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Abstract — This paper proposes a stacking framework based 

on ensemble learning, aiming to establish a machine learning-

based intrusion detection system to accurately differentiate 

various cyber-attack types that pose security risks to substations. 

The framework utilizes a combination of stacked base learners 

and secondary learners to generate binary feature matrices 

based on the probability weighting of natural or attack events 

and multi-class feature matrices of the probability of occurrence 

of all attack events. The model designed in this paper is trained 

using the power system attack detection dataset developed by 

the Oak Ridge National Laboratory at Mississippi State 

University. In the experimental results, the binary classification 

accuracy of the secondary learner reaches 97%, and the multi-

class accuracy reaches 95%. This paper also discusses the 

importance of feature selection techniques for intrusion 

detection systems. Experimental results show that using RFE 

can maintain the model's accuracy at around 95% across 

different training/test set ratios of 9:1, 8:2, and 7:3. 

Index Terms—Cyber-attack, Ensemble learning, Intrusion 

detection system(IDS), Power system, Stacking. 

I. INTRODUCTION 

HE power system, as an indispensable cornerstone 

of modern society, plays a crucial role in ensuring our 

quality of life and economic operations. The stable 

operation of the power system is directly related to 

these aspects. In this era of high digitization and widespread 

internet connectivity, the power system not only needs to 

meet the continuously growing demand for electricity but 

also must confront complex security challenges. 

With technological advancements, the power system faces 

risks not only from natural disasters but also from new threats 

such as cyberattacks and data injection. In recent years, 

security issues related to power systems have been escalating 

[1], and the need for information security in power systems 

requires urgent attention. This paper designs an intrusion 

detection system based on ensemble learning, employing 

stacking as the intrusion detection framework. 

This paper designs an intrusion detection system based on 

ensemble learning, employing stacking [2] as the intrusion 

detection framework. The binary and multiclass labels from 

the Oak Ridge National Laboratory (ORNL) power system 

attack detection dataset[3] developed by Mississippi State 

University are merged into a new dataset.  

This merging aims to facilitate the training process for the 

secondary learner, which employs a multilayer perceptron 

along with an additional auxiliary classifier. The design 

allows the secondary learner to simultaneously obtain binary 

classification results distinguishing between attacks and 

natural events and multiclass results providing a detailed 

classification of attack event types during the training process. 

 

The rest of this paper is organized as follows. Selection II 

introduces the architecture and workflow diagram of the 

proposed intrusion detection system. Selection III provides 

an overview of the base learners and the secondary learner 

used in this study. Selection IV describes the ORNL power 

system dataset. Selection V outlines the experimental setup 

and simulation results. Finally, Selection VI concludes the 

study. 

II. THE FRAMEWORK OF THE INTRUSION DETECTION 

SYSTEM 

The intrusion detection system framework proposed by us 
leverages a stacking approach to enhance overall classification 
performance. 

A. Framework in IDS 

Fig. 1. Intrusion Detection Framework for Power Systems 

 

Our proposed intrusion detection system framework is 

depicted in Fig. 1 The topmost section illustrates the power 

system architecture, modeled after the two-generator three-

bus system from the ORNL dataset [3]. This architecture 

simulates the entire process of a small-scale power system, 

including Generation (G1 & G2), which simulate power 

generation within the system, and four PMUs (Phase 

Measurement Units), which analogously represent 

components found in a substation and are used to simulate 

distribution behavior. Additionally, L1 and L2 simulate 

transmission behavior. 

T 



 

 

Fig. 1 depicts four PMUs (including four relays R1-R4 

and four circuit breakers BR1-BR4) as switches within the 

substation, with the intrusion detection system(IDS) placed 

near these switches. Attackers typically send malicious 

attacks via a PC and manipulate data on the transmission lines 

to the substation switches. Another pathway involves sending 

false data to the substation via the Supervisory Control and 

Data Acquisition (SCADA) system. SCADA ensures the 

security of the power system by monitoring the grid, 

sampling data (such as voltage, current, frequency, etc.), 

controlling equipment (such as circuit breakers, switches, 

etc.), and providing real-time messages and historical data. 

B. IDS Architecture 

Fig. 2 Classical Intrusion Detection System 

 

[4] proposed a basic intrusion detection system 

(IDS) architecture with slight modifications. Fig. 2 of the 

IDS primarily includes the following components: 

 

1) Event Collection: The event generator (or event 

collector) is responsible for monitoring activities 

within the power system, such as voltage and current 

variations, equipment connections, and 

disconnections. 

2) Event Analyzer: The event analyzer is tasked with 

analyzing the data collected by the event generator 

to identify potential security risks. The machine 

learning model designed in this paper is deployed 

within the event analyzer to facilitate the detection 

of unknown threats and attacks. 

3) Event Database: The event database stores data on 

power system events, including both natural 

occurrences and attacks. The ORNL dataset used in 

this paper documents a wealth of natural and attack 

events in power systems to improve the performance 

of the IDS. 

4) Response Units: Response units are devices that take 

appropriate actions based on the results of event 

analysis. In the power system designed in this paper, 

if the machine learning model within the event 

analyzer identifies an attack event, it will generate an 

alert and transmit it to the response units. For 

example, relays may send commands to circuit 

breakers, which then receive the commands to 

further disconnect and protect the entire system. 

 

III. ORNL DATASET 

The electric power system dataset used in this paper is 

sourced from a public dataset provided by the Oak Ridge 

National Laboratory (ORNL) [3]. Nowadays, many studies 

utilize this dataset for research on intrusion detection systems, 

with applications ranging from network attack detection to 

power system IDS and simulated smart grid attack detection. 

A. Data Labeling 

The ORNL dataset comprises uninterrupted measurements 

of voltage and other power-related data by PMUs. It contains 

approximately 70,000 samples, which are divided into 15 

datasets with around 5,000 samples each. These datasets are 

labeled based on scenarios, categorizing them into Binary, 

Three-class, and Multiclass. The measurement data in the 15 

datasets with three types of labels are the same; the difference 

lies only in the number of labels. 

 

B. Dataset Features 

Each of the 15 datasets contains 128 features and 1 label. 

In this experiment, the model used needs to classify whether 

the event belongs to an attack or a natural scene before 

training, so an additional binary label "𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑐𝑒𝑛𝑒 " is 

added (1 represents an attack event, 0 represents a natural 

event), resulting in a total of 130 features. 

 
TABLE I 

DESCRIPTION OF PMU MEASUREMENT FEATURES IN ORNL DATASET 

 

Feature Unit Describe 

PA1:VH~PA3:VH rad The voltage phase angles of the Phase 

A,B,C electrical system 

PA4:IH~PA6:IH rad The current phase angles of the Phase 

A,B,C electrical system 

PA7:VH~PA9:VH rad The voltage phase angles of the 
unbalanced Phase A, B, C (positive, 

negative, zero) 

PA10:IH~PA12:IH rad The current phase angles of the 
unbalanced Phase A, B C (positive, 

negative, zero) 

PM1:V~PM3:V V The voltage magnitude of the Phase A, 
B, C electrical system 

PM4:I~PM6:I A The current magnitude of the Phase A, 

B, C electrical system 

PM7:V~PM9:V V The voltage magnitude of the 
unbalanced Phase A, B, C (positive, 

negative, zero) 

PM10:I~PM12:I A The current magnitude of the 

unbalanced Phase A, B, C (positive, 
negative, zero) 

F Hz The frequency of a power system 

measured by a PMU 

DF Hz/s Power system frequency variation rate 

PA:Z Ω PMU-measured equivalent impedance 

PA:ZH degree Phase angle difference of PMU-

measured equivalent impedance 

S  The status flag of a PMU 

 

The features starting with "PA" indicate phase angles 

measured by four PMUs (R1~R4, refer to Fig. 1), with each 

PMU measuring 29 data points (29*4 = 116). The remaining 

12 features belong to the status logs. Finally, the last two 



 

 

labels are used to determine the scene "𝑚𝑎𝑟𝑘𝑒𝑟" and classify 

whether it belongs to an attack or natural scene 

"𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑐𝑒𝑛𝑒". 

C. Event Scenarios 

TABLE II 

DESCRIPTION OF NATURAL EVENTS AND NO-EVENT IN ORNL DATASET 

 

Scenario 

number                                                                                            

Recode Description 

1 0 A SLG fault originating from the 10-

19% location of L1. 

2 0 A SLG fault originating from the 20-

79% location of L1. 

3 0 A SLG fault originating from the 80-

90% location of L1. 

4 0 A SLG fault originating from the 10-

19% location of L2. 

5 0 A SLG fault originating from the 20-

79% location of L2. 

6 0 A SLG fault originating from the 80-

90% location of L2. 

13 0 Line maintenance on L1. 

14 0 Line maintenance on L2. 

41 0 Normal operation load variation. 

 
TABLE III 

DESCRIPTION OF ATTACK EVENTS IN ORNL DATASET 
 

Scenario 

number                                                                                            

Recode Description 

7~12 1~6 False date injection attacks 

15~20 7~12 Remote tripping command injection 

attacks 

21~40 13~28 Relay setting changed attacks 

 

The event scenes are labels in the dataset, displayed in 

numerical order from 1 to 41 (with numbers 31 to 34 missing), 

totaling 37 scenes. These scenes include 8 natural events, 1 

no event, and 28 attack events. Table II and Table III list the 

scene numbers and descriptions for natural events, no events, 

and attack events. 

In Table II, all natural events and no-event scenarios are 

coded as zero in this paper's encoding, as the focus is 

specifically on classifying attack events. In Table III , all 

attack events are renumbered from 1 to 28 in sequence in this 

paper's encoding. This renumbering applies to "𝑚𝑎𝑟𝑘𝑒𝑟 ." 

For "𝑎𝑡𝑡𝑎𝑐𝑘_𝑠𝑐𝑒𝑛𝑒," values from 1 to 28 are set to 1, while 

the rest are set to zero. 

IV. STACKING MODEL 

This section will introduce the machine learning model 

architecture used in this paper, including the base learners 

and the meta-learner. 

A. Architecture 

 
Fig. 3.  Model Architecture Based on Stacking 

 

The event analyzer of the IDS corresponds to the 

machine learning model used in this paper, while the event 

database corresponds to the ORNL dataset. The event 

analyzer can utilize machine learning techniques to learn 

normal patterns and identify abnormal behavior. Once the 

event analyzer detects anomalies, it may generate alerts. 

These alerts are typically sent to response units such as 

relays and circuit breakers. Upon receiving the alerts, 

response units can take appropriate actions, such as 

disconnecting the affected circuit to prevent further damage 

or security risks. 

The overall model workflow begins with the input of 

attack and natural events from the ORNL dataset. The dataset 

is then separately used as input for three base learners, 

resulting in predictions from three machine learning models. 

At this stage, there are a total of three outputs for binary 

classification (natural or attack events) and three outputs for 

multiclass classification (1-29 attack events) matrices. 

Combining the predictions from these three base classifiers 

yields a 93 (2*3 + 29*3) matrix as input for the meta-learner. 

The meta-learner's auxiliary head provides preliminary 

classification of natural or attack events, while the output 

layer provides detailed classification of attack events. 

B. Basic Learner 

Stacking involves using the predictions of multiple 

base learners (such as Random Forest, AdaBoost, XGBoost, 

etc.) as inputs and using a secondary learner (often a linear 

regressor or another model) to integrate these predictions. 

There are no restrictions on the choice of base learners and 

the secondary learner. In this paper, the selection of base 

learners is based on their accuracy in training with the power 

system ORNL dataset. 

 
TABLE IV 

THE SELECTION OF BASIC LEARNERS FOR STACKING 

 

ML 
algorithm 

Binary 
Accuracy 

Multiple 
Accuracy 

Decision Tree 0.7 0.31 

SVM 0.69 0.29 

Naïve Bayse 0.69 0.28 

Random 
Forest 

0.92 0.8 

Adaboost 0.68 0.29 

XGBoost 0.71 0.68 

LightGBM 0.77 0.71 

 



 

 

Table IV shows the training results of different 

machine learning algorithms using the original unencoded 

ORNL dataset. Based on the comparison of accuracy, we 

selected Random Forest, XGBoost, and LightGBM as the 

base learners for the first layer of the stacking model. 

C. Meta Learner 

 
Fig. 4. The Architecture of the Meta Learner in Stacking 

 

The diagram in Fig. 4 illustrates the secondary 

learner of the stacking model, which in this study is a Multi-

Layer Perceptron (MLP).  

The architecture in Fig. 4 is primarily divided into 

four layers: the input layer, hidden layers, auxiliary layer, and 

output layer. The input to the input layer is the predictions 

obtained from the three basic learners' training results, which 

are merged into a feature matrix of size (training samples * 

(number of multi-class/binary labels * 3)). 

After multiple feature extractions between hidden 

layers through forward propagation, there are two pathways: 

the auxiliary layer and the output layer. Backward 

propagation occurs through these two pathways back to the 

input layer. 

The concept of the Auxiliary Classifier (AC) was 

first introduced in 2014 by the Google team in the 

development of GoogleNet  (Inception-V1) [5]. Since 

GoogleNet is a large neural network consisting of multiple 

layers of fully connected (FC) layers, convolutional layers, 

and an average pooling layer, it may suffer from the problem 

of gradient vanishing during backpropagation, leading to 

ineffective updates in the earlier layers and reduced 

performance. 

The AC is typically placed in the middle layers of 

the model and calculates the output of these middle layers. 

This positioning allows the AC to be shielded from direct 

gradient vanishing issues, even if there are many hidden 

layers between the output and input layers. This is because 

during backpropagation, the AC is in the middle layers, 

making the gradients less likely to vanish directly to zero. 

 

The definition of the loss function for the main 

classifier can be written as: 

 

𝐿𝑚𝑎𝑖𝑛 = ∑ ∑ 𝑦𝑐,𝑖

𝑐

𝑖=1

log2(𝑃𝑐,𝑖)

𝑛

𝑖=1

 

(1) 

 

where n represents the number of samples, c 

represents the type of attack category in the ORNL dataset, 

𝑦𝑐,𝑖 is a binary indicator used for one-hot encoding, and 𝑃𝑐,𝑖 

is the probability that the ith sample is classified as category 

c. 

The definition of the loss function for the auxiliary 

classifier can be written as: 

 

𝐿𝑎𝑢𝑥 = ∑ ∑ 𝑦𝑐,𝑖

𝑐

𝑖=1

log2(𝑃𝑐,𝑖)

𝑛

𝑖=1

 

     (2) 

 

The difference with the loss function of the main 

classifier lies in the fact that 𝑐 represents a binary indicator 

(0, 1) for determining whether it belongs to a natural or attack 

scene. 

V. SIMULATON RESULTS 

In this chapter, we first followed the workflow of our work 

and then presented the experimental results. Additionally, we 

compare the performance with other papers that have utilized 

the ORNL dataset. 

A. Workflow 

 
Fig. 5. The workflow in proposed IDS model. 

 

1) Data preprocessing: Data preprocessing involves 

cleaning the power-related measurements collected 

by PMUs. In this study, missing values in the 

measurements are handled by directly removing 

them. 

2) Normalization: In a three-phase power system, the 

values of phase voltages and phase currents 

measured by PMUs can vary significantly. Therefore, 

it is necessary to normalize the data in the dataset to 

ensure that the model can handle consistent data 

during both training and testing phases. The data 

normalization method used in this paper is Min-Max 



 

 

Scaling. This method scales the dataset so that each 

feature corresponds to the range between 0 and 1 by 

identifying the maximum and minimum values for 

each feature in the dataset. 

 

𝑋𝑛𝑜𝑟 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

  

                        (3) 
 

where X represents a certain feature of the ORNL 
dataset, 𝑋𝑚𝑎𝑥   denotes the maximum value of that 
feature, and 𝑋𝑚𝑖𝑛  represents the minimum value of 
that feature. 

3) Data Splitting: The normalized dataset is then split 

into training and testing sets according to three 

different split ratios as depicted in Fig. 5. It is 

important to note that during the splitting process, 

there are binary and multiclass labels, resulting in 

two outputs. 
4) Basic Learner & Combine Input: After splitting, the 

training and testing sets are used as inputs for the 

three base learners. Under the stacking model 

framework, the predictions from the three base 

learners are combined as probability values. 

Utilizing probability values as inputs for the 

secondary learner provides more information, which 

is beneficial for classification tasks. 

 

 
Fig. 6.  Stacking model framework diagram. 

 

Fig. 6 elaborates on the combination of outputs  

from Basic Learners as the input for the Secondary 

Learner, as depicted in Fig. 4. 

The "Predict" step in Fig. 6 involves predicting the 

binary and multiclass labels in the dataset, resulting 

in four different-sized feature matrices: 

(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒, 2), 

(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒, 29), (𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒, 2),  and 
(𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒, 29).  

The reason for having 29 multiclass labels is that 

the original dataset's multiclass labels were encoded 

by numbering all 41 event scenarios from 1 to 41. 

However, for this IDS in our paper, the focus is 

primarily on attack events. Therefore, all labels 

except for attack events are assigned as 0. 

After merging the feature matrices based on 

binary and multiclass labels separately, these two 

feature matrices are then horizontally concatenated 

to form a large feature matrix, which serves as the 

input for the secondary learner.  

 

 
Fig. 7.  Illustration of Binary Feature Matrix 

 

 
Fig. 8.  Illustration of Multiple Feature Matrix 

 

Fig.7 and Fig. 8 depict the binary and multiclass 

feature matrices mentioned above. The model 

outputs prediction probabilities for each label based 

on the number of labels. A higher prediction 

probability for a feature indicates a higher 

probability of the model assigning that feature to a 

certain category, which can also be interpreted as the 

importance level of the feature. The size of the 

feature matrix is (number of samples, number of 

features), and the sum of probabilities for each 

column equals 1. 

 

5) Meta learner: Finally, the merged feature matrix is 

fed into the secondary learner, where a Multilayer 

Perceptron (MLP) further explores the relationships 

between features within hidden layers. Based on the 

architecture depicted in Fig. 4, the auxiliary classifier 

predicts whether the event belongs to a natural 

occurrence or an attack. The output layer further 

categorizes the event into specific types of attacks. 



 

 

 

B. Experiment 1: IDS accuracy 

Experiment 1 focuses on comparing the accuracy of the 

model trained in this study with the one in reference [6]. Since 

the training-to-testing data ratio in [6] is 9:1, this study 

compares the accuracy using three different ratios: 9:1, 8:2, 

and 7:3. 

1) Compare with the Original Dataset: The experiment 

compared the performance using the original dataset 

without renumbering, as described in Table II and 

Table III. The results showed that even without 

renumbering, the model maintained a higher level of 

accuracy. 

 

 
Fig. 9. The comparison of results using the original dataset. 

 

The experimental results using the original data as 

input with our stacking model are depicted in Fig. 9, 

showing that our research method maintains an 

advantage regardless of the amount of training data.  

Since the original data was used as input, the stacking 

model in this part does not include an auxiliary 

classifier, and the legend for models without the 

auxiliary classifier is labeled as "Stacking." The blue 

labels in Fig. 9 represent the average accuracy across 

the 15 datasets, while the red labels denote the 

experimental results from reference [6]. 

2) The comparison of results from after re-coding data: 

The accuracy of the 15 datasets using the stacking 

model's simulation results is recorded in this paper. 

A comparison is made between training and testing 

set ratios of 9:1 to 7:3. The goal is to maintain 

excellent discrimination results even with a small 

amount of training data. 

 

 
Fig. 10. The comparison of the accuracy using ORNL dataset after re-
encoding. 

 

 
Fig. 11. The comparison of three training and testing set proportions 
after renumbering. 

 

The accuracy of the 15 datasets using the stacking 

model's simulation results is recorded in this paper. A 

comparison is made between training and testing set 

ratios of 9:1 to 7:3. The goal is to maintain excellent 

discrimination results even with a small amount of 

training data. 

The results averaged from the 15 datasets in Fig. 10, 

compared to Fig. 6, show an improvement in accuracy 

after adding the auxiliary classifier and re-encoding. 

"Stacking+" in Fig. 11 represents the model with re-

encoding and the inclusion of the auxiliary classifier. 

C. Experiment 2: Other Machine Learning Metrics in 

Proposed IDS 

The data tested in Experiment 2 compares the 

indicators of recall, precision, and f1-score for proposed IDS. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

(4) 

 

According to the definition of Recall (4), applied in 

IDS, it represents the system's desire to detect as many true 

attack events as possible, reducing the risk of IDS false 

negatives. False negatives indicate cases where the IDS fails 

to detect certain true attack events. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5) 

 

According to the definition of Precision (5), applied in 

IDS, it represents the system's accuracy in identifying attack 



 

 

events. High Precision indicates that the IDS predicts the 

events marked as attacks in the dataset very accurately, 

reducing the risk of false positives. 

 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =
(1 + 𝛽2)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
, 𝛽 = 1 

(6) 

 

The f1-score (6) is the weighted average between 

Recall and Precision, applied in situations where there is class 

imbalance in the dataset. When the number of attack event 

samples is smaller than that of natural event samples in the 

dataset, it provides a comprehensive evaluation. 

 

 
Fig. 12. The comparison of metrics without shuffle 

 

 
Fig. 13. The comparison of metrics with shuffle 

 

Fig. 12 and Fig. 13 compares machine learning metrics 

in our study. The Y-axis shows event scene numbers post re-

encoding, while the X-axis displays metric averages across 

the 15 datasets. "Shuffle" refers to rearranging training data 

for performance improvement. 

The plot aims to assess if shuffling affects our IDS 

model's performance per attack event. Results indicate 

consistent performance regardless of shuffling, maintaining 

accuracy across different training set sizes. 

Notably, events 2, 3, 6, and 7 show lower Precision, 

likely due to their nature as data injection attacks, which are 

challenging to distinguish accurately given their similarity to 

normal operations. 

 

 



 

 

 
Fig. 14. The comparison of metrics with shuffling in machine 

learning 

 

Fig. 14 compare the quantized results from Fig. 12 & 

13. The comparison shows that shuffling has minimal impact 

on the metrics. Adaboost+JRipper represents the average 

results from [6], highlighting significant differences between 

our IDS model's metrics and those from [6]. The averaging 

method involves dividing the three metrics of labels 0 to 28 

by 29 to obtain the results. 

D. Experiment 3: Feature Selection  

From Fig. 11, it can be observed that as the size of the 

training set varies, there is a gradual decrease in accuracy by 

2-3%, which is a relatively significant change. Such 

fluctuations in accuracy indicate insufficient stability in the 

predictions made by our IDS model. Therefore, experiment 3 

involves the application of several feature selection 

techniques for preprocessing, aiming to reduce the magnitude 

of accuracy decline with changes in training data size. 

 
Fig. 15. Feature selection accuracy quantification comparison 

 

The accuracy comparison obtained from training using 

the intrusion detection model designed in this paper shows 

that Recursive Feature Elimination (RFE) can maintain the 

model accuracy around 95% regardless of the amount of 

training data.  

RFE sorts the features based on their importance and 

then eliminates the least important features iteratively until 

the desired number of features set by the user is reached. This 

result may be attributed to RFE capturing the important 

features for the ORNL dataset during training, and these 

features are sufficient to represent the data and its overall 

structure. Hence, RFE can maintain good accuracy even with 

different amounts of training samples. 

E. The Comparsion of Performance with  Using ORNL 

Dataset Reference 

 
TABLE V 

THE COMPARISON OF PERFORMANCE WITH PROPOSED MODEL 

 

Research 
Method 

Stacking+ Stacking+ 
& RFE 

  

Data 

Instance 

5,000 5,000   

Train-Test 

Split 

9:1 9:1 

 

 

8:2 7:3 

Binary 

Accuracy 

97% 97.23% 

 

 

97.12% 97% 

Multiple 

Accuracy 

95% 95.15% 

 

 

95.13% 95.08% 

Recall 94.4% 94.1% 

 

 

90% 90% 

Precision 93.3% 93.3% 

 

 

92.2% 92.1% 

f1-score 93.24% 93.1% 

 

 

90% 90.2% 

 

Towards the end of this paper, we will compare the data 

with the literature in the academic community that has used 

this open-source dataset. The focus will be on binary and 

multi-class accuracy, as well as other machine learning 

performance metrics. 

Based on Table V, the bold text represents our research 

method. The other five references also use the ORNL dataset, 

with around 5,000 samples, indicating they averaged results 

from 15 datasets. 

The binary accuracy of the other references is based on 

simulating the ORNL binary labeled dataset directly. In 

contrast, we use a stacking model with an auxiliary classifier 

for initial classification of natural and attack events. 

 
TABLE VI 

THE COMPARISON OF PERFORMANCE WITH ORNL REFERENCE 
 

Research 

Method 

Adaboost 

+ JRipper 

Common-

Path 

Mining 

Random 

Forest 

RBM  GBFS 

Reference [6] [7] [8] [9] [10] 

Data 

Instance 

5,000 5,000 78,307 5,000 5,000 



 

 

Train-Test 
Split 

9:1  
 

8:2 7:3  

Binary 

Accuracy 

95% 95% 

 
 

 

 

97.12% 97% 97% 

Multiple 
Accuracy 

89% 93% 
 

95.13% 94% 92% 

Recall 75%  90% 92% 92.5% 

Precision 80%  92.2% 93% 92.4% 

f1-score 80%  90% 93% 92.44% 

 

References [6] and [8] in Table VI use basic machine 

learning models for intrusion detection. [6] does not consider 

feature reduction or preprocessing, while [8] employs feature 

engineering using feature correlation and information gain, 

resulting in a larger sample size. 

Reference [7] reduces multi-class features using data 

formatting based on PMU measurement values, resulting in 7 

features. We use Min-Max Scaler for quantizing PMU values 

into a range of 0 to 1, aiding the stacking model in precise 

event classification. 

In summary, while the literature in Table V and Table 

VI uses the same dataset, each method varies, leading to 

different sample sizes. However, based on multi-class 

accuracy and other metrics, our intrusion detection model for 

power systems remains highly competitive. 

 

VI. CONCLUSION 

This paper proposes an ensemble learning method based 

on stacking for intrusion detection in power systems. The 

proposed model architecture can simultaneously determine 

the initial classification of events as either natural or attack 

events, further categorize them into specific attack types, and 

even identify which location in the power lines the fault 

occurred. 

The preprocessing method involves encoding the dataset 

and adding binary labels for auxiliary classifiers conducive to 

the secondary learners in the stacking model, which is 

validated further in the experimental results. 

The accuracy of the auxiliary classifier is found to be 97% 

for the averaged test data of the 15 datasets from the ORNL 

dataset, while the accuracy of the output layer for detecting 

attack events is 95%. Performance metrics for evaluating IDS, 

such as Recall, Precision, and F1-score, are reported at 94%, 

93%, and 93% respectively. The experimental results also 

utilize a confusion matrix to provide a more intuitive 

understanding of the classification detection rates for each 

attack event. 

Compared to other literature using the ORNL dataset for 

IDS, this approach demonstrates higher detection 

performance, particularly with the multi-class output layer 

achieving higher accuracy than most literature. 
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