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Abstract

This is a review article discussing the latest developments in beam-steering antennas at millimeter-wave frequencies for Beyond-
5G and 6G networks. This article classifies all the beam-steering techniques described in the literature in four categories,
namely, phased arrays, quasi-optical systems, leaky-wave antennas, and metasurfaces. An overview of the four classifications is

presented with a detailed comparison outlining the state-of-the-art and limitations of different technologies.

Introduction

Modern day wireless communication has started to become one of the basic necessities. It has led to a number
of new technologies governing our day-to-day life such as the internet of things, connected and autonomous
vehicles, telemedicine, deep space research, etc. With the introduction of such new technologies, the number
of devices connecting to the public wireless network is multiplying rapidly and is creating a demand for high
bandwidth and high data rates [1], [2]. With the rising user count, the present-day sub — 3 GHz public
wireless network has reached its limit with not enough bandwidth for further developments and hence, a lot
of interest is shown in using sub-millimeter and millimeter-wave bands (3 — 300 GHz).

The unused mmWave spectrum can offer a solution to bandwidth scarcity and cater to the growing number
of users [3], [4]. The mmWave band, however, offers a short wavelength (1 to 100 mm), which undergoes
several issues that includes atmospheric losses [5], rain attenuation [6], high path loss [7], low diffraction [8],
[9], multipath delay [10], [11], and foliage loss [12]. As an example, a study concluded that mmWave bands
can present an attenuation as high as 6 dB/km for a heavy rainfall of 25 mm/hr at 30 GHz, significantly
impacting the tropical regions across the planet [13].

Beamforming is a method to focus the radiated power from a source in one direction, creating a highly
directional beam [14], [15]. This highly directional beam can overcome the challenges of path loss, fading, and
multi-path delay. Several field studies have demonstrated that beamforming-enabled base stations covering
a radius of up to 200 m (and hence, creating pico-cells) are the way forward for enabling the upcoming
Beyond-5G and 6G networks [16]-[18]. A reconfigurable antenna system can be designed to control and
steer the direction of such focused beams. Such antennas are known as beam-steering antennas.

Beam-steering antennas have become a highly attractive area of research within the field of antennas and
propagation for applications in not just 5G/6G networks but also in aerospace, satellite communications
and defense. The keyword “antenna”’, “beam” and “steering” was first used in 1935 [19] where steering of
the antenna was used to reduce signal fading. Since then, the subject of beam-steering has grown over the
decades. Figure 1 shows the rise in number of articles published on IEEE Xplore alone over the last ten



decades (till March 2024). A notable growth is seen within the subject in the last decade with more than
half the papers published in the last three years only.
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Figure 1: Number of papers published on IEEE Xplore with keywords “antenna” AND “beam” AND “steer-
ing” (Data till March 2024).

Several electronic beam-steering antennas are described in the literature using different innovative techniques
such as phase-shifting, multi-feed, frequency selective surfaces, and metasurfaces. Different review studies
have been conducted by different groups focusing on a single category such as reconfigurable leaky-wave
antennas, phased arrays, and metasurfaces for beam-steering.

For ease of understanding and to establish a better comparison between different technologies, in this article,
we have classified all the electronic beam-steering antenna techniques into four main categories, namely, (i)
phased array antennas, (ii) quasi-optical systems, (iii) leaky-wave antennas, and (iv) metasurfaces, see Figure
2. This article gives an overview of the working principle of technology followed by state-of-the-art examples
from the literature. Finally, we compare the capabilities and limitations of four different technologies based
on real-life applications within beyond-5G networks.
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Figure 2: Four classifications and sub-classes of active beam-steering antennas.



Phased Array Antennas

Phased array antennas are one of the easiest ways to achieve beamforming and beam-steering. A phased
array antenna can be understood using the analogy of an N -slit diffraction experiment where the overall
beam from the array is a result of coherent constructive interference of N sources (or independent antenna
elements in an array). Each antenna element in the array is fed with a phase shift, introducing a time delay
in the radiated beam. The constructive interference of these time-delayed beams from each radiating element
enables directional control. A simple representation of the beam tilt because of the phase shift in different
elements using an array of six open-ended waveguides is shown in Figure 3. The radiation pattern and tilt
angle for such antennas can be estimated using the array factor. Detailed mathematics for the calculation
of tilt angle is provided within the Supplementary Information.

At 28 GHz

Figure 3: Simulated E-field plot at 28 GHz for a phased array antenna demonstrating beam-tilt.

Several such phased array antennas are widely shown in the literature. One of the most popular designs
is a stacked array antenna. They are capable of generating highly directional tilted beams but are difficult
to reconfigure. As an example, a 20 x 20 array of microstrip patch antennas with parasitic elements was
presented in [20] to operate at 26 GHz with a half-power beamwidth (HPBW) of 5% and a gain of 30 dBi.
Similar techniques are seen frequently in the literature to generate a highly directional high gain beam with
reduced sidelobe levels (SLL) at millimeter-wave bands [21]-[25].

Given phased arrays can generate a beam-tilt, several new techniques were explored to achieve a reconfigu-
rable phase shift between the radiating elements. One simple method is providing an individual phase shifter
to each radiating element, but it ends up being an extremely bulky and costly system. Such phase shifts
can also be generated by a circuit-based feed network to a multi-antenna system to realize a beam-steering
(or beam-switching) architecture. Two such popular architectures are known as Butler [26] and Nolen [27]
matrices.

A conventional N xN Butler matrix can control an/N- element array and generate N orthogonal beams



through different phase distributions. The simplest form of a Butler matrix is designed using a 3 dB quadra-
ture coupler and 45° phase shifters [28], [29]. Such matrices can be optimized for much larger antenna arrays
and hence produce wide beam-steering. A complex 8 x8 Butler matrix using eight tunable phase shifters was
used with a phased array antenna to produce a beam-switching range of 108° with a beam resolution of 2°
[26]. Various other works with cascaded Butler matrices are also presented in the literature to facilitate a
two-dimensional beam-steering [30]—[34], see Figure 4. Unlike Butler matrices, a Nolen matrix uses couplers
with different coefficients along with external phase shifters [35]. They have been demonstrated to be capable
of creating multi-beam antenna arrays and 2D-beamforming [27], [36]-[38].

(®)

Figure 4: A two-dimensional beam-steering architecture of (a) Butler Matrix [34] and (b) Nolen Matrix [38].

Although such matrices are easy to design and implement, and then can provide a good degree of freedom in
terms of customized EM beams for designated applications, they need a large form factor and hence increase
the overall size and cost of manufacturing the antenna system.

Phased array antennas have seen significant development over the past few decades and are now being
used extensively for different applications. They can provide a wide beam-steering with small form-factor;
however, they are costly to manufacture and high-power consumption requirements which may not be ideal
for mass deployment of the system.

Quasi-Optical Systems

As the name suggests, this technique uses different concepts of optics to generate beam reconfigurability.
Three key methods in the literature includes use of Rotman lenses, Luneburg lenses and dielectric lenses
(homogeneous and graded index), see Figure 5. This section will highlight some of the key developments in
this subject with regard to achieving wide beam-steering for Beyond-5G applications.

A Rotman lens can be used as a feeder to a phased array antenna and similar to Butler matrix, it acts as
a phase-shifting network [39]. Such a lens allows the generation of multiple beams simultaneously without
the need of any active components. Such lenses have been used in the literature with different phased array
antennas such as planar microstrip arrays [40]-[43], PCB-based endfire antennas [44], [45] and substrate-
integrated waveguide based leaky-wave antennas [46], [47]. Rotman lenses provide good control on beam-
reconfigurability, however, they add to the physical size of the antenna and require a multi-feed system.
Several new architectures have been presented in the literature proposing variation in feeding style by creating
a dual-layer model and hence, moving the lens at the bottom of the antenna instead of putting it adjacent
[48]-[51]. This reduces the overall physical size of the antenna while keeping the volume consistent and is
desirable for several applications. Rotman lenses are popularly used on aircrafts for satellite communications
on the move [46].



Luneburg lenses, first introduced in 1944 [52], introduced the concepts of optics for RF applications. A
conventional Luneburg lens is spherical in shape and has its relative permittivity varying from 2 in the
center to 1 on the surface. Such lenses have their focal plane on the periphery of the spherical structure and
are very popularly used to focus the beam in one direction. With the advancements in additive manufacturing
[53], several modifications of the Luneburg lenses have been presented in the literature to achieve wide beam-
steering capabilities [54]. One of the big issues with Luneburg lenses is its spherical shape, which makes it
difficult to integrate planar feed antennas. Transformation optics was incorporated by [55], [56] to achieve
a planar focal plane to such lenses and hence, achieve a wide beam-steering range [57]-[59]. Several other
interesting works demonstrated miniaturization of Luneburg lenses with transformation optics and are now
considered for applications in 5G/6G networks as well as satellite communications [60]-[62].

Luneburg lenses laid the foundation for dielectric lenses, and several different iterations of graded index [63]—
[67], homogeneous [68]—[70], Fresnel [71]-[73] and geodesic lenses [74], [75] were presented in the literature
with focus on converting spherical wavefronts into planar wavefronts, and hence, achieving high directionality
[76], [77]. However, with the variation in feed-point, such lenses can also be used to generate multi-beam as
well as beam-steering capabilities [78], [79].
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Figure 5: Different quasi-optical systems for beam-steering from literature: (a) Rotman lens array for beam-
steering on aircrafts [46]; (b) 3D-representation of a spherical Luneburg lens; (¢) a graded-index lens [53]; (d)
representation of beam-steering using lenses [67]; (e) working principle of pillbox antennas [84]; (f) Risley
prism based design for 2D beam-steering [82].

Another interesting quasi-optical technique for beam-steering involves the use of a pair of identical Risley
prisms. With the rotation of each prism, the radiated beam can be deflected in different directions on a
2-D plane and is highly suitable for applications in 5G terrestrial networks [80]-[82]. The limitation of such
beam-steering mechanisms is the need for physical rotation and the large volume of the overall structure.

Continuous transverse stub (CTS) or pillbox antennas are another class of antennas popularly seen in ground
station applications that can also be modified for terrestrial networks [83]—[85]. These are dual-layered
structures where the bottom layer consists of multiple feed points and the top layer consists of an array
of radiating elements such as an SIW antenna or a phased array. The two layers are connected with a
convex-shaped reflector created with metallic vias, and based on the feed position, the beam direction can
be reconfigured.

Quasi-optical systems for beam-steering are highly efficient and can produce wide angle steering. They
are cost-effective and can easily be manufactured with simple techniques such as additive manufacturing.
However, they tend to be 3D structures with large volume and may not be suitable for every environment.
Such quasi-optical systems are of great interest to both antenna engineers and material scientists to further
reduce their physical size and make them suitable for practical applications in terrestrial networks.



Leaky-Wave Antennas

First introduced in 1950s [86], leaky-wave antennas (LWA) are popularly known for their beam-scanning
capabilities. LWAs radiate because of the leakage of the travelling wave as it propagates through a guiding
structure [87], [88]. LWAs generally have an inherent property of frequency-controlled beam-scanning, which
means that the radiated beam direction changes with the change in operating frequency. This is because
all the radiating elements in an LWA are fed sequentially, and with change in frequency, the inherent phase
shift between radiating elements changes, which directly impacts the beam direction as shown in Figure 3.
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Figure 6: (a) Illustration of the working principle of an LWA; (b) dielectric-filled waveguide based LWA with
doped p-i-n diodes [97]; (¢) Modulated LWA on a microstrip guiding structure using varactors for beam-

steering [98]; (d) a full 360° beam-steering antenna for a millimeter-wave 5G base-station [99] using three
corrugated SIW-based LWAs [100].

Microstrip lines and substrate integrated waveguides (SIWs) are popularly used as the guiding structure for
LWA [89], [90]. Microstrip guiding structures tend to be highly lossy because of the dielectric but allows easy
fabrication and conformality. Waveguides, on the other hand, tend to be bulky and cannot be miniaturized.
SIWs or dielectric filled waveguides (DFW) were introduced as intermediate solution to both the problems,
where a low-profile rectangular waveguide is created with a dielectric substrate sandwiched between two
conductive planes [91].

LWAs are divided into three categories: periodic, uniform, and quasi-uniform [92]. A uniform LWA has a
single uniform slot along the structure and can only scan in the front quadrant. A quasi-uniform LWA
is made up of closely placed radiating elements. Since these elements are placed very closely, it can be
considered to be almost uniform, and hence, quasi-uniform. A periodic LWA, as the name suggests, has
radiating elements arranged periodically. Such LWAs can scan a beam from backward to forward endfire
direction [93]-[95]. Conventional periodic LWAs cannot scan the broadside of the antenna because of open
stopband suppression [86] as the travelling wave starts acting as a standing wave at the broadside and all the
reflections being in phase start creating an impedance mismatch. However, different techniques have been
presented in the literature to enable this broadside scanning [93], [96].

Even though LWAs tend to change beam-direction with change in frequency, several innovative techniques
have been introduced in the past to actively control this beam-steering using active components such as RF
micro-electro-mechanical switches [101], p-i-n diodes [102]-[105], varactor diodes [98], [106], liquid crystals



[107], etc. One such work was presented by Yashchyshynet al [97], [108] where a DFW’s substrate material
was doped at specific positions on the slots to create p-i-n diodes. The DFW was then controlled using bias
lines to manipulate the current distribution on the guiding structure and generate beam-steering of +45°.

Several such reconfigurable LWAs have been shown in the literature to generate active beam-steering using
SIWs as the guiding structure [109]. SIWs are composed of hundreds of vias acting as electrical walls on a
planar circuit, which not only makes the antenna rigid, but also costly to manufacture. To further add to
it, it is difficult to attain DC biasing on a conventional SIW, and hence, making it difficult to implement
diodes and related components. As a solution to this, Eccleston et al [110], [111] introduced corrugations
as the replacement for vias in an SIW. The new corrugated SIW (CSIW) works within TE10 mode and
can be used as new guiding structures for millimeter-wave antennas. Several iterations of such corrugated
SIWs have been shown in the literature to achieve fixed frequency beam-steering. These include straight
[112], bent [113], folded [114], half-mode [115] and twisted [116] corrugations. One such work upgraded the
corrugations with inter-digitated capacitor design to achieve low transmission loss on the guiding structure
and with the introduction of p-i-n diodes, the design demonstrated manipulation of surface currents, which
was then used to achieve wide beam-steering in both azimuth and elevation planes [100], [117]. Finally, the
new beam-steering CSIW was coupled with new lenses to generate a full 360° beam-steering base-station
antenna for millimeter-wave 5G networks [99].

Leaky wave antennas are great planar structures which can achieve wide beam-steering and can be fabricated
at low-cost. However, they will always have the inherent problem of frequency-controlled beam-scanning,
which can either be used with resource reallocation methods or can be mitigated using new innovative
techniques as described earlier in this section.

Metamaterials and Metasurfaces

Metamaterials and metasurfaces are one of the most popular topics in the realm of electromagnetics. Me-
tamaterials are defined as artificial structures that are designed to exhibit specific electromagnetic properties
that are not commonly found in nature [118]. Metamaterials have drawn great attention because of their
ability to provide new materials with tunable permittivity, permeability, and refractive index. These mate-
rials can be used to redirect the beam in different directions [119]-[121], and hence, achieve a simple form
of beam-steering. This beam-tilting can be understood through Snell’s law and is described in detail within
the Supplementary Information.

Metasurfaces are two-dimensional metamaterials composed of an array of meta-atoms and can be used to
control the electromagnetic environment and redirect beam in different directions [122]. Frequency selective
surfaces (FSS) can be considered as one of the primitive examples of such metasurfaces, and they are
popularly seen to be used for a full 360° control of beam-control by placing small FSS sections across an
omni-directional antenna.

Tunable FSS are used as reconfigurable filters, and when in the form of a superstrate or a radome and coupled
with antennas, they can act as a frequency window and hence allow the beam to radiate in selected directions
[123], [124], see Figure 7. Work presented in [125], [126] used hexagonal structures for dielectric resonator
antennas with FSS that allowed six beams to be generated in the azimuth plane and two beams in the
elevation plane, and hence, giving a 2D beam-steering mechanism. The design used a cantilever mechanism
to generate a tunable FSS, where a change in the height of cantilever introduced variation in capacitance
and hence the band-pass frequency. This change would only allow the beam to radiate through the FSS in a
specific direction, while blocking it in every other direction. Superstrates consisting of reconfigurable FSS and
partially reflective surfaces (PRS) with active components can also provide a similar behavior [127]-[131].
PRS can also be used to create a Fabry-Perot cavity and generate beam-reconfigurability [132], [133].

Besides tunable FSS, the metasurface community has been growing significantly to create reconfigurable
intelligent surfaces (RIS) that can act as either transmit-arrays or reflect-arrays. Such RIS can be reconfigured



using a pre-defined codebook to change the beam-direction of an incident wave with minimal losses. This
change in beam direction occurs because of the change in surface currents of the incident electromagnetic
wave induced by the phase profile of the metasurface. RIS as a superstrate to the antennas can be used to
achieve both beam-steering as well as multi-beam generation with a single feeder. Several such designs have
been presented in the literature that use intelligent metasurfaces as either a reflector or a transmit-array to
attain reconfigurability [134]-[140], see Figure 7.
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Figure 7: (a) Cantilever-based FSS around a dielectric resonator antenna for 360° beam-steering [126]; (b) an
illustration of an active reconfigurable metasurface for beam-steering [140]; (¢) a reconfigurable reflectarray
for beam-steering [136]; (d) a full sub-6 GHz RIS for smart electromagnetic environments [141]; (e) working
principle of a holographic metasurface and layout for a holographic metasurface [142].

RIS are also being proposed as an inherent component for the new Beyond-5G infrastructure and will be used
to control the electromagnetic environment [143]. Several such RIS for current sub-6 GHz 5G network have
been demonstrated and verified in an indoor and outdoor setting [141], [144], [145]. These intelligent surfaces
use thousands of active components such as p-i-n diodes and varactors. Their overall power consumption is
low (< 15 W for p-i-n diode based RIS and < 15 mW for varactor-based RIS). However, they need regular
power consumption which increases their overall energy consumption considerably. To add to this, when we
redesign these structures for millimeter-wave bands for Beyond-5G networks, the number of p-i-n diodes are
multiplied by a factor of at least 50 (assuming an > 7x frequency scaling), increasing the power consumption,
fabrication cost, and complexity by the same ratio [146].

Holography is another very interesting technique that has been shown in the literature to convert an om-
nidirectional beam pattern to a highly directional antenna. Such metasurfaces are known as holographic
metasurfaces, and they use the surface waves generated by an omnidirectional feed and manipulate the flow
along the surface to radiate in a stipulated direction [147]. Several such holographic metasurfaces have be-
en presented in the literature that can be used to generate multi-beam characteristics and reconfigure the
beam-direction at will [148], [149], see Figure 7.

Different variations of metasurfaces are seen in the literature to generate fast beam-steering capabilities for
Beyond-5G networks. Such metasurfaces can generate highly directional high gain simultaneous multi-beam
characteristics and hence, are highly desirable. However, they tend to have a large form-factor, are power
hungry and can be expensive. Furthermore, such metasurfaces are generally narrow-band, and they act as a
reflector at other frequencies. This means, if the metasurface operates at 26 GHz in the UK at 5G network,
it will start shadowing the sub-6 GHz network. Without careful design, this may not be desirable.

Table 1: Summary of different capabilities of the four categories of beam-steering antennas.



Phased Array Antennas Quasi-Optical System

Leaky-Wave

Bandwidth Wideband Wideband Wideband, but
Implementation Planar design 3D design Planar design
Fabrication PCB etching with active elements Additive manufacturing and PCB etching PCB etching
Design Complexity Moderate Low Low
Fabrication Cost Moderate Low Low

Power Requirements  Moderate Low Low
Beam-Steering Range Moderate Wide Moderate
Conclusion

Beam-steering is a key enabler for millimeter-wave terrestrial networks. With the introduction of 5G-
Advanced and 6G networks in the coming years, commercialization of beam-steering antennas will enable
the telecommunication industry to establish a new network infrastructure. We can classify beam-steering
antennas for such networks into four categories as described in this article. These are (i) phased array
antennas, (ii) quasi-optical systems, (iii) leaky-wave antennas, and (iv) metamaterials and metasurfaces.
Each of these categories has their own set of merits and demerits in terms of complexity, bandwidth, cost,
power requirements, and beam-steering capabilities. Table 1 compares and summarizes the four categories
with these parameters. Even though beam-steering antenna technology has advanced significantly over time,
there are still some key challenges that need to be addressed before they get incorporated into the network.
To highlight a few, these challenges include (i) high complexity, cost of fabrication and power requirements
for intelligent metasurfaces, (ii) out-of-band shadowing because of metasurfaces, (iii) power requirements of
phased array antennas, and (iv) mass production of 3D-printed quasi-optical systems. Additional figures
and links to videos can be found in the Supplementary Information.
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