
P
os
te
d
on

8
A
p
r
20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
26
13
43
.3
60
84
70
9/
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Xia Jiang1, Yaoxin Wu1, and Yingqian Zhang1

1Affiliation not available

April 08, 2024

1

JOURNAL OF LATEX CLASS FILES 1

Learning to Generate Hard Instances: Towards
Robust Solutions for Vehicle Routing Problems

Xia Jiang, Yaoxin Wu, and Yingqian Zhang

Abstract—Deep models have shown promising results in solving
vehicle routing problems (VRPs). However, existing models are
often trained on instances from specific distributions and their
worst-case performance is largely underexplored, thereby hin-
dering the understanding and improvement of their robustness.
In this paper, we present a generic framework to generate
hard instances for obtaining robust VRP solutions. Given a
pretrained deep model, we first develop an attack method that
comprises an autoregressive sampling network (ASN) and a
hardness measurement network (HMN). The two networks are
trained alternately by reinforcement learning, aiming to generate
hard instances for the given deep model and gauge the attack
effect (i.e., hardness) of the instances, respectively. Then, we
propose a simple yet effective training algorithm to robustify the
deep model, which is progressively replaced by the continually
trained HMN. Experimental results show that the attack method
significantly degrades the performance of various deep models
and conventional heuristics. Moreover, the training algorithm
showcases the ability to enhance the robustness of the deep model,
demonstrating its promising zero-shot generalizability.

Index Terms—Vehicle routing problem, Neural network, Ro-
bustness, Deep reinforcement learning, Hard instance.

I. INTRODUCTION

VEHICLE routing problems (VRPs), as one of the most
studied branches in the realm of combinatorial optimiza-

tion (CO), have a wide range of applications in logistics [1],
manufacturing [2], etc. Nevertheless, VRPs pose a formidable
challenge in terms of solving complexity owing to their NP-
hard nature [3]. The pursuit of an optimal solution becomes
notably intractable even for medium-sized problems [4], with
the computational time rising dramatically as the problem
size grows. While conventional heuristics are often manually
crafted by much tuning work, the recent deep models draw
upon the power of neural networks to automate the algorithmic
design for solving VRPs. The learned heuristics have shown
an advantageous balance between computational efficiency and
solution quality [5], [6], [7], [8].

While achieving relatively good performance, current
deep models for VRPs are generally vulnerable to out-of-
distribution or out-of-size instances. Most of them suffer
drastic performance degradation when solving instances that
deviate from the specific distribution and size (of instances)
used during the training process. Some approaches have been
proposed to enhance the generalization of deep models in
different distributions [9], [10], different sizes [11], [12], and

The authors are with the Department of Industrial Engineering and In-
novation Sciences, Eindhoven University of Technology, 5600 MB Eind-
hoven, The Netherlands (email: summer142857.jiang@gmail.com; wyx-
acc@hotmail.com; yqzhang@tue.nl).

both [13], [14]. In general, the above efforts simply train a
deep model on instances with more than one random distri-
bution or size, rendering it more generalizable to a broader
range of VRP instances.

Despite the research on generalization, the worst-case per-
formance of deep models is greatly underexplored. Such
performance is critical to reveal the models’ robustness when
faced with extremely hard VRP instances. The stakeholders
may estimate the reliability of deep models by observing
their worst-case performance, and thereby decide if they can
be applied in real-world scenarios. Intuitively, the worst-case
performance of a model can be measured by solving hard-
to-solve instances. To this end, identifying the distribution
of the most hard instances is an effective way to understand
and improve the robustness of deep models. A few existing
studies exert relatively small perturbations on VRP instances
to obtain adversarial, and hence hard, instances by adding a
few nodes [15] or slightly modifying edges [4]. However,
they are ineffective in finding more hard instances due to
the perturbation limit, and lack the strategy to enhance deep
models with the obtained instances.

In this paper, we propose a generic framework to generate
model-specific distributions of hard instances for deep models.
Moreover, the proposed framework can be employed to robus-
tify a given model to achieve better performance on hard VRP
instances. Given a pretrained deep model as the environment,
we propose a deep reinforcement learning (DRL) method to
attack the model. An autoregressive sampling network (ASN)
is trained to sample hard sub-instances from the instances
with larger problem sizes. During the attack, we also train
a hardness measurement network (HMN) to gauge the attack
effect (i.e., hardness of the generated sub-instances) and thus
guide the training of ASN towards generating more hard
instances. In addition, we propose a simple yet effective
robustness-enhancing training (RET) algorithm to robustify
the deep model. Similar to the attack, we initialize the HMN
by the environment model and alternately train ASN and
HMN. During training, the environment model is progressively
replaced by the HMN. By doing so, the proposed framework
keeps optimizing the environment model to deliver more
robust solutions than the original model.

Our contributions are summarized as follows: 1) We propose
a generic framework to discover hard instances for obtaining
robust VRP solutions, which is applicable to different types of
deep models. 2) We propose a DRL-based attack method to
learn to generate model-specific distributions of hard instances
for deep models. 3) The RET algorithm is developed based
on the proposed framework to adaptively robustify the deep

JOURNAL OF LATEX CLASS FILES 2

model, utilizing the generated hard samples. 4) We evaluate
our framework on typical VRPs for various deep models and
even conventional heuristics. The results show that the attack
method is able to generate instances that significantly deterio-
rate the performance of deep models. Moreover, the RET can
robustify deep models to perform better on hard instances, and
meanwhile manifest promising zero-shot generalizability over
unseen distributions and benchmark dataset.

II. RELATED WORK

A. Deep models for VRPs

Deep models utilize neural networks to approximate the op-
timal solution for VRPs. Existing deep models can be roughly
categorized into two main paradigms [16]: learning-augmented
models that adopt neural networks to enhance conventional
heuristics, and end-to-end models that learn to construct so-
lutions in sequential or one-shot manner. The former models
integrate deep learning with existing domain knowledge of
VRPs [17], such as improvement heuristics, large neighbor-
hood search, and specialized solvers [18], [19], [20], [21],
[22], [23], [24], [25], [26]. These models usually learn to
refine an initial solution iteratively given specific contexts
in the heuristics. In contrast, end-to-end models delve into
constructing solutions from scratch via autoregressive neural
networks trained by DRL [27], [28] or non-autoregressive
neural networks trained by supervised learning [5], [29],
[30]. End-to-end models often deliver comparable solutions
to learning-augmented models with reduced inference time
and are more researched in the literature. Some of the above
models are further enhanced in terms of the generalization
across different distributions or sizes [31], [6], [9], [10], [32],
[11], [12], [13], [14]. However, they simply rely on additional
training on instances with manually specified distributions
(e.g., Uniform, Gaussian, Diagonal distributions) or sizes (e.g.,
random numbers of nodes within [50, 200]). The hard instances
of deep models are still scarcely explored to better understand
the robustness of deep models.

B. Robustness of deep models

The robustness of deep models can be measured by evalu-
ations on the hard instances [4].

The authors of [15] maximize the cross-entropy over edges
in VRP instances by adversarially inserting nodes (which
follow the same distribution used in training). In [4], a DRL
agent is trained to conduct problem-specific actions to generate
adversarial instances of VRP solvers. The above works are
restricted by slight modifications on clean instances, with the
difficulty in estimating the hardness of more flexibly generated
samples.

In contrast, a generative adversarial training (GAT) approach
is proposed in [33], where the hardness of adversarial instances
is measured by conventional solvers. However, the solver is
prone to long-solving duration on large instances, instigating
substantial training overhead. To tackle the issue, a hardness
measurement approach is introduced in [34] to estimate the
lower bound of the ground-truth optimality gap. On top of
that, the authors perturb node coordinates of clean instances

to generate instances with adaptive hardness. While achieving
favorable attack effects, the gradient-dependent generation
process is inapplicable to more general VRP solvers, e.g.,
conventional heuristics. In this paper, we propose a generic
framework to generate hard instances for various deep models
and even conventional heuristics. Meanwhile, our hardness
measurement model can efficiently gauge attack effects of
general hard instances, beyond adversarial instances generated
by slight modifications.

III. PRELIMINARIES

A. Vehicle routing problems

A VRP instance of problem size n is described over a graph
G = {V, E}, where V = {vi}ni=1 is the set of nodes (e.g.,
the depot or customers) and E = {ei,j |i, j ∈ [1, n], i ̸= j}
represents the set of edges between any two different nodes
vi and vj . A non-negative value ci,j is associated with each
edge ei,j ∈ E to represent the traveling cost from node vi
to vj . A feasible solution (i.e., tour) is a sequence of nodes
τ = (s1, ..., sk) with each element si ∈ [1, n] being the index
of a node in V , i.e., vsi ∈ V . Given a feasible solution, the
total cost of the tour is obtained by C(τ |G) =

∑n−1
i=1 csi,si+1

.
Assuming Ψ denotes the search space of feasible tours, the
typical objective of VRPs is finding the optimal solution τ∗(G)
with minimum total cost, as below,

τ∗(G) = argmin
τ∈Ψ

C(τ |G) (1)

Different variants of VRP exist. For instance, the traveling
salesman problem (TSP) aims to find a Hamiltonian circuit
of the graph, which visits each node exactly once. In the
capacitated vehicle routing problem (CVRP), a depot is spec-
ified and multiple sub-tours should be established, with all
beginning and ending at the depot. Different from TSP, each
node in CVRP is attributed not only by its coordinates but
also the demand di. A feasible solution to a CVRP instance
must visit each customer node exactly once and meanwhile
keep total demand on each sub-tour below the vehicle capacity
D. We consider Euclidean VRPs herein to specify ci,j as the
Euclidean distance between any two nodes.

B. Hardness Metric

We regard hard VRP instances as the ones that significantly
degrade a pretrained deep model. An effective attacker is
supposed to consistently produce hard instances by non-trivial
operations, rather than simple operations such as unlimited
magnification of problem sizes. While obtaining an optimal
solution τ∗(G) for a VRP instance G is intractable, a solution
τ̇(G|θ) derived by a well-trained deep model fθ can act as a
fast approximate solution of τ∗(G). Formally, given an attacker
G that produces Q hard instances {G̃i}Qi=1, their hardness for
the deep model can be defined as below,

Lr(G̃, τ̃∗|θ) =
1

Q

Q∑
i=1

C(τ̇ |G̃i,θ)− C(τ̃∗|G̃i) (2)

where τ∗(G̃) is shortened to τ̃∗ for readability. The larger value
of Lr(G̃, τ̃∗|θ) stands for more significant attack effect, i.e.,

JOURNAL OF LATEX CLASS FILES 3

worse robustness of the deep model. The above hardness met-
ric entails obtaining optimal solutions τ̃∗, inevitably inducing
heavy computational complexity. We propose the HMN in our
framework to progressively estimate the above harness metric,
which is delineated in subsubsection IV-A2.

Existing enhancements on the robustness of deep models are
typically achieved via adversarial training [34], [33], which is
commonly formulated as a min-max optimization problem,

min
θ

E(G,τ∗)∼µ max
G̃∈Nω(G)

Lr(G̃, τ̃∗|θ) (3)

where µ denotes the data distribution; Nω(G) denotes the
attack space with attack budget ω, whenNω(G) usually defines
a neighbourhood range of the original instance and ω defines
the parameterized operating scale imposed to the instance,
such as the numerical value of added noise [33] and gradient
step size for updating [34]. Inspired by adversarial training,
we propose the RET algorithm to robustify the deep model in
subsection IV-B. It trains the attacker (i.e., ASN) to generate
instances that maximize the hardness metric, and optimizes the
deep model to minimize the cost of the generated instances in
an alternate manner.

IV. METHODOLOGY

In this section, we first present the method to attack deep
models for generating the associated distributions of hard
instances. On top of that, we further extend the attack method
to develop the RET algorithm, which adaptively robustifies the
deep model with the generated hard instances.

A. Attack Method

As shown in Figure 1, the proposed framework consists of
an ASN Gβ (with parameters β) to generate hard instances,
and an HMN Hϕ (with parameters ϕ) to evaluate the hardness
of the generated instances. Given a pretrained deep model
as the environment, we train the ASN by DRL algorithm
to sample hard sub-instances {G̃i}Qi=1 from random instances
{Gi}Qi=1, in order to degrade the deep model performance as
much as possible. We set the downsampling factor ω(ω < 1)
to represent that the size of original random instances no is
1/ω times the size of the sampled hard sub-instances na,
i.e., no = ωna. By doing so, different distributions of hard
instances under any specified problem size can be generated
by adjusting ω and no. Notably, we treat the deep model
as a black-box environment in the training of ASN, without
necessary access to its neural structure, gradients, etc. It
implies the generality of our attack method to be applied with
broad deep models.

Ideally, the ASN can be optimized by directly maximizing
the hardness metric in Equation 2. However, to bypass the
heavy computation of optimal solutions, we train the HMN Hϕ

on the generated instances to estimate the optimal solutions
with their objective values. Given the objective values derived
from Hϕ and the environment model, we readily gain the
approximate hardness of the generated instances, which is
employed as the reward signal to guide the training of ASN.

Fig. 1: The illustration of the proposed framework.

1) Autoregressive sampling network: Inspired by [27], we
also structure the proposed ASN with the attention-based
encoder-decoder architecture.
Encoder. Given an instance G, its node features vo ∈
Rno×do are taken as input, where do is the feature dimension
(e.g., do = 2 for TSP and do = 3 for CVRP), the encoder
comprises a dh-dimensional embedding layer and N attention
blocks. In the embedding layer with parameters We ∈ Rdo×dh

and be ∈ Rdh , the input vo is linearly transformed by h(0) =
Wevo + be. Subsequently, h(0) is processed by attention
blocks, each of which comprises a multi-head attention (MHA)
layer [35], a node-wise feed-forward (FF) layer, along with
skip-connection [36] and batch normalization (BN) [37]:

ĥ(l) = BNl(h
(l−1) + MHAl({h(l−1)

1 , ...,h(l−1)
no
})) (4)

h(l) = BNl(ĥ
(l) + FFl(ĥ

(l))) (5)

where l ∈ [1, N] denotes the block index. MHA and FF are
designed to keep dh dimensions of h(l), i.e., h(l) ∈ Rno×dh .

The MHA mechanism empowers the deep model to attend
to different parts of the input sequence, and parallelly deliver
more advanced representations of the parts. In this paper, we
employ MHA with M = 8 heads to execute the attention
operation and update node embeddings in the encoder. For
head m of block l in the encoder, node embeddings h(l−1) ∈
Rno×dh are taken as input and transformed to obtain query
embeddings Ql

m, key embeddings Kl
m and value embeddings

Vl
m, as below,

Ql
m = Wq

mh(l−1), Kl
m = Wk

mh(l−1), Vl
m = Wv

mh(l−1)

(6)
where Wq

m, Wk
m, Wv

m ∈ Rdh×dA (dA = 16) are learnable
matrices. Subsequently, the query, key, value embeddings are
used to compute the dA-dimensional node embeddings in each
head m (∀m ∈ {1, . . . ,M}), such that,

am(Ql
m,Kl

m,Vl
m) = Softmax(

Ql
mKl

m√
dA

)Vl
m (7)

after which the outputs from all heads are concatenated and
transformed by another weight matrix W l

c ∈ Rdh×dh to obtain
the advanced dh-dimensional node embeddings below,

MHAl(Q
l
m,Kl

m,Vl
m) = concat(a1, a2, ..., aM)W l

c (8)

JOURNAL OF LATEX CLASS FILES 4

The FF layer computes node-wise projections by the affine
transformations with a ReLu activation function [38]. Given
node embeddings ĥ(l) as input, the FF layer in block l
processes them by the following equation,

FFl(ĥ
(l)) = Wl

ff,1 · ReLu(Wl
ff,0ĥ

(l) + bl
ff,0) + bl

ff,1 (9)

where Wl
ff,0 ∈ Rdh×df , Wl

ff,1 ∈ Rdf×dh , bl
ff,0 ∈ Rdf , bl

ff,1 ∈
Rdh are learnable parameters, and we set df = 512.
Decoder. The decoder takes as input the node embeddings
h(N) derived from the encoder, and sequentially samples
nodes to form sub-instances. While current end-to-end deep
models [28], [39] often sample nodes to construct feasible
VRP solutions, We decode the nodes in a VRP instance to
discover a hard sub-instance with na nodes. Since the most
intensive computation of the autoregressive model is led by
long sequence generation in the decoding, the ASN with a
fixed na does not significantly increase computational memory
and time when no grows. In that regard, we can generate
instances with different levels of hardness by adjusting no,
without introducing extra training overhead.

Specifically, the embedding ĥi
(c) = [hi

t−1,h
i
1] is extracted

in each decoding step t ∈ {2, ..., na} as a reflection of the
decoding context, where hi

t−1, hi
1 ∈ h(N) are embeddings of

nodes sampled at step t−1 and step 1, respectively. Specially,
ĥi
(c) = [hi

1] at step 1. To facilitate the exploration of hard
instances, we enable the parallel decoding to generate na sub-
instances concurrently. It means that na nodes are randomly
selected from the original instance G, with their embeddings
extracted at step 1 to be different contexts. We adopt the index
i ∈ {1, ..., na} to signify the i-th step in the parallel decoding.

In each decoding step t, the context embedding ĥi
(c) aggre-

gates all node embeddings through MHA, such that,

Qi = Wqĥi
(c), Ki = Wkh(N), Vi = Wvh(N) (10)

hi
(c) = MHA(Qi,Ki,Vi) (11)

where Wq,Wk,Wv ∈ Rdh×dA are all learnable parameters,
with dA being the dimension of attention parameters. By
doing so, the updated context embedding hi

(c) involves the
information of the original instance G and the sub-instance at
current step t. Subsequently, we compute the attention logit of
selecting node j to be added in the sub-instance i, as below,

logitij =

{
C · tanh(

hi
(c)h

i
j√

dA
) if j ̸= vt,∀i ∈ {1, ..., na},

−∞ otherwise
(12)

where vt represents the set of nodes that are sampled before t.
Following the literature [27], we clip logits into [−C,C](C =
10) for calculating appropriate probabilities of choosing each
node:

pi(β)(vt = j|G,vt) = elogitij/

na∑
k=0

elogitik (13)

with which we sample the next node and add it to the
sub-instance i. Among na generated sub-instances from the
original instance, we gauge their harnesses by the HMN and
determine the hardest one as the final generated instance.

2) Hardness measurement network: As aforementioned, the
cost difference C(τ̇ |G̃,θ) − C(τ̃∗|G̃) in Equation 2 or the
relative difference (i.e., optimality gap) M(G̃) = (C(τ̇ |G̃,θ)−
C(τ̃∗|G̃))/C(τ̃∗|G̃) could be an ideal metric to reflect the
hardness of G̃, since it measures the performance of deep
model fθ in comparison to the optimal solution τ̃∗. Given
the intractability to acquire τ̃∗ in practice, we develop the
HMN Hϕ as a surrogate model to obtain a (near-)optimal
solution τ̇(G̃|ϕ).1 Consequently, we replace τ̃∗ with τ̇(G̃|ϕ)
and formulate an approximate optimality gap M

′
(G̃), i.e., a

lower bound of the ground-truth gap, such that,

M
′
(G̃,ϕ | θ) = C(τ̇ |G̃,θ)− C(τ̇ |G̃,ϕ)

C(τ̇ |G̃,ϕ)
≤M(G̃) (14)

where the equality is satisfied if the HMN attains the optimal
solution. Intuitively, the HMN should be trained to gain near-
optimal solutions for the generated hard instances. To this end,
we employ the pretrained POMO (Policy Optimization with
Multiple Optima) model as the HMN [28]. 2, and continue
training it on the hard instances. While other deep models for
VRPs could instantiate HMN, our experiments manifest the
promising attack effect with POMO.

3) Alternate training scheme: While the ASN is trained
to generate hard instances, the HMN is trained to solve the
instances and gain near-optimal solutions. Then, the approxi-
mate optimality gap in Equation 14 is attained as the reward
in the DRL training of ASN, thereby guiding it to generate
harder instances. With the above, we alternatively train ASN
and HMN to improve their performance progressively. More
specifically, we train the two neural networks by REINFORCE
algorithm [40]. Given a batch of B random instances, ASN
generates naB hard instances in parallel. Subsequently, the
HMN is updated by the following gradient ascent,

∇ϕJ(ϕ) ≈ − 1

naB

naB∑
i=1

(C(τ i)− bHi (G̃i))∇ϕ log p(ϕ)(τ
i | G̃i)

(15)
Following autoregressive deep models, we obtain p(ϕ)(τ

i |
G̃i) =

∏na

t=2 p(ϕ)(v
i
t|G̃i,vi

1:t−1) by POMO. We adopt a
baseline function bHi (G̃i) to estimate the quality of a solu-
tion in comparison to the average cost, which is defined as
bHi (G̃i) = 1

na

∑na

j=1 C(τ i),∀i ∈ [1, naB].
With the updated HMN, we could gain a better approxima-

tion of the optimality gap, which reflects the hardness of the
generated instances. For maximizing the hardness, we apply
the approximate gap as the reward to update ASN by the
following gradient ascent,

∇βJ(β) ≈ − 1

B

B∑
i=1

(M
′
(G̃i,ϕ | θ)− bAi (G̃i))∇β log p(β)(G̃i | Gi)

(16)
Similarly, we define bAi (G̃i) = 1

na

∑na

j=1 M
′
(G̃i,ϕ |

θ),∀i ∈ [1,B] to reflect the average hardness of na parallelly
generated instances. As multiple sub-problems are generated
by the ASN from a single larger-size instance, they produce
a good baseline for estimating the quality of a specific hard
instance. The utilized advantage function bAi (G̃i) can thus
reduce gradient variance and thus increase the learning speed.

1Interestingly, we demonstrate in subsection V-E that using a relatively
weak model as the HMN gains better attack performance than a strong solver
to some extent.

2https://github.com/yd-kwon/POMO/tree/master

JOURNAL OF LATEX CLASS FILES 5

B. Robustness-enhancing Training

Algorithm 1 Robustness-enhancing training algorithm
Input: Environment model fθ; random-initialized ASN Gβ;
the HMN instantiated by Hϕ ← fθ
Output: Robustness-enhanced model f∗

θ

Parameter: Number of rounds, epochs Tr, Tp; problem sizes
no, na; learning rates ηβ, ηϕ

1: Initial round tr ← 0 and Initial epoch tp ← 0
2: for tr ← 0 to Tr do
3: Randomly Initialize β.
4: for tp ← 0 to Tp do
5: for a batch of instances {Gi}Bi=1 with size no do
6: Sample hard instances using Gβ with na multiple

starting nodes.
7: Update Hϕ by ϕ← ϕ− ηϕ∇ϕJ(ϕ).
8: Update Gβ by β ← β − ηβ∇βJ(β).
9: end for

10: end for
11: Re-initialize the environment model by θ ← ϕ
12: end for
13: return f∗

θ = fθ

The RET algorithm can be developed naturally when the
HMN and environment models share the same neural structure.
In this case, we employ the same pretrained deep model (e.g.,
POMO) to serve as the HMN and environment model before
training ASN. As mentioned above, the HMN is continuously
trained by hard instances generated by ASN, implying that
the min-max optimization in Equation 3 is carried out spon-
taneously. To further robustify the environment model, we
stipulate that the model is replaced by the HMN for every
Tp epoch. More specifically, after one round (i.e., Tp epochs)
of alternate training with ASN and HMN, the parameters of
the environment model are updated by those in HMN. In the
next round, the ASN is randomly reinitialized to learn how to
generate hard instances for the new environment model (i.e.,
robustified HMN from the last round). After rounds of training
and updates, the robustness of the original deep model is
expected to be enhanced. The workflow of the RET algorithm
is presented in Algorithm 1. We will show in experiments that
the zero-shot generalizability of the deep model can also be
improved by the RET, without additional training efforts.

V. EXPERIMENTS

We conduct experiments on two typical VRP tasks, i.e.,
TSP and CVRP. Node coordinates are randomly chosen
from the unit square according to the literature [27], [28].
Various deep models for VRPs are attacked, indicating the
generality of the proposed framework. Specifically, we learn
hard instances to attack POMO [28], Simulation-guided Beam
Search (SGBS) [41], Adaptive Multi-distribution Knowledge
Distillation (AMDKD) [10], and Omni-VRP [13], which serve
as the environment models, respectively. These pretrained

models are available at their repositories.345 Meanwhile, we
utilize LKH36 to calculate the (near-)optimal solution for both
TSP and CVRP, to obtain optimality gaps. We perform 10 runs
using LKH for all the problems. All experiments are carried
out on a machine with an AMD EPYC 7F72 CPU at 3.2 GHz
and an NVIDIA A100 40G GPU.

A. Training Setups

The hyperparameters of the environment models are all
consistently derived from the original paper. As we use POMO
as the HMN, it follows most of the setups in [28]. We
use Adam optimizer [42] to fine-tune the HMN, and the
corresponding learning rate ηϕ is set to 1e − 4. We use
×8 augmentation to enhance HMN for better evaluating the
hardness of generated instances. The neural structure of ASN
is the same as POMO, which has N = 6 attention blocks in
the encoder. We also utilize Adam optimizer to train the ASN,
with a learning rate ηβ = 5e− 5. 1000 instances {Gi}1000i=1 are
used in each epoch of training with a batch size of 64, and we
only use 5 epochs (i.e., 5000 random instances) to train the
randomly initialized ASN. Compared to existing deep models,
which usually learn from millions of instances, the training of
ASN is much more efficient.

We train the ASN to generate hard instances with two sizes,
i.e., na = 50 and 100, respectively. However, we only use
the pretrained models trained on instances of size 100 as the
environments (except Omni-VRP, which has been trained on
different-sized problems). By these settings, we evaluate the
performance on seen and unseen problem sizes (i.e., 100 and
50) in the training of deep models. For each setting, we train
the ASN with the downsampling factor ω = 1/2, 1/4, and
1/6, respectively. Given the fixed size of generated instances,
different values of ω help understand the influence of enlarging
the size no of random instances on the generated instances. In
addition, ×8 augmentation is incorporated in the environment
model for all training and evaluation cases.

B. Baselines

The baselines involved to show the attack effect are: 1)
Clean instances: They are uniformly generated samples, to
show the performance of deep models before being attacked.
2) Random sampling: We generate larger instances following
uniform distribution, and randomly sample sub-instances from
them with ω = 1/6, to demonstrate the straightforward and
random attack. 3) Hardness-adaptive Model (HAM) [34]: The
state-of-the-art framework for both attacking and defending
deep models of VRPs. We apply our HMN as the hardness
evaluator in the attack model of HAM for fair comparison.
We also compare the defense method in HAM, i.e., hardness-
adaptive curriculum, with our RET algorithm.

In addition to the above baselines, we further compare
our framework with attack methods specialized for specific
VRPs, including: 1) Perturbation [15], which attacks the Graph

3https://github.com/yd-kwon/SGBS/tree/main
4https://github.com/jieyibi/AMDKD/tree/main
5https://github.com/RoyalSkye/Omni-VRP/tree/main
6http://webhotel4.ruc.dk/ keld/research/LKH-3/

JOURNAL OF LATEX CLASS FILES 6

TS
P

Solver Problem size
Optimality gap (%)

Clean instances Random sampling HAM ASN (ω = 1/2) ASN (ω = 1/4) ASN (ω = 1/6)

POMO 50 0.07 (0.21) 0.06 (0.21) 6.28 (5.69) 4.32 (1.88) 5.96 (2.02) 9.15 (2.42)
SGBS 50 0.02 (0.14) 0.02 (0.10) - 2.02 (1.09) 2.72 (1.28) 4.10 (1.50)
AMDKD 50 0.14 (0.27) 0.14 (0.27) 0.32 (0.45) 0.98 (0.58) 1.44 (0.77) 1.15 (0.54)
Omni-VRP 50 0.87 (0.98) 0.90 (1.04) 3.77 (2.12) 6.07 (1.74) 4.45 (1.38) 9.84 (2.29)
POMO 100 0.13 (0.23) 0.15 (0.25) 32.85 (11.06) 6.84 (1.75) 22.30 (3.97) 46.98 (4.96)
SGBS 100 0.06 (0.15) 0.06 (0.17) - 2.28 (1.41) 22.78 (4.35) 29.80 (3.52)
AMDKD 100 0.35 (0.35) 0.35 (0.35) 0.88 (0.65) 1.71 (0.63) 2.60 (0.76) 3.18 (0.82)
Omni-VRP 100 1.27 (0.81) 1.30 (0.85) 5.38 (2.03) 6.53 (1.18) 9.07 (1.25) 13.31 (2.05)

C
V

R
P

POMO 50 3.20 (1.55) 3.07 (1.49) 13.69 (4.51) 11.92 (3.24) 19.07 (3.78) 23.51 (4.52)
SGBS 50 1.49 (1.08) 1.35 (1.10) - 7.60 (2.51) 14.03 (3.50) 13.38 (5.10)
AMDKD 50 6.23 (2.42) 6.15 (2.41) 38.78 (9.09) 19.35 (4.28) 28.81 (4.56) 30.78 (5.56)
Omni-VRP 50 3.30 (1.45) 3.30 (1.43) 3.42 (1.72) 12.61 (2.75) 17.33 (3.50) 18.90 (3.61)
POMO 100 1.92 (0.88) 1.90 (0.94) 4.24 (2.64) 6.43 (1.48) 10.67 (1.97) 13.33 (3.01)
SGBS 100 1.28 (0.81) 1.26 (0.93) - 4.44 (1.43) 6.80 (2.01) 8.61 (2.74)
AMDKD 100 2.26 (0.94) 2.27 (0.95) 2.10 (1.25) 5.66 (1.41) 9.50 (1.85) 10.15 (2.11)
Omni-VRP 100 3.36 (1.12) 3.35 (1.10) 2.90 (1.40) 9.27 (1.57) 15.17 (2.70) 11.19 (4.89)

TABLE I: Attack performance on TSP and CVRP. The (near-)optimality gaps are calculated by LKH-3.0.8.

Neural Network (GNN) model [5] on TSP task. This attack
method adversarially inserts 5 nodes to a clean instance,
making the solver perform as poorly as possible on new
instance. 2) ROCO (Robust Combnaotorial Optimization) [4],
which attacks the MatNet model [43] on the asymmetric
traveling salesman problem (ATSP) task. This method applies
a proximal policy optimization algorithm and trains an attacker
agent, which is able to adversarially modify edges in the
graph of an instance. For fair comparison, we implement the
ASN in our framework with the same deep models as used
in Perturbation and ROCO methods, i.e., GNN and MatNet,
respectively.

C. Attack Performance

We first evaluate our attack method and baselines on dif-
ferent deep models. Given each deep (environment) model
to attack, we generate 1000 instances by the trained ASN
and baselines, respectively. Then, we test the deep model on
the instances generated by each attack method. We display
the average optimality gaps for TSP and CVRP in Table I,
respectively, where the standard deviations of gaps are in
the brackets. The results manifest the effectiveness of attack
methods, i.e., how much they degrade the tested deep models,
and meanwhile reflect their robustness to hard instances.

We observe that random sampling performs on par with
using clean instances. It indicates that the significant attack
effect by our method does not come from simple sampling
but is due to the effective ASN that generates more hostile
instances. Generally, decreasing ω makes the generated in-
stances (of the same size) harder. Taking the case of POMO on
TSP100 as an example, the ASN with ω = 1/2, 1/4 and 1/6,
increases the optimality gap of POMO from 0.13% (on clean
instances) to 6.84%, 22.30%, and 46.98% respectively. The
devastating effect of deteriorating the performance of POMO
by around 361 times with ω = 1/6 clearly indicates the
need of improving its robustness. Comparing to HAM, while
the HAM can significantly degrade AMDKD on CVRP with

(a) (b)

(c) (d)

(e) (f)

Fig. 2: Distributions of hard TSP instances (of size 100) generated by
ASN and HAM for three deep models: (a) POMO (ASN), (b) POMO
(HAM), (c) AMDKD (ASN), (d) AMDKD (HAM), (e) Omni-VRP
(ASN), (f) Omni-VRP (HAM).

size 50, our attack method with ω = 1/6 is more effective
in other scenarios. The standard deviation of gaps generated
by HAM is relatively larger than ASN, suggesting that our
method produces hard instances more steadily.

1) Visualization of hard instances: To observe the distribu-
tions of hard instances, we visualize 1000 generated instances
for three deep models by two-dimensional histograms. We

JOURNAL OF LATEX CLASS FILES 7

(a) (b)

Fig. 3: Comparison of ASN and other attack methods on (a) GNN
(TSP) and (b) MatNet (ATSP).

set 100 bins in each figure and depict the frequency of
nodes in the generated instances, as shown in Figure 2.
While all the distributions of hard instances deviate from
Uniform distribution, the instances generated by HAM tend
to consistently form a cluster, showing monotonous patterns
for different deep models. Instead, our ASN produces model-
specific distributions, thereby delivering a better attack effect.

2) Robustness of deep models: By comparing the attack
performance on deep models, we find the disparity in their
robustness. For example, POMO is more vulnerable to attack,
given the fact that it was consistently trained on Uniform
distribution. AMDKD, which was trained across distributions,
shows generally better robustness and is not prone to be
attacked, particularly on the TSP task. However, as we use
the AMDKD model trained on problems of size 100, its
performance drops dramatically on CVRP instances of size
50, showing its weakness in keeping robust when the size of
test cases is different from its training data.

3) Comparison study with other attack models: We also
implement the proposed framework for attacking the GNN
model on TSP (with 100 nodes) and the MatNet model on
ATSP (with 50 nodes). For the GNN model, we re-train the
model based on the original dataset in [5] and use greedy
search for decoding. For the MatNet model [43], we use
its encoder as the encoder of our ASN to cope with matrix
input. The comparative results are displayed in Figure 3. As
shown, our framework manifests superior attack performance,
and delivers much larger optimality gaps than Perturbation
and ROCO methods in [15], [4]. Notably, these two attack
methods are only applicable to GNN and MatNet models for
TSP and ATSP, respectively. In contrast, our framework can be
applied to attack any type of deep models (i.e., POMO, GNN,
and MatNet) for different VRPs (i.e., TSP, CVRP, ATSP). In
summary, our framework in comparison with existing attack
methods is more versatile to attack various deep models, and
can gain better attack performance on different VRPs.

4) Attack on conventional heuristics: As our method does
not acquire any prior knowledge of environment models, we
also perform experiments on conventional heuristics, including

Heuristic Clean instances Hard instances

Nearest Neighbour 3.54% (2.50%) 9.62% (2.13%)
Nearest Insertion 6.09% (3.82%) 53.39% (7.98%)
Farthest Insertion 4.79%(2.92%) 33.75% (8.28%)

TABLE II: Attack performance on TSP with size 50. Average opti-
mality gaps of heuristics for clean and hard instances are calculated.

(a)

(b)

(c)

Fig. 4: The hard-to-solve examples of heuristic solvers. (a) Nearest
Neighbour, (b) Nearest Insertion, (c) Farthest Insertion.

nearest neighbour, nearest insertion, and farthest insertion [44],
[45]. Given the low efficiency of these methods in solving
relatively large VRPs, we only take TSP with size 50 as an
example w.r.t ω = 1/4. The results in Table II reveal that
the ASN can attack the heuristics significantly to degrade all
heuristics by much larger optimality gaps.

We present some hard instances for conventional construc-
tion heuristics in Figure 4. It is obvious that nodes in hard
instances are distributed differently w.r.t different construc-
tion heuristics. Specifically, the nodes exhibit a change from
coalesce to clusters when subjected to the nearest neighbor
algorithm, whereas the nodes are dispersed along the periph-
eries in hard instances of the nearest insertion algorithm. It
indicates that our attack method can identify distributions of
hard instances for generic VRP algorithms, offering valuable
insights into the their vulnerabilities in worst-case scenarios.

D. RET Performance

To verify the effectiveness of the RET algorithm, we employ
it to robustify POMO as an example. We set Tr = 20 and
Tp = 5, and perform experiments on TSP and CVRP of size

JOURNAL OF LATEX CLASS FILES 8

Method Average optimality gap
TS

P
Robustness Generalization Benchmarking

POMO 39.92% 3.40% 3.07%
POMO H 8.04% 4.91% 5.30%
POMO A 8.39% 4.78% 4.80%
POMO G 15.32% 2.11% 2.58%
POMO D 29.75% 2.02% 3.04%
POMO R 4.50% 1.13% 2.15%

C
V

R
P

POMO 8.79% 2.00% 8.59%
POMO H 6.51% 2.04% 8.88%
POMO A 6.67% 2.04% 8.01%
POMO G 12.62% 1.74% 8.17%
POMO D 12.04% 2.33% 9.94%
POMO R 7.10% 1.89% 7.54%

TABLE III: Comprehensive performance of different POMO models.

100. To ensure that the advantage of RET is not from simple
training on more data, we continue fine-tuning the pretrained
POMO on 10M instances from HAM, Gaussian mixture
distribution (POMO G) and Diagonal distribution (POMO D)
for fair comparison. For the instance generated by HAM, we
use the hardness-adaptive curriculum learning (POMO H),
which is proposed in [34], and the vanilla adversarial train-
ing (POMO A), which is defined by Equation 3, to further
train the model, respectively. The models are evaluated in
three aspects, including robustness (by solving hard instances
from attack methods), zero-shot generalizability (by solving
instances from unseen distributions), and benchmarking per-
formance (by solving real-world instances).

1) Robustness Enhancement: We evaluate robustness of the
RET-trained POMO (i.e., POMO R) and baselines by attack-
ing them with both HAM and ASN (ω = 1/6). In specific, they
are adopted to generate 1000 hard instances for RET-trained
POMO and each baseline, respectively. We test all POMO
models on respective hard instances to see whether their
robustness is enhanced compared to the original pretrained
POMO. We report in Table III the average optimality gap
over all hard instances for each model. As shown, the gap is
largely reduced after POMO is defended by RET. However, the
effect of fine-tuning on random distributions generally attain
ambiguous performance. Therefore, the RET is a promising
method to enhance the robustness of deep models, with the
potential to improve the worst-case performance.

2) Zero-shot Generalizability: To assess zero-shot gener-
alizability, we test the RET-trained POMO and baselines on
the dataset which incorporates different distributions. Besides
Uniform distribution, we employ commonly used distributions
in the literature, including Gaussian mixture distribution [13],
Cluster distribution [7], Diagonal distribution [33], and Ex-
plosion distribution [46]. We produce 1000 instances per
distribution for the test. Notably, distributions (except Uniform
distribution) are unseen in the RET process, and thus the
performance on them reflects the zero-shot generalizability.
Details of the distributions are provided in Appendix A.

The average optimality gap over all instances is recorded
for each model in Table III, and we present detailed results
on each distribution in Appendix A. As revealed, although we
did not explicitly include aforementioned distributions in the

(a) (b)

Fig. 5: Performance of deep models in solving hard TSP instances
of size (a) 50 and (b) 100, with and without instance augmentation.

RET process, the robustified POMO significantly outperforms
the original POMO on average. It indicates that the RET can
effectively enhance the zero-shot generalizability. In compari-
son to POMO models fine-tuned on specific distributions, i.e.,
POMO G and POMO D, the RET-trained POMO generally
attains superior zero-shot generalizability, without exposure to
any distribution (except Uniform distribution).

3) Benchmarking: We test our robustified POMO and
baselines on the benchmark datasets, including TSPLIB [47]
and CVRPLIB (Set-X) [48], which are extracted from real-
world routing scenarios. We solve a set of representative
instances with problem size within [50, 300], and record the
average performance in Table III. We observe that the RET-
trained POMO outperforms all baselines and gain the smallest
average gap. In fact, our robustified POMO also gains the
best solutions for most instances. Detailed results of respective
instances are provided in Table IV and Table V.

To summarize, our RET algorithm can favorably robustify
POMO, and enhance it comprehensively to attain a good
balance between defensive performance and generalizability.

E. Ablation Study

We conduct ablation studies on critical hyperparameters and
technical choices in the proposed method. All experiments
are done on instances of size 100, with ω = 1/6 in our
attack method and ω = 1/4 in RET algorithm if without any
specifications. The other configurations are kept the same as
presented in subsection V-A.

1) Ablation study on the impact of instance augmentation:
We find that instance augmentation plays an important role in
resisting the attack from hard instances. We use ω = 1/4 to
train ASN models for deep models with and without augmen-
tation, which then generate 1000 hard instances to evaluate
optimality gaps, respectively. As illustrated in Figure 5, the
decline in deep models’ performance is generally alleviated
when ×8 instance augmentation is adopted. Our results sug-
gest that the instance augmentation is necessary for POMO-
like deep models to keep better performance when faced with
hard instances. However, our attack method (especially with
ω = 1/6) can still largely degrade deep models even when
they are equipped with instance augmentation, which have
been verified in subsection V-C.

JOURNAL OF LATEX CLASS FILES 9

Instance Opt. POMO POMO H POMO A POMO G POMO D POMO R
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

berlin52 7542 7543 0.01% 7547 0.07% 7543 0.01% 7543 0.01% 7585 0.57% 7542 0.00%
st70 675 675 0.00% 677 0.30% 675 0.00% 676 0.15% 678 0.44% 675 0.00%
rat99 1211 1234 1.90% 1259 3.96% 1264 4.38% 1270 4.87% 1220 0.74% 1214 0.25%
rd100 7910 7910 0.00% 7965 0.70% 8009 1.25% 7924 0.18% 8120 2.65% 7910 0.00%
kroA100 21282 21367 0.40% 21645 1.71% 21647 1.72% 21458 0.83% 21442 0.75% 21343 0.29%
kroB100 22141 22216 0.34% 22488 1.57% 22358 0.98% 22308 0.75% 22418 1.25% 22293 0.69%
kroC100 20749 20785 0.17% 21033 1.37% 21142 1.89% 20876 0.61% 20820 0.34% 20749 0.00%
kroD100 21294 21472 0.84% 21848 2.60% 21958 3.12% 21548 1.19% 21389 0.45% 21672 1.78%
kroE100 22068 22165 0.44% 22411 1.55% 22611 2.46% 22256 0.85% 22328 1.18% 22165 0.44%
pr124 59030 59390 0.61% 59812 1.32% 59602 0.97% 59030 0.00% 59030 0.00% 59088 0.10%
pr136 96772 97804 1.07% 99901 3.23% 99583 2.91% 97359 0.61% 97825 1.09% 98127 1.40%
kroA150 26524 26707 0.69% 27511 3.72% 27078 2.09% 27054 2.00% 27095 2.15% 26657 0.50%
kroB150 26130 26435 1.17% 26926 3.05% 26972 3.22% 26514 1.47% 26819 2.64% 26328 0.76%
u159 42080 42512 1.03% 43159 2.56% 43050 2.31% 42652 1.36% 42611 1.26% 42501 1.00%
rat195 2323 2502 7.71% 2673 15.07% 2599 11.88% 2526 8.74% 2447 5.34% 2422 4.26%
tsp225 3919 4094 4.47% 4249 8.42% 4214 7.53% 4063 3.67% 4118 5.08% 4063 3.67%
pr226 80369 83380 3.75% 84804 5.52% 83803 4.27% 81736 1.70% 83398 3.77% 82528 2.69%
pr264 49135 55352 12.65% 58970 20.02% 56705 15.41% 50791 3.37% 56114 14.20% 53284 8.44%
a280 2579 2865 11.09% 2950 14.39% 3014 16.87% 2843 10.24% 2807 8.84% 2808 8.88%
pr299 48191 54529 13.15% 55390 14.94% 54308 12.69% 52567 9.08% 52039 7.98% 51991 7.89%

TABLE IV: Result on TSPLIB instances. The bold numbers highlight the best objective values and optimality gaps.

Instance Opt. POMO POMO H POMO A POMO G POMO D POMO R
Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n101-k25 27591 29282 6.13% 29809 8.04% 29586 7.23% 29725 7.73% 30186 9.41% 29070 5.36%
X-n115-k10 12747 13877 8.86% 13843 8.60% 13699 7.47% 13718 7.62% 15123 18.64% 13525 6.10%
X-n125-k30 55539 58412 5.17% 58142 4.69% 58209 4.81% 58545 5.41% 58353 5.07% 58176 4.75%
X-n143-k7 15700 16382 4.34% 16294 3.78% 16417 4.57% 16700 6.37% 16911 7.71% 16223 3.33%
X-n148-k46 43448 47613 9.59% 47403 9.10% 47528 8.77% 46773 7.65% 47865 10.17% 46523 7.08%
X-n172-k51 45607 50351 10.40% 51270 12.42% 51388 12.68% 50869 11.54% 50950 11.72% 49524 8.59%
X-n176-k26 47812 52889 10.62% 52564 9.94% 52042 8.85% 52253 9.29% 53446 11.78% 52263 9.31%
X-n181-k23 25569 26969 5.48% 26829 4.93% 26793 4.79% 26566 3.90% 27126 6.09% 26414 3.30%
X-n195-k51 44225 50296 13.73% 50573 14.35% 50275 13.68% 49445 11.80% 50569 14.34% 49106 11.04%
X-n200-k36 58578 62094 6.00% 62401 6.53% 61859 5.60% 61916 5.70% 61591 5.14% 61713 5.35%
X-n204-k19 19565 20974 7.20% 21417 9.47% 21258 8.65% 21292 8.83% 21563 10.21% 21430 9.53%
X-n219-k73 117595 122204 3.92% 120890 2.80% 120326 2.32% 121186 3.05% 121542 3.36% 121865 3.63%
X-n223-k34 40437 43794 8.30% 43471 7.50% 43293 7.06% 43010 6.36% 44273 9.49% 43151 6.71%
X-n242-k48 82751 89184 7.77% 89597 8.27% 88477 6.92% 88303 6.71% 88251 6.65% 87901 6.22%
X-n251-k28 38684 41355 6.91% 41470 7.20% 40982 5.94% 41410 7.05% 41658 7.69% 41260 6.66%
X-n261-k13 26558 28776 8.35% 28849 8.63% 28955 9.03% 29118 9.64% 29847 12.38% 29739 11.98%
X-n266-k58 75478 83616 10.78% 84612 12.10% 82826 9.74% 82185 8.89% 82706 9.58% 82657 9.51%
X-n270-k35 35291 39952 13.21% 40171 13.83% 38695 9.65% 39034 10.61% 39820 12.83% 38604 9.39%
X-n289-k60 95151 105343 9.79% 105165 9.60% 104741 10.08% 105238 10.60% 104618 9.95% 104149 8.54%
X-n294-k50 47161 53937 14.37% 54163 14.85% 53011 12.40% 54074 14.66% 54985 16.59% 53530 13.51%

TABLE V: Result on CVRPLIB (Set-X) instances. The bold numbers highlight the best objective values and optimality gaps.

Fig. 6: Training curves for different environment models. Fig. 7: Training curves with different HMN models.

Additionally, Figure 2 also reveals that distributions of hard
instances for different deep models (with instance augmen-
tation) are symmetrical, implying that the instance augmen-
tation transforms instances through symmetry. Accordingly,
the proposed ASN is capable of producing model-specific

(symmetrical) hard instances in an adaptive manner, which
degrade deep models as much as possible.

2) Ablation study on training epochs for attack: In order to
strike a balance between efficiency and performance, we only
use 5 epochs to train the ASN in all of our main experiments.

JOURNAL OF LATEX CLASS FILES 10

Fig. 8: The cross-distribution performance of RET-trained models
with different value of Tp.

Here, we extend the training duration to 30 epochs and show
how the performance of the environment model varies when
the ASN is trained by more data. In Figure 6, we show how
the optimality gaps of different deep models change with the
number of training epochs. It is clear that the convergence
slows down after the fifth epoch for most deep models.
Meanwhile, our attack method is consistently able to obtain
more hard instances if we continue to train the ASN.

3) Ablation study on the structure of HMN: Figure 7 depicts
the variation of optimality gaps when different solvers are used
as HMN for attack. While LKH and AMDKD are two stronger
solvers compared to POMO, the deployment with POMO leads
to faster convergence and better performance. This empirically
verifies that we do not need to obtain the optimal solution for
training the ASN. As M

′
(G̃) represents the lower bound of

the ground-truth optimality gap, it is intuitive that the instances
generated by using a weaker HMN model would also be hard,
in comparison to a strong solver. In other words, if the lower
bound of the optimality gap increases, its ground-truth value
also increases, whereas the reverse is not necessarily true.

4) Ablation study on Tp for RET: We increase the parameter
Tp from 5 to 20 by a step of 5, and execute RET with
each value, respectively. Subsequently, we evaluate the trained
models using the identical dataset for evaluating zero-shot
generalizability in subsection V-D, with the results presented
in Figure 8. As shown, the overall performance of RET
diminishes with the increase in training epochs per round.
It is primarily attributed to the fact that the evaluation is
conducted on manually specified distributions, while the HMN
is trained on the generated instances that do not belong to
any of these distributions. Thus, training much on the hard
instances inevitably deteriorates the generalizability of HMN
in solving simpler instances from the specified distributions.
On the other hand, the performance of HMN on a specific
distribution exhibits a non-linear relationship along the varia-
tion of Tp. Such non-linearity stems from the adaptive nature
of the ASN, which consistently endeavors to generate hard
instances that reflect worst-case scenarios. Since there is no
direct correlation between the underlying worst-case scenarios
and the manually specified distribution used in evaluation,

(a) (b)

(c) (d)

Fig. 9: TSP instances of size 100 sampled from (a) Gaussian mixture
distribution; (b) Cluster distribution; (c) Diagonal distribution; (d)
Explosion distribution.

increasing Tp in an effort to generate (more) hard instances
could not yield a significant change of the performance on a
specific distribution.

VI. CONCLUSION

This paper presents a generic framework to generate hard
instances and attain robust VRP solutions. Given a pretrained
deep model, we alternately train the ASN to sample hard sub-
instances from random larger instances, and the HMN to gauge
the hardness of the sampled instances. With the objective to
maximize the hardness, the trained ASN effectively degrades
various deep models for VRPs by generating hostile instances.
In this way, we discover model-specific distributions of hard
instances, reflecting the worst-case routing scenarios. In ad-
dition, we propose the RET algorithm to robustify the deep
model and show its effectiveness in enhancing both robust-
ness and zero-shot generalizability. In future, more advanced
continual learning techniques can be introduced within RET
to further improve its performance, enabling the deep model
to learn from hard instances while memorizing the data used
for previous training.

APPENDIX A
DIFFERENT DISTRIBUTIONS AND DETAILED

GENERALIZATION PERFORMANCE

We illustrate the distributions used in subsection V-D in
Figure 9. These distributions are defined as follows: (1)
Gaussian mixture distribution: It is defined by two hy-
perparameters, i.e., the number of clusters c and the scale
l. The coordinates of center nodes for each cluster is firstly
generated, and other nodes in each cluster are then sampled
following the multivariate Gaussian distribution. In particular,
we use c = 7 and l = 50 to generate corner samples. (2)
Cluster distribution: The nodes are grouped into Nc clusters,
with the quantity of clusters being randomly chosen from

JOURNAL OF LATEX CLASS FILES 11

TS
P

Method Uniform GM Diagonal Cluster Explosion Avg. GapObj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
LKH3 7.77 - 8.26m 4.26 - 20.87m 3.24 - 19.65m 5.06 - 16.24m 5.41 - 7.01m -
POMO 7.78 0.14% 4.74s 4.37 2.54% 4.74s 3.64 12.33% 4.76s 5.15 1.78% 4.75s 5.42 0.22% 4.75s 3.40%
POMO H 7.85 1.04% 4.75s 4.47 4.79% 4.75s 3.68 13.59% 4.75s 5.24 3.58% 4.76s 5.50 1.55% 4.75s 4.91%
POMO A 7.84 0.95% 4.75s 4.47 4.84% 4.75s 3.66 13.22% 4.75s 5.24 3.52% 4.76s 5.48 1.36% 4.75s 4.78%
POMO G 7.81 0.56% 4.76s 4.27 0.23% 4.75s 3.50 8.14% 4.76s 5.13 1.29% 4.76s 5.43 0.34% 4.76s 2.11%
POMO D 7.92 1.89% 4.75s 4.42 3.69% 4.76s 3.24 0.08% 4.76s 5.20 2.77% 4.76s 5.50 1.67% 4.76s 2.02%
POMO R 7.80 0.40% 4.76s 4.31 1.24% 4.75s 3.33 2.82% 4.76s 5.11 0.98% 4.75s 5.42 0.20% 4.74s 1.13%

C
V

R
P

LKH3 15.58 - 1.56h 13.88 - 1.52h 11.94 - 2.06h 13.42 - 1.65h 14.37 - 1.51h -
POMO 15.76 1.14% 5.87s 14.19 2.23% 5.84s 12.38 3.70% 6.29s 13.71 2.13% 5.91s 14.48 0.75% 5.78s 2.00%
POMO H 15.81 1.47% 5.82s 14.25 2.61% 5.80s 12.22 2.38% 5.77s 13.75 2.45% 5.78s 14.56 1.31% 5.77s 2.04%
POMO A 15.81 1.45% 5.82s 14.26 2.70% 5.81s 12.23 2.45% 5.80s 13.74 2.40% 5.79s 14.54 1.18% 5.79s 2.04%
POMO G 15.83 1.59% 5.80s 14.10 1.60% 5.77s 12.22 2.35% 5.77s 13.70 2.09% 5.78s 14.52 1.07% 5.77s 1.74%
POMO D 16.11 3.38% 5.83s 14.29 2.90% 5.82s 11.87 -0.60% 5.78s 13.82 2.94% 5.80s 14.81 3.04% 5.81s 2.33%
POMO R 15.82 1.52% 5.80s 14.17 2.05% 5.78s 12.26 2.73% 6.16s 13.71 2.16% 5.78s 14.51 1.00% 5.78s 1.89%

TABLE VI: Evaluation of RET on TSP100 and CVRP100 tasks. POMO G and POMO D denote the fine-tuned POMO model on GM and
diagonal distribution. POMO H denotes the model trained with HAM. POMO R denotes the model trained with RET algorithm.

the set of integers {2, 3, ..., 9}. The unit square is discretized
to a 1000 × 1000 grid. As center nodes in each cluster are
independently generated following Uniform distribution, the
probability of a node locating at coordinate p is defined as∑Nc

n=0 exp(−cp,n/40), where n denotes the center node of
each cluster and cp,n denotes the distance between p and n.
(3) Diagonal distribution: One of the two diagonals of a rect-
angle is uniformly chosen for generation. For each instance,
two noises are sampled from the Uniform distribution U(−t, t)
with t sampled from U(0.05, 0.2), in order to transform the
horizontal and vertical of nodes. (4) Explosion distribution:
The uniformly sampled nodes are mutated by simulating an
explosion. For each instance, the center vc of the explosion is
randomly selected, and all nodes vi within the explosion radius
R = 0.5 is moved away from vc by vi = vc+

vc−vi
∥vc−vi∥ (R+e),

where e ∼ Exp(λ = 1
10) is a random variable.

We report the average solving time and (near-)optimality
gaps for each tested model. The performance on different
distributions are shown in Table VI. We observe that fine-
tuning the model on a distribution can make it perform well
on this specific distribution, but could weaken its ability to
generalize to other unseen distributions. On the contrary, the
RET-trained model is able to achieve balanced performance
across distributions, even if we did not explicitly take these
distributions into account in the training process.

REFERENCES

[1] J. Duan, Z. He, and G. G. Yen, “Robust multiobjective optimization
for vehicle routing problem with time windows,” IEEE Transactions on
Cybernetics, vol. 52, no. 8, pp. 8300–8314, 2022.

[2] P. C. Pop, O. Cosma, C. Sabo, and C. P. Sitar, “A comprehensive survey
on the generalized traveling salesman problem,” European Journal of
Operational Research, vol. 314, no. 3, pp. 819–835, 2024.

[3] Y.-H. Jia, Y. Mei, and M. Zhang, “A bilevel ant colony optimization
algorithm for capacitated electric vehicle routing problem,” IEEE Trans-
actions on Cybernetics, vol. 52, no. 10, pp. 10 855–10 868, 2022.

[4] H. Lu, Z. Li, R. Wang, Q. Ren, X. Li, M. Yuan, J. Zeng, X. Yang, and
J. Yan, “ROCO: A general framework for evaluating robustness of com-
binatorial optimization solvers on graphs,” in International Conference
on Learning Representations, 2023.

[5] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolu-
tional network technique for the travelling salesman problem,” ArXiv,
vol. abs/1906.01227, 2019.

[6] Y. Jiang, Y. Wu, Z. Cao, and J. Zhang, “Learning to solve routing
problems via distributionally robust optimization,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 36, no. 9, 2022,
pp. 9786–9794.

[7] S. Li, Z. Yan, and C. Wu, “Learning to delegate for large-scale vehicle
routing,” Advances in Neural Information Processing Systems, vol. 34,
pp. 26 198–26 211, 2021.

[8] J. Li, Y. Ma, R. Gao, Z. Cao, A. Lim, W. Song, and J. Zhang, “Deep
reinforcement learning for solving the heterogeneous capacitated vehicle
routing problem,” IEEE Transactions on Cybernetics, vol. 52, no. 12,
pp. 13 572–13 585, 2022.

[9] Q. Hou, J. Yang, Y. Su, X. Wang, and Y. Deng, “Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time,” in
International Conference on Learning Representations, 2023.

[10] J. Bi, Y. Ma, J. Wang, Z. Cao, J. Chen, Y. Sun, and Y. M. Chee, “Learn-
ing generalizable models for vehicle routing problems via knowledge
distillation,” in Advances in Neural Information Processing Systems,
2022.

[11] M. Kim, J. SON, H. Kim, and J. Park, “Scale-conditioned adaptation
for large scale combinatorial optimization,” in NeurIPS 2022 Workshop
on Distribution Shifts: Connecting Methods and Applications, 2022.

[12] A. Bdeir, J. K. Falkner, and L. Schmidt-Thieme, “Attention, filling in
the gaps for generalization in routing problems,” in Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
2022.

[13] J. Zhou, Y. Wu, W. Song, Z. Cao, and J. Zhang, “Towards omni-
generalizable neural methods for vehicle routing problems,” in Inter-
national Conference on Machine Learning, 2023.

[14] S. Manchanda, S. Michel, D. Drakulic, and J.-M. Andreoli, “On the
generalization of neural combinatorial optimization heuristics,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases, 2022.

[15] S. Geisler, J. Sommer, J. Schuchardt, A. Bojchevski, and S. Günnemann,
“Generalization of neural combinatorial solvers through the lens of
adversarial robustness,” in International Conference on Learning Rep-
resentations, 2022.

[16] J. Kotary, F. Fioretto, P. Van Hentenryck, and B. Wilder, “End-to-
end constrained optimization learning: A survey,” in International Joint
Conference on Artificial Intelligence, 2021, pp. 4475–4482.

[17] D. Ireland and G. Montana, “LeNSE: Learning to navigate subgraph
embeddings for large-scale combinatorial optimisation,” in Proceedings
of the 39th International Conference on Machine Learning, vol. 162,
2022, pp. 9622–9638.

[18] X. Chen and Y. Tian, “Learning to perform local rewriting for com-
binatorial optimization,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[19] H. Lu, X. Zhang, and S. Yang, “A learning-based iterative method
for solving vehicle routing problems,” in International conference on
learning representations, 2019.

[20] P. R. d O Costa, J. Rhuggenaath, Y. Zhang, and A. Akcay, “Learning 2-
opt heuristics for the traveling salesman problem via deep reinforcement
learning,” in Asian Conference on Machine Learning, 2020, pp. 465–
480.

[21] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 9, pp. 5057–5069, 2022.

[22] B. Hudson, Q. Li, M. Malencia, and A. Prorok, “Graph neural network
guided local search for the traveling salesperson problem,” in Interna-
tional Conference on Learning Representations, 2021.

[23] Y. Ma, J. Li, Z. Cao, W. Song, L. Zhang, Z. Chen, and J. Tang, “Learning
to iteratively solve routing problems with dual-aspect collaborative trans-

JOURNAL OF LATEX CLASS FILES 12

former,” Advances in Neural Information Processing Systems, vol. 34,
pp. 11 096–11 107, 2021.

[24] L. Xin, W. Song, Z. Cao, and J. Zhang, “Neurolkh: Combining deep
learning model with lin-kernighan-helsgaun heuristic for solving the
traveling salesman problem,” in Advances in Neural Information Pro-
cessing Systems, vol. 34, 2021, pp. 7472–7483.

[25] R. Wang, Z. Hua, G. Liu, J. Zhang, J. Yan, F. Qi, S. Yang, J. Zhou,
and X. Yang, “A bi-level framework for learning to solve combinatorial
optimization on graphs,” vol. 34, 2021, pp. 21 453–21 466.

[26] H. Ye, J. Wang, Z. Cao, H. Liang, and Y. Li, “Deepaco: Neural-
enhanced ant systems for combinatorial optimization,” in Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[27] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to
solve routing problems!” in International Conference on Learning
Representations, 2019. [Online]. Available: https://openreview.net/
forum?id=ByxBFsRqYm

[28] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “Pomo:
Policy optimization with multiple optima for reinforcement learning,” in
Advances in Neural Information Processing Systems, vol. 33, 2020, pp.
21 188–21 198.

[29] F. Luo, X. Lin, F. Liu, Q. Zhang, and Z. Wang, “Neural combinatorial
optimization with heavy decoder: Toward large scale generalization,” in
Advances in Neural Information Processing Systems, 2023.

[30] Z. Sun and Y. Yang, “Difusco: Graph-based diffusion solvers for
combinatorial optimization,” arXiv preprint arXiv:2302.08224, 2023.

[31] C. Wang, Y. Yang, O. Slumbers, C. Han, T. Guo, H. Zhang, and J. Wang,
“A game-theoretic approach for improving generalization ability of tsp
solvers,” arXiv preprint arXiv:2110.15105, 2021.

[32] M. Lisicki, A. Afkanpour, and G. W. Taylor, “Evaluating curriculum
learning strategies in neural combinatorial optimization,” in NeurIPS
2020 Workshop on Learning Meets Combinatorial Algorithms, 2020.

[33] L. Xin, W. Song, Z. Cao, and J. Zhang, “Generative adversarial
training for neural combinatorial optimization models,” 2022. [Online].
Available: https://openreview.net/forum?id=9vsRT9mc7U

[34] Z. Zhang, Z. Zhang, X. Wang, and W. Zhu, “Learning to solve travelling
salesman problem with hardness-adaptive curriculum,” in AAAI Confer-
ence on Artificial Intelligence, vol. 36, no. 8, 2022, pp. 9136–9144.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30, 2017.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[37] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, vol. 37. PMLR, 2015, pp. 448–456.

[38] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, 2018.

[39] X. Lin, Z. Yang, and Q. Zhang, “Pareto set learning for neural multi-
objective combinatorial optimization,” in International Conference on
Learning Representations, 2022.

[40] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, pp.
229–256, 1992.

[41] J. Choo, Y.-D. Kwon, J. Kim, J. Jae, A. Hottung, K. Tierney, and
Y. Gwon, “Simulation-guided beam search for neural combinatorial
optimization,” in Advances in Neural Information Processing Systems,
vol. 35, 2022, pp. 8760–8772.

[42] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, 2015.

[43] Y.-D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and Y. Gwon, “Matrix
encoding networks for neural combinatorial optimization,” in Advances
in Neural Information Processing Systems, 2021.

[44] G. Gutin, A. Yeo, and A. Zverovich, “Traveling salesman should not
be greedy: domination analysis of greedy-type heuristics for the tsp,”
Discrete Applied Mathematics, vol. 117, no. 1, pp. 81–86, 2002.

[45] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, II, “An analysis of
several heuristics for the traveling salesman problem,” SIAM journal on
computing, vol. 6, no. 3, pp. 563–581, 1977.

[46] J. Bossek, P. Kerschke, A. Neumann, M. Wagner, F. Neumann, and
H. Trautmann, “Evolving diverse tsp instances by means of novel and
creative mutation operators,” in Proceedings of the 15th ACM/SIGEVO
Conference on Foundations of Genetic Algorithms, ser. FOGA ’19, 2019,
p. 58–71.

[47] G. Reinelt, “Tsplib—a traveling salesman problem library,” ORSA
Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

[48] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian,
“New benchmark instances for the capacitated vehicle routing problem,”
European Journal of Operational Research, vol. 257, no. 3, pp. 845–858,
2017.

https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=9vsRT9mc7U

	Introduction
	Related work
	Deep models for VRPs
	Robustness of deep models

	Preliminaries
	Vehicle routing problems
	Hardness Metric

	Methodology
	Attack Method
	Autoregressive sampling network
	Hardness measurement network
	Alternate training scheme

	Robustness-enhancing Training

	Experiments
	Training Setups
	Baselines
	Attack Performance
	Visualization of hard instances
	Robustness of deep models
	Comparison study with other attack models
	Attack on conventional heuristics

	RET Performance
	Robustness Enhancement
	Zero-shot Generalizability
	Benchmarking

	Ablation Study
	Ablation study on the impact of instance augmentation
	Ablation study on training epochs for attack
	Ablation study on the structure of HMN
	Ablation study on Tp for RET

	Conclusion
	Appendix A: Different distributions and detailed generalization performance
	References

