Predicting the specific memristor model that

best fits the crossbar simulations to make it explainable is an open challenge that is solved in this paper. As the size of the

crossbar increases the cross-validation becomes an even more challenging. This paper proposes predicting the memristor device

under test by automatically evaluating the I-V behavior using Random forest and Extreme Gradient Boosting algorithms.

Starting with a single memristor model, the prediction approach is extended to memristor crossbarbased circuits explainable.

The performance of both algorithms is analysed based on precision, recall, f1-score and support. The accuracy, macro average

and weighted average of both algorithms at different operational frequencies are explored.
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ABSTRACT
System level simulation of neuro-memristive circuits under variability are complex and follow a black-box
neural network approach. In realistic hardware, they are often difficult to cross-check for accuracy and
reproducible results. The accurate memristor model prediction becomes critical to decipher the overall the
circuit function in wide range of non-ideal and practical conditions. In most neuro-memristive systems, crossbar
configuration is essential for implementing multiply and accumulate calculations, that forms the primary unit for
neural network implementations. Predicting the specific memristor model that best fits the crossbar simulations
to make it explainable is an open challenge that is solved in this paper. As the size of the crossbar increases
the cross-validation becomes an even more challenging. This paper proposes predicting the memristor device
under test by automatically evaluating the I-V behavior using Random forest and Extreme Gradient Boosting
algorithms. Starting with a single memristor model, the prediction approach is extended to memristor crossbar-
based circuits explainable. The performance of both algorithms is analysed based on precision, recall, f1-score
and support. The accuracy, macro average and weighted average of both algorithms at different operational
frequencies are explored.

INDEX TERMS Memristor models, Memristor crossbar, Pinched hysteresis, Random forest predictor, Extreme
Gradient Boost predictor

I. INTRODUCTION

MEMORY resistors are a class of devices abbreviated as
memristors [1]. It is the fourth basic circuit element

that functionally relates the charge and linkage flux. Their
properties differ from the other three fundamental devices
by their non-volatile memory effect, pinched hysteresis loop,
scalability, programming capability, and compatibility with
CMOS technology. It memorises the latest attained conduc-
tance value even if the power supply is off. Due to these
features, the application of memristors is wide in range, like
in-memory computing, logic, neuromorphic computing, etc.

There are several models of memristors [2]. While design-
ing the circuits, a mathematical model is used to show the
behaviour of the memristor [3], [4]. Compared to the be-
haviour of physical devices, the model should be sufficiently
accurate, simple, and computationally efficient. In addition,
the model should be general so that it can be suitable for
different technologies. The wide usage of different memristor
models for circuit simulations makes them flexible for a wide
range of applications. While using the models [5] in large
circuits for high-end applications, it is challenging to cross-
validate.

Finding the efficient solution to several complex computa-
tional problems, evolving hardware neuromorphic computing
architectures offer promising solutions. Memristors mimic

synapses in neural network implementations, which change
resistance state according to the applied voltage and mem-
orise the latest attained resistance state. Like a matrix, the
crossbar arrangement of memristors with selector transistors
along rows and columns mimics weighted summation op-
erations in neural network models. It offers different high-
density architectures to implement the synaptic connections
and neural network models. For this, the hardware circuit
implementations based on different memristor models de-
mand deciding the appropriate selection of these models to
get maximum performance. In this proposed work, memristor
models used in the circuit simulations within a black box
are predicted using machine learning based on the dataset of
pinched hysteresis.

This method has significant industrial applications in im-
plementations of different neural network models, pattern
recognition, in-memory computations, etc by enabling iden-
tification of proper memristor models suitable for specific
computations that helps to optimize the neuromorphic sys-
tems. The tasks like image classification, language process-
ing, speech recognition, robotics is flexible to be imple-
mented with neuro memristive arrays with proper memris-
tor models. The decision making process while using large
datasets in different fields like finance, health care, manu-
facturing industries and edge computing applications using
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TABLE 1. Properties and Challenges of Different Memristor Models

Memristor Models Properties and Challenges

Joglekar and Biolek
There are a lot of discrepancies while comparing the results with the data obtained through physical
characterization. When pulse-wave form is applied, in the positive regime, when conductivity increases,
the size of the hysteresis loop increases, which is opposite to the trend seen in the characterization data.

Air Force Research Lab (AFRL) and
metal-insulator-metal (MIM)

Correlate more closely to the characterization data, and there is a strong connection to the physical
mechanisms within the device. For alternative voltage inputs, the results will not match the
characterization data. Significant updation is needed with different device structures because these
models are specific to a single fabricated device.

Hyperbolic Sine Models and the
University of Michigan Model

The properties like the Schottky barrier at a metal-oxide interface and the diffusion of ions are
modelled. Have a stronger correlation to physical memristor characterization data. These models
describe the memristor functionalities in a more generalized and accurate way. However, they hardly
correlate to the physical hardware.

Other generalized models

Less theoretical correlation to the physical mechanisms. Many models will not consider the threshold
voltage of the physical memristor device. Unless the voltage across the memristor exceeds this
threshold voltage, the hysteresis will not be seen. The state variable motion depends on the applied
voltage’s magnitude and polarity. This implies that the dynamics of Oxygen vacancy expansion and
compression are different. Most models have the equivalent state variable motion in positive and
negative directions, which is not true in actual cases.

smart sensors and IoT can use this neuromorphic computing
architectures. Choosing proper memristor models that can
have high performance to specific applications is essential for
having higher degree of accuracy in computations. This pro-
posed approach provides proper crossvaliation and prediction
of memristor models so that the usage of those models with
proper mapping to the application demands can be done.

This paper focuses on explaining neuro-memristive cir-
cuits and systems through a cross-validation of the simula-
tions, irrespective of the complexity of the model. Memris-
tors represent a broad class of devices that can be modelled
using a broad set of device models. This problem is very
different to that of MOSFETs, where only one type or minor
variant of the device is modelled. Over time, even if models
are standardized for memristors, there will be a need to
perform cross-validations as being a class of devices, several
combinations of variability make system modelling complex
and inaccurate. The conventional system of verifying the
simulation results of emerging memristive devices that are
yet to mature, using the experimental results, is replaced
here to address the challenges associated with the accurate
modelling due to different variability. Even though many
models are emerging, the scientific community always need
to compromise for different properties associated with the
physical devices like threshold voltage, state variable motion,
area of hysteresis, different responses for different input stim-
uli, etc., due to the wide range of variability among this broad
class of devices. This reverse engineering approach addresses
the complexity of estimating the accuracy and functional
behaviour of physical characterization data due to the above-
mentioned issues. This proposed approach is helpful as more
and more memristive devices are discovered.

A large majority of research using machine learning is
for device modelling. However, this work diverges from
this trend in applying machine learning in an entirely new
application, where conventionally, cross-validation of simu-
lation results is only done through experimental verification.
This is an approach to cross-validate the simulations using a

machine learning approach.
The motivation of this work is to develop a technique for

explaining nero-memristive circuits and systems by validat-
ing circuit simulations done with emerging device models.
Most memristor devices are difficult to model accurately
due to device-to-device and cycle-to-cycle variability. Some
examples of memristor models, their properties, device level
and simulation level challenges are illustrated in table 1.
Under such circumstances, the circuits built with idealistic
models result in large output errors. Furthermore, as the de-
vices have a range of variability, the experimental results are
also difficult to conclude in estimating the desired functional
behaviour and accuracy of the design logic. This necessitates
a simulation-based approach to cross-validate the functional-
ity and accuracy of circuit designs with memristors.

Through this new approach, we propose that estimating the
device model followed by using those models to build circuits
can lead to better estimates in cross-validating the accuracy
of circuit-level simulation results. Reverse engineering the
model from circuit design using the proposed approach also
leads to an efficient way to account for a wide range of device
variability.

The paper is organized as follows. The first section gives
an introduction. The second section comprises the back-
ground of this paper. The third section details the proposed
model prediction approaches in the single memristor model
and models in memristive crossbar arrays, followed by the
analysis methodology. The results and discussion are in-
cluded in the fourth section, followed by the conclusion and
references.

II. BACKGROUND
Most memristor models selected for this work are based on
the memristor equations of HP memristor model.

A. HP MEMRISTOR ION-DRIFT MODEL
The principle of resistance switching between two extreme
values, Ron and Roff, the device’s lowest and highest re-
sistance, makes them mathematically flexible to model in
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FIGURE 1. (a) HP ion drift model implementation illustrated in material
physics. (b) The sandwich structure having two Pt electrodes, TiO2 and
TiO2−X

FIGURE 2. (a) The detailed device level structure of the HP memristor model.
W is the width of the doped region, and D is the total device length. (b) The
total resistance will be the effective resistance of the low resistance region
(doped region) and the high resistance region (undoped region)

different ways. The HP memristor model, an example of a
Metal-Insulator-Metal (MIM) device, is shown in figure 1.

When the Pt electrodes are excited externally, as shown
in figure 2, the oxygen ions present in the doped region
will drift to the undoped region under the influence of the
electric field. This process will cause a shifting of the bound-
ary between these two regions. This displacement in the
boundary will cause a change in the resistance value also.
If the structure is entirely covered by TiO2−x, it is in its
low resistance state or maximum conductive (Ron). If the
structure is entirely covered by TiO2, it is in its high resis-
tance state (Roff ) or minimum conductive. The Memristance
is given by, M(q) = Ronw(t)/D + Roff (1 − w(t)/D)
The relation between the voltage and current is given by
V (t) = (ROnw(t)/D + Roff (1− w(t)/D))i(t). Here w(t)
is the width of the doped region, and D is the total width of
the doped and undoped regions. The width w(t) is affected by
i by, dw/dt = µvRoni(t)/D. Here µv is the dopant mobility.
w(t) = µvRonq(t)/D+w0. Here, q(t) is the charge injected
in the time t.

The dw/dt is the dynamic state variable, the drift velocity
of the Oxygen vacancies. The integration of the expression
µvRonq(t)/D gives the value of w(t). Even q(t)=0, the
integrated output will equal a constant. This implies even if
the current flow is zero, the charge is constant, and resistance
remains unchanged. The principle of non-volatility satisfies
here. Based on the migration of ions, the value of w varies

FIGURE 3. Memristor-crossbar architecture with inputs vin1, vin2, vin3 and
output currents i1, i2, i3. Selector devices that need to be activated are
applied with an input voltage greater than the threshold voltage. The
Conductance of the memristor is denoted as gmn for the mth row and nth

column. The conductance of the selector transistor is given by gT

between 0 and D. The drifting of the boundary region is
interpreted by different window functions and equations that
give different mathematical models of memristors. While
modelling different memristors, state variable equations are
substituted with the equation x(t)= W(t)/D. The state variable
becomes a normalised quantity whose value lies between 0
and 1. x(t)=0 for the minor conductive state and x(t)=1 for the
most conductive state. Window functions limit the motion of
the state variable between 0 and 1.

B. MEMRISTIVE CROSSBAR ARRAY
In a crossbar architecture [6], [7], memristors are arranged in
a matrix form, as shown in figure 3. Each row and column
intersection consists of a memristive device [8]. Word lines
in a crossbar feed input voltage, and bit lines are used to
read output currents. The output currents are the results of
the Multiply and Accumulate(MAC) operation [9] between
the input voltage and conductance of the memristive device.
Each memristor device is accompanied by a selector device
to select the desired device among the rows and columns.

C. ENSEMBLE LEARNING - RANDOM FOREST AND
EXTREME GRADIENT BOOSTING
Ensemble learning techniques combine different learning
algorithms to make more accurate predictions. Predictions
from individual learning models are aggregated to form the
final prediction. These algorithms efficiently handle non-
linearity and interactions and provide feature-importance,
flexibility and robustness to overfitting. Since the data col-
lected for this study is susceptible to overfitting the model
and shows a non-linear relationship, we are focusing on the
following two ensemble learning techniques.

Random forest [10], [11] is an ensemble prediction algo-
rithm having a combination of tree predictors. The majority
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vote of all individual trees determines the final prediction
of the input vector. Each tree casts one vote for the most
frequently occurring class. In Random Forest, the Gini Index,
which measures the degree of impurity of an attribute to
different classes, is used as an attribute selection measure.

For a given training set T , selecting one case randomly and
assigning to a class Ci, the Gini index is expressed by:∑∑

j ̸=i

(f(Ci, T )/|T |)(f(Cj , T )/|T |) (1)

Where f(Ci, T )/|T | is the probability that the selected case
belongs to class Ci. To reduce the complexity of the tree and
to prevent overfitting, pruning is used [12]. It removes the
branches of the tree that do not contribute to accuracy, and
the remaining branches are grown to the maximum.

In this approach, input voltages and the corresponding
output currents are the features. Based on this data, the
Random forest prediction algorithm splits nodes to generate
new trees and identifies the respective models.

The Extreme Gradient Boosting (XGBoost) [13] is a
scalable and efficient application of the gradient boosting
framework. A weight will be assigned for each observation.
This weight will be adjusted after training the predictor. The
weight of the correctly classified observations is decreased,
and misclassified observations are increased. Using the ob-
servations with modified weights, the subsequent predictor is
trained, and the process is repeated to create a highly accurate
model. The sum of prediction score fk(Xi) of all trees gives
the estimated output ŷiof the gradient boosting tree model

ŷi =

K∑
k=1

fk(Xi), fk ∈ Γ (2)

where Γ: Space of the regression tree, K: The number of
regression trees, Xi: The features corresponding to sample I.

FIGURE 4. Explainable neuro-memristive circuit system workflow

III. PROPOSED MEMRISTOR MODEL PREDICTOR
This approach proposes estimating the device model and
using those models to build circuits to get better estimates

in cross-validating the accuracy of circuit-level simulation
results. Reverse engineering the model from circuit design
also leads to an efficient way to account for a wide range of
device variability. A workflow of the proposed approach is
shown in the figure 4.

Here, nine memristor models are simulated in Spice. Each
model is simulated with an input voltage of four different fre-
quencies (0.5Hz, 1Hz, 5Hz and 10 Hz). The graph obtained
by plotting the input voltage versus the logarithmic scale
of output current gives nine different pinched hystereses, as
shown in figure 5. This output data is collected for each
model and performed prediction using the Random forest
and XGBoost techniques. For random forest, the parameters
are trained with 100 trees for each data set for the different
frequencies applied. The prediction results for these nine
models with four different frequencies of input voltages using
the Random forest and XGBoost algorithms are analysed
by the factors precision, recall, f1-score and support. The
two prediction approaches, accuracy, macro average and
weighted average, are compared for different frequencies.

To calculate precision, recall, and f1-score, the following
parameters are calculated from the confusion matrix [14],
[15]. A confusion matrix is a tabular way of representing the
performance of the prediction algorithm

True positive (TP ): Values predicted as positive and it’s
true. True negative (TN ): Values predicted as negative and it
is true. False positive (FP ): Values predicted as positive and
it is false. False negative (FN ): Values predicted as negative
and it is false.

Precision is found using the following equation

Precision = TP/(TP + FP )

Recall is calculated by the following equation

Recall = TP/(TP + FN)

F1-score is measured using the equation

F1−score = (2∗Recall∗Precision)/(Recall+Precision)

For performing prediction in a memristive crossbar instead
of a single memristor, memristors are arranged row and
column-wise in different dimensions (2 × 2, 4 × 4, 8 × 8
and 16 × 16). The simulated spice data of different input
voltages through rows and different output currents through
the columns are used to predict using Random forest and
XGBoost. Performance is analysed based on the factors of
precision, recall, f1-score and support. The accuracy, macro
average and weighted average of the two prediction ap-
proaches are compared for different crossbar dimensions.

A. RANDOM FOREST ALGORITHM ON MEMRISTOR
DATA
A random forest algorithm is used for prediction and regres-
sion problems. It combines multiple decision trees to form
a forest. To predict, a random subset of the input data and
a random subset of the input features are used to train each
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FIGURE 5. BIOLEK: Biolek Model, UMM: University of Michigan Model, IDEAL: Ideal Memristor Model, JOGLEKAR: Joglekar Model, GHSM: General Hyperbolic
Sine Model, AFRLM: Air Force Research Lab Model, PRODOMAKIS: Prodromakis Model, PCM: Phase Change Memory, IMTMS: Insulator to Metal Transition
Memristive Systems, Pinched hysteresis of nine memristor models with a) 0.5Hz input voltage frequency b) 1Hz input voltage frequency c) 5Hz input voltage
frequency and d) 10Hz input voltage frequency

TABLE 2. Performance Analysis of Random Forest predictor on single memristor circuit simulations

Memristor
Model 0.5 Hz 1 Hz 5 Hz 10 Hz

precision recall f1-score support precision recall f1-score support precision recall f1-score support precision recall f1-score support
BIOLEK 0.75 0.80 0.77 426 0.92 0.84 0.88 427 0.71 0.86 0.78 1306 0.85 0.84 0.85 1366

UMM 0.66 0.94 0.78 298 0.73 0.89 0.80 462 0.72 1.00 0.83 1423 0.94 0.81 0.87 1348
IDEAL 0.93 0.93 0.93 338 0.97 0.99 0.98 633 1.00 1.00 1.00 950 1.00 1.00 1.00 1393
IMTMS 0.88 0.89 0.89 170 0.93 0.95 0.94 321 1.00 0.97 0.98 1123 0.96 0.99 0.98 2271

JOGLEKAR 0.78 0.74 0.76 565 0.93 0.91 0.92 932 0.82 0.66 0.73 1342 0.86 0.84 0.85 1302
GHSM 0.93 0.76 0.84 214 0.97 0.90 0.93 404 1.00 0.86 0.93 1236 0.84 0.93 0.88 1348
PCM 0.71 0.40 0.51 138 0.72 0.66 0.69 456 1.00 0.51 0.68 756 0.91 0.93 0.92 1380

AFRLM 0.98 0.98 0.98 1227 1.00 0.99 0.99 2509 1.00 1.00 1.00 13105 1.00 1.00 1.00 28767
PRODOMAKIS 0.88 0.82 0.85 439 0.97 0.98 0.97 431 1.00 1.00 1.00 1382 1.00 1.00 1.00 1377

decision tree. Aggregation of the decisions of all trees gives
the final decision of prediction. Here, we use a technique
known as bagging that reduces overfitting and improves
accuracy by combining the predictions of multiple decision
trees formed from bootstrapped training data samples. The
Pseudocode for Random Forest is given in Algorithm 1.

B. XGBOOST ALGORITHM ON MEMRISTOR DATA
XGBoost algorithm is an ensemble learning method that
combines the predictions of multiple weak models to produce
a stronger prediction. Decision trees are base learners for
the XGBoost or eXtream Gradient Boosting prediction. It
controls overfitting by using a more regularised model. This
makes it more accurate and faster than traditional gradient

boosting. The Pseudocode for XGBoost is given in Algo-
rithm 2.

IV. RESULTS AND DISCUSSION
The nine memristor models with four different frequencies
used for the prediction are shown in figure 5. The predictor
may not capture the relevant information if the number of
features is too small. If the number of features is too large, the
predictor may overfit the training data, leading to poor gener-
alisation performance. Since we are only using two features,
input voltage and output current, the predictor highly depends
on the data. In the dataset, different models show similar
readings of input voltage and output current (at the pinched
point). Here, the overall data is set into 70% of training data
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TABLE 3. Performance Analysis of XGBoost predictor on single memristor circuit simulations

Memristor
Model 0.5 Hz 1 Hz 5 Hz 10 Hz

precision recall f1-score support precision recall f1-score support precision recall f1-score support precision recall f1-score support
BIOLEK 0.72 0.71 0.71 431 0.86 0.74 0.80 415 0.61 0.87 0.72 1334 0.87 0.94 0.91 1349

UMM 0.91 0.98 0.94 301 0.98 0.86 0.91 418 1.00 1.00 1.00 1437 0.99 1.00 1.00 1335
IDEAL 0.91 0.86 0.88 380 0.95 0.97 0.96 626 1.00 1.00 1.00 913 1.00 1.00 1.00 1360
IMTMS 0.69 0.90 0.78 165 0.76 0.90 0.82 339 0.97 0.76 0.85 1069 0.95 0.97 0.96 2245

JOGLEKAR 0.75 0.73 0.74 565 0.85 0.81 0.83 904 0.75 0.56 0.64 1354 0.95 0.84 0.89 1380
GHSM 0.99 0.99 0.99 190 1.00 1.00 1.00 412 1.00 1.00 1.00 1198 1.00 1.00 1.00 1312
PCM 0.95 0.80 0.87 148 0.87 0.98 0.92 467 1.00 0.99 0.99 724 1.00 0.99 1.00 1348

AFRLM 0.98 0.96 0.97 1223 0.99 0.98 0.98 2603 1.00 1.00 1.00 13308 1.00 1.00 1.00 28852
PRODOMAKIS 0.76 0.78 0.77 412 0.90 0.97 0.93 391 0.99 1.00 1.00 1286 1.00 1.00 1.00 1371

FIGURE 6. Random Forest prediction confusion matrix for single memristor
simulation for a) 0.5 Hz input voltage frequency, b) 1 Hz input voltage
frequency, c) 5 Hz input voltage frequency and d) 10 Hz input voltage
frequency

and 30% of test data.
The initial dataset is split for training and testing. The

testing dataset contains randomly selected data for each
model. After training to predict the model, this testing dataset
is used as input. After testing both algorithms in various data,
the performance is visualized using a confusion matrix and
analyzed using the parameters precision, recall, and f1-score
based on the support for each model. Precision is the ratio
of the number of true positives to the number of elements
labelled to belong to the positive class. The ratio between the
number of true positives and the total number of elements that
belongs to the positive class gives recall, and f1-score is cal-
culated by taking the harmonic mean of precision and recall.
Support represents the number of samples of true responses
lying in the class. The overall performance is evaluated using
accuracy, macro average, and weighted average. In macro
average, all classes equally contribute to the final averaged
matrix, and in weighted average, each class’s contribution to
the average is weighted by its size.

The random forest prediction technique in which the pa-
rameters are trained with 100 trees is used to perform predic-

FIGURE 7. XGBoost prediction confusion matrix for single memristor
simulation for a) 0.5 Hz input voltage frequency, b) 1 Hz input voltage
frequency, c) 5 Hz input voltage frequency and d) 10 Hz input voltage
frequency

FIGURE 8. Accuracy, macro average and weighted average while using
Random forest and XGBoost for single memristor models at frequencies
0.5Hz, 1Hz, 5Hz and 10Hz

tion. table 2 and table 3 shows the performance analysis of the
Random forest and XGBoost predictors for these nine models
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Algorithm 1 Pseudocode for Random Forest Classifier
Training on the data
Training data (Xtrain, ytrain), Number of trees (num_trees),
Max depth of each tree (max_depth) Random Forest model
Procedure:
Initialize an empty list to store the trees: forest = []
for i ← 1 num_trees do subset_X, subset_y =
random_subset(Xtrain, ytrain)
tree = build_decision_tree(subset_X,
subset_y, max_depth)
forest.append(tree)
Return: Random Forest model (forest)

Prediction using the trained model
Random Forest model, Test data (X_test) Predicted class
labels for X_test
Procedure:
Initialize an array to store the predictions: predictions
= []

for each tree in forest do prediction =
predict_with_tree(tree, X_test)
predictions.append(prediction)
Return: Majority vote of predictions

with four different frequencies of input voltages analysed by
the factors precision, recall, f1-score and support using the
confusion matrix shown in figures 6 and 7 respectively. Most
of the models give high accuracy while using both predic-
tion techniques. Support is a significant factor considering
the prediction parameters for individual memristor models.
Depending on the support, both algorithms show varying
performance parameters but are still well enough to identify
the model successfully. The comparison of overall accuracy,
macro average and weighed average of Random forest and
XGBoost for single memristor models at four different fre-
quencies 0.5 Hz, 1 Hz, 5 Hz and 10 Hz are illustrated by
the figure 8. The performance of both approaches enhances
with frequency. Maximum accuracy is achieved at a higher
frequency. This implies that even though there are similar
points in the dataset, the two predictors can produce a better
accuracy in predicting or identifying the model. The perfor-
mance analysis of Random forest prediction and XGBoost
prediction for 2 × 2 crossbar, 4 × 4 crossbar, 8 × 8 crossbar
and 16 × 16 crossbar based on the confusion matrix shown
in the figures 9 and 10 are illustrated in the tables 4, 5, 6
and 7 respectively. According to the performance parameters,
support plays a significant role in predicting the model. Since
the data from each model are close enough for higher predic-
tion accuracy, more input data points are required for higher
accuracy. Accuracy, macro average and weighted average are
compared for the two prediction approaches for the above
four dimensions, as shown in figure 11. Random forest and
XGBoost gave more than 80% overall accuracy in four cases.
In some cases, Random forest performed better than the
XGBoost algorithm. But this can vary depending on the input

Algorithm 2 Pseudocode for XGBoost Classifier
Training on the data
Training data (Xtrain, ytrain), Number of boosting
rounds (num_rounds), Maximum depth of each tree
(max_depth), Learning rate (eta), Subsample ratio of
training instances (subsample), Column subsample ratio
of features (colsample_bytree) XGBoost model
Procedure:
Initialize model with a constant value: model =
initial_prediction_value
for round← 1 num_rounds do
gradients = -gradient_of_loss(ytrain,
model.predict(Xtrain))
weak_model = fit_weak_model(Xtrain,
gradients,max_depth,colsample_bytree)
update = eta * weak_model.predict(Xtrain)
model = model + update
Return: XGBoost model (model)

Prediction using the trained model
XGBoost model, Test data (X_test) Predicted class labels
for X_test
Procedure:
predictions = model.predict(Xtest)
Return: predictions

data. Both approaches perform well enough to predict the
model in most cases.

FIGURE 9. Random Forest prediction confusion matrix for memristor crossbar
array simulation of a) 2X2 crossbar array, b) 4X4 crossbar array simulation, c)
8X8 crossbar array and d) 16X16 crossbar array

V. CONCLUSION
The proposed work classifies and predicts the memristor
models used in circuit simulations with only available data
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FIGURE 10. XGBoost prediction confusion matrix for memristor crossbar
array simulation of a) 2X2 crossbar array b) 4X4 crossbar array c) 8X8
crossbar array and d) 16X16 crossbar array simulation

TABLE 4. Performance Analysis of Random Forest and XGBoost algorithm
on 2 × 2 Crossbar

Memristor
Model Random Forest XGBoost

precision recall f1-score support precision recall f1-score support
BIOLEK 0.58 0.49 0.53 51 0.64 0.60 0.62 286

UMM 1.00 0.95 0.97 114 0.94 0.92 0.93 293
IDEAL 0.71 0.72 0.72 47 0.84 0.83 0.83 297
IMTMS 0.90 0.93 0.91 176 0.92 0.90 0.91 311

JOGLEKAR 0.50 0.52 0.51 58 0.71 0.60 0.65 310
GHSM 1.00 0.96 0.98 51 0.99 1.00 1.00 306
PCM 0.93 0.97 0.95 71 0.92 0.99 0.96 243

AFRLM 0.95 1.00 0.97 90 0.93 0.99 0.96 283
PRODOMAKIS 0.78 0.78 0.78 50 0.82 0.94 0.88 304

of inputs and outputs. The efficient hardware neuromor-
phic computing systems for different industrial applications
can be implemented with higher degree of performance by
choosing memristor models that suit specific applications.
Exploring other advanced classifiers for prediction and cross-
validation can enlarge the boundaries for industrial applica-
tions in which this explainable AI approach can be used. In
this paper, we propose two ensemble learning techniques,
Random Forest and XGBoost, to cross-validate circuit sim-
ulations for different models of Memristors. These proposed
prediction models estimate the memristor model from a
circuit simulation’s voltage and current measurements. In the

TABLE 5. Performance Analysis of Random Forest and XGBoost algorithm
on 4 × 4 Crossbar

Memristor
Model Random Forest XGBoost

precision recall f1-score support precision recall f1-score support
BIOLEK 0.64 0.76 0.69 193 0.65 0.62 0.63 313

UMM 0.98 0.95 0.97 195 0.96 0.87 0.91 302
IDEAL 0.88 0.97 0.92 150 0.85 0.85 0.85 255
IMTMS 0.98 0.90 0.94 225 0.97 0.90 0.94 294

JOGLEKAR 0.76 0.62 0.68 219 0.61 0.63 0.62 295
GHSM 0.99 1.00 1.00 196 1.00 1.00 1.00 297
PCM 0.98 1.00 0.99 189 0.91 1.00 0.95 276

AFRLM 0.97 0.99 0.98 196 0.95 0.98 0.96 284
PRODOMAKIS 0.95 0.98 0.96 181 0.88 0.94 0.90 300

TABLE 6. Performance Analysis of Random Forest and XGBoost algorithm
on 8 × 8 Crossbar

Memristor
Model Random Forest XGBoost

precision recall f1-score support precision recall f1-score support
BIOLEK 0.58 0.59 0.58 95 0.53 0.69 0.60 149

UMM 0.98 0.90 0.93 96 0.98 0.89 0.94 161
IDEAL 0.69 0.56 0.62 43 0.79 0.35 0.49 54
IMTMS 0.99 0.93 0.96 123 0.99 0.92 0.95 163

JOGLEKAR 0.54 0.57 0.55 93 0.55 0.50 0.52 161
GHSM 1.00 1.00 1.00 47 1.00 1.00 1.00 61
PCM 0.90 1.00 0.95 76 0.84 0.98 0.91 110

AFRLM 0.94 0.95 0.95 107 0.90 0.90 0.90 137
PRODOMAKIS 0.89 0.97 0.93 88 0.88 0.94 0.91 156

TABLE 7. Performance Analysis of Random Forest and XGBoost algorithm
on 16 × 16 Crossbar

2*Memristor
Model Random Forest XGBoost

precision recall f1-score support precision recall f1-score support
BIOLEK 0.56 0.65 0.60 96 0.62 0.71 0.66 153

UMM 1.00 0.91 0.95 95 0.96 0.87 0.91 148
IDEAL 0.77 0.40 0.53 57 0.60 0.42 0.49 57
IMTMS 0.96 0.96 0.96 97 1.00 0.91 0.95 139

JOGLEKAR 0.53 0.45 0.49 109 0.57 0.52 0.54 161
GHSM 1.00 1.00 1.00 44 1.00 0.99 0.99 86
PCM 0.91 1.00 0.95 82 0.88 0.97 0.92 131

AFRLM 0.87 0.97 0.92 95 0.90 0.94 0.92 159
PRODOMAKIS 0.84 0.99 0.91 103 0.82 0.93 0.87 133

FIGURE 11. Accuracy, macro average, weighted average while using
Random forest and XGBoost for crossbar architectures of dimensions
2 × 2,4 × 4,8 × 8 and 16 × 16

detailed examinations, we found that the predictive models
could perform with high accuracy in various configurations
of the circuit design simulations. The final analysis is based
on the accuracy, precision and f1-score obtained from the
confusion matrix. The input voltage frequency was a key
component in the accuracy of the prediction models. The
prediction model’s accuracy increased with frequency. In var-
ious crossbar simulations, the prediction models performed
with high accuracy. In Some cases, Random Forest was able
to perform better than XGBoost. From the final analysis, we
concluded that Random Forest and XGBoost work well given
large homogeneous training data and are relatively robust to
outliers.

The proposed prediction methods cross-validate the mem-
ristor circuit simulations, ensuring accurate results concern-
ing the memristor model. This method helps precisely anal-
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yse the circuit’s IV characteristics and reverse engineering
the circuit only from the output measurements. When there
is confusion on which memristor model should be used for a
desired input and output, this cross-validation system can be
successfully implemented to explain the black-box mystery.

REFERENCES
[1] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on

circuit theory, vol. 18, no. 5, pp. 507–519, 1971.
[2] Z. Biolek, D. Biolek, and V. Biolkova, “Spice model of memristor with

nonlinear dopant drift.” Radioengineering, vol. 18, no. 2, 2009.
[3] P. Sheridan and W. Lu, “Memristors and memristive devices for neuromor-

phic computing,” in Memristor Networks, pp. 129–149. Springer, 2014.
[4] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for

computing,” Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.
[5] S. Kvatinsky, K. Talisveyberg, D. Fliter, A. Kolodny, U. C. Weiser, and

E. G. Friedman, “Models of memristors for spice simulations,” in 2012
IEEE 27th Convention of Electrical and Electronics Engineers in Israel,
DOI 10.1109/EEEI.2012.6377081, pp. 1–5, 2012.

[6] A. P. James and L. O. Chua, “Analog neural computing with super-
resolution memristor crossbars,” IEEE Transactions on Circuits and Sys-
tems I: Regular Papers, vol. 68, no. 11, pp. 4470–4481, 2021.

[7] I. Vourkas, D. Stathis, G. C. Sirakoulis, and S. Hamdioui, “Alternative
architectures toward reliable memristive crossbar memories,” IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1,
pp. 206–217, 2015.

[8] T. Prodromakis and C. Toumazou, “A review on memristive devices and
applications,” in 2010 17th IEEE international conference on electronics,
circuits and systems, pp. 934–937. IEEE, 2010.

[9] J. Chen, J. Li, Y. Li, and X. Miao, “Multiply accumulate operations in
memristor crossbar arrays for analog computing,” Journal of Semiconduc-
tors, vol. 42, no. 1, p. 013104, 2021.

[10] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P.
Rigol-Sanchez, “An assessment of the effectiveness of a random forest
classifier for land-cover classification,” ISPRS journal of photogrammetry
and remote sensing, vol. 67, pp. 93–104, 2012.

[11] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees in a
random forest?” in Machine Learning and Data Mining in Pattern Recog-
nition: 8th International Conference, MLDM 2012, Berlin, Germany, July
13-20, 2012. Proceedings 8, pp. 154–168. Springer, 2012.

[12] V. Y. Kulkarni and P. K. Sinha, “Pruning of random forest classifiers: A
survey and future directions,” in 2012 International Conference on Data
Science & Engineering (ICDSE), pp. 64–68. IEEE, 2012.

[13] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[14] S. Haghighi, M. Jasemi, S. Hessabi, and A. Zolanvari, “Pycm: Multiclass
confusion matrix library in python,” Journal of Open Source Software,
vol. 3, no. 25, p. 729, 2018.

[15] M. Heydarian, T. E. Doyle, and R. Samavi, “Mlcm: Multi-label confusion
matrix,” IEEE Access, vol. 10, pp. 19 083–19 095, 2022.

RAHUL KOTTAPPUZHACKAL is a research as-
sistant at the School of Electronics Systems and
Automation, Digital University of Kerala. He is
also working as an AI engineer at India Graphene
Engineering and Innovation Centre. Rahul re-
ceived a Master’s in Computer Science in 2023
and a bachelor’s in Physics in 2020. He currently
involved in the areas of machine learning, mem-
ristive systems, and neuromorphic computing sys-
tems. His research interests include the applica-

tions of machine learning for memristor-based circuits.

SRUTHI PALLATHUVALAPPIL is a PhD student
at the School of Electronics Systems and Au-
tomation, Digital University of Kerala. Sruthi’s re-
search area focuses on low-power resistive mem-
ory networks for AI. Sruthi received a Master of
Technology in Embedded Systems in 2017 and
Bachelors degree in Electronics and Communi-
cation in 2014. Sruthi is currently involved in a
few projects related to hardware-based low power
memristive network implementation. Sruthi’s ar-

eas of interest include memristive analog circuits, multi-bit logic memories,
3D integration, and neuromorphic computing systems. She is a graduate
student member of IEEE.

ALEX JAMES received the Ph.D. degree from
Griffith University, Queensland, Australia. He is
currently a Professor and the Dean (Academic)
with the Kerala University of Digital Sciences,
Innovation and Technology (aka Digital Univer-
sity Kerala). He is the Professor-in-Charge of the
Maker Village, Chief Investigator with the In-
dia Innovation Centre for Graphene, Head of AI
Chip Centre, and Chief Scientist/CTO for India
Graphene Engineering and Innovation Centre. He

is also advisory board member of Digital Science Park. His research interests
include AI - neuromorphic systems (software and hardware), VLSI and
image processing. He is a Member of IEEE CASS TC on Nonlinear Circuits
and Systems, IEEE CTSoc TC on Quantum in Consumer Technology
(QCT), TC on Machine learning, Deep learning and AI in CE (MDA),
IEEE CASS TC on Cellular Nanoscale Networks and Memristor Array
Computing (CNN-MAC), and IEEE CASS SIG on AgriElectronics. He
was the founding Chair of IEEE CASS Kerala chapter, a Member of IET
Vision and Imaging Network, and currently a Member of BCS’ Fellows
Technical Advisory Group (F-TAG). He was an Editorial Board Member
of Information Fusion (2010–2014), and currently serving as an Associate
Editor of IEEE Access, Frontiers in Neuroscience, IEEE Transactions on
Circuits and System 1: Regular Papers and IEEE Open Journal of Circuits
and Systems journal. He is a Life Member of ACM, Senior Fellow of HEA,
Fellow of RSA, Fellow of British Computer Society (FBCS), and Fellow of
IET (FIET).

IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY. VOLUME XX, 20XX 9


