
P
os
te
d
on

9
A
p
r
20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
26
28
55
.5
25
25
99
4/
v
1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
o
u
ld

n
ot

b
..
.

Stefano Scanzio1, Gianluca Cena1, and Adriano Valenzano1

1National Research Council of Italy (CNR-IEIIT)

April 09, 2024

1

QRscript: Embedding a Programming Language in
QR codes to support Decision and Management

Stefano Scanzio, Gianluca Cena, and Adriano Valenzano
National Research Council of Italy (CNR–IEIIT), Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

Email: {stefano.scanzio, gianluca.cena, adriano.valenzano}@ieiit.cnr.it

Abstract—Embedding a programming language in a QR code
is a new and extremely promising opportunity, as it makes devices
and objects smarter without necessarily requiring an Internet
connection. In this paper, all the steps needed to translate a
program written in a high-level programming language to its
binary representation encoded in a QR code, and the opposite
process that, starting from the QR code, executes it by means
of a virtual machine, have been carefully detailed. The proposed
programming language was named QRscript, and can be easily
extended so as to integrate new features.

One of the main design goals was to produce a very compact
target binary code. In particular, in this work we propose
a specific sub-language (a dialect) that is aimed at encoding
decision trees. Besides industrial scenarios, this is useful in many
other application fields. The reported example, related to the
configuration of an industrial networked device, highlights the
potential of the proposed technology, and permits to better
understand all the translation steps.

Index Terms—QR code, decision trees, compilers, management,
maintenance, QRscript.

I. INTRODUCTION

World is changing, digital networks and connectivity are
more and more pervasive, and communication between intel-
ligent objects is nowadays extremely common, to the point
that this trend was explicitly given a specific name, that is,
the Internet of Things (IoT) [1]. Industry is changing too, and
paradigms like Industry 4.0 [2] and the Industrial IoT (IIoT)
[3], as well as the coexistence of heterogeneous networks [4],
including both wired and wireless ones, in the same production
line, are a direct proof of this evolution.

In this scenario, configuration, operation, management, and
maintenance of both new (greenfield) and old (brownfield)
machinery [5] are becoming increasingly complex tasks. On
the other hand, these essential activities must be kept as simple
as possible, is such a way to be easily accomplished by
workers in the industry. Concerning equipment involved in
networked systems, both wired (e.g., TSN [6]) and wireless
communication technologies are often characterized by tight
constraints, including real-time [7], reliability [8], [9], safety
[10], security [11], [12], and power consumption [13], [14].
Therefore, proper configuration is demanded to maximize
performance. One of the most complex parts related to the
management of these kinds of apparatus is related to their
diagnosis and maintenance in the case of malfunction [15].

Many recent proposals available in the scientific literature
rely on the use of portable smart devices [16], and in some
case augmented reality [17], to guide the worker throughout

the steps involved in maintenance operations, which must be
correctly executed also by non-perfectly trained personnel.
Setting up an interactive process between the worker and
an application executed on a portable device aimed, e.g., at
identifying and solving a problem that has arisen in some part
of the system, is an effective way to ease the implementation
of the above actions, which in the most general case include
configuration, operation, management, and maintenance.

Such activities typically require that the portable device is
connected to either a server deployed on a local network or
directly to the Internet, to retrieve all the required information
or whatever is needed. Sometimes, information can even be
stored in the device itself, but doing so limits flexibility
tangibly, because one has to know in advance the kind of
equipment involved and the related problems.

Unfortunately, in many cases the portable devices exploited
to perform these operations do not have the possibility to use a
communication network. This may be due to specific security
policies within the company, which prevent access to the local
network, or more commonly to the fact that the machinery
is located in some place where there is no Internet access.
Examples are installations in desert areas (high mountains,
deserts, forests, etc.), petrochemical factories that, due to their
extension, are sometimes not completely covered by a wireless
network, railway exchanges, electrical substations, and so on.

The solution we are proposing in this work is to embed
a programming language, we named QRscript, directly into
a QR code, which is attached to the related part of the
equipment. The worker can then scan the QR code with
its portable device and execute the embedded program. In
this way, the worker is enabled to interact with the program
encoded in the QR code, which guides her/him toward the
solution of a specific problem. To the best of our knowledge,
this solution has not been proposed before, and this is the first
time a QR code is used to store executable code.

It is worth pointing out that the application contexts where
this technology can be profitably exploited are quite wide,
and fall well outside the boundaries of factory automation.
For example, it can be adopted in mountain trails to suggest
possible routes with their respective characteristics, or to
guide a user to correctly managing an emergency medical
device, or finally to facilitate the use of devices of any kind

This is the author’s version of an article that has been published in this journal.
Changes were made to this version by the publisher prior to publication.

The final version of record is available at https://doi.org/10.1109/ETFA52439.2022.9921530

Copyright (c) 2024 IEEE. Personal use is permitted.
For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://doi.org/10.1109/ETFA52439.2022.9921530

in developing countries1, by providing a certain degree of
interactivity without the need for a network connection.

In this work, in addition to presenting the main features of
the QRscript programming language and its inherent ability
to be extended, we also propose a specific sub-language (that
is, a dialect) that permits to encode a decision tree within
a QR code. All the steps involved in translating this dialect
from a high-level programming language to a binary repre-
sentation and generating the related QR code were analyzed
in depth. Moreover, the opposite direction of the translation
scheme, which goes from the QR code to the execution of the
encoded program, has been also described and commented.
Descriptions have been accompanied by a simple yet concrete
example, to make it easier to understand all the involved steps.

This paper has the following structure: in Section II QR
codes are briefly described, while the QRscript programming
language and the main steps of the translation process (i.e.,
generation of the QR code and its execution) are defined in
Section III. The specific dialect for encoding decision trees
and the related example are thoroughly detailed in Section IV.
Finally, some conclusive remarks are reported in Section V.

II. QR CODE TECHNOLOGY

The quick response code technology [18], commonly known
as QR code, is a two-dimensional barcode that was invented
in 1994 with the aim of tracking vehicles during the manu-
facturing process. Besides the speed of recognition, its main
advantage is the larger storage capacity when compared to pre-
existing one-dimensional barcodes. The most recent standard
specification related to QR code can be found in [19].

Currently, QR codes are used to encode different kinds of
information like text, URLs for automatically connecting to a
web page, and information to join a Wi-Fi network. In addi-
tion, they enable different types of applications, for instance to
manage security [20] or mobility [21], for authentication, for
payments, for augmented reality [22], for marketing purposes
[23], etc.

QR codes can store four types of data, namely, numeric,
alphanumeric, binary, or kanij. The latter is specifically in-
tended for encoding Japanese symbols, and it was included
because this technology was firstly proposed by Denso Wave, a
Japanese automotive company. Different data types correspond
to different information that can be encoded (i.e., numeric,
alphanumeric, etc.), and consequently their correct use may
lead to a reduction (or, vice-versa, to an increase) of the
amount of information that can be embedded in the QR code.

For the purposes of this work, we rely on the binary mode,
which is typically used to encode 8-bit ASCII characters with
the ISO 8859-1 format. In our case, the code included in the
QR code is the result of a compilation process, and hence
it cannot be described efficiently using the ASCII coding
scheme. Conversely, it is just a sequence of bits that represents
the list of instructions of the program to be executed, which

1For example, in the Suzana village in Guinea-Bissau, many residents have
mobile phones, but the Internet connection is available only in some areas
and for short periods of time near humanitarian associations or missions.

QR code

Version 1

(21x21)

QR code

Version 40

(177x177)

Fig. 1. Examples of QR code version 1 and version 40.

is suitably encoded in a specific binary format with the rules
explained below.

Different versions of QR codes are defined: the smallest one,
in terms of the area and storing capacity is version 1, which
is coded in a 21× 21 matrix, while the largest is version 40,
which is coded in a 177 × 177 matrix. Figure 1 shows two
examples of QR codes, belonging to version 1 and version
40. In addition, there is the possibility to define different error
correction levels, i.e., L (low), M (medium), Q (quartile), and
H (high), which can be employed to counteract reading issues
related, e.g., to damaged or dirty QR labels, hence increasing
overall robustness. In the case of version 40 with a low level
of error correction, the storage capacity is 2953 bytes.

The generation of compact QR codes and techniques to
compress the information to be included were the subject of
several scientific works. To improve storage capacity, colored
QR codes [24], [25] were defined, as well as other techniques
like multiplexing [26]. Due to the limited storage capacity
of this technology, the ability to pack as much information
as possible in a QR code is a primary requirement in most
practical applications, and our proposal for embedding an
executable program makes no exception. For this reason great
attention was spent in the translation process for generating
an extremely compact binary code.

III. QRSCRIPT PROGRAMMING LANGUAGE

The QRscript programming language is an interpreted lan-
guage that is defined inside and represented by a QR code.
Figure 2 highlights all the steps involved in the generation of
the QR code and in the execution of the embedded program.
The latter step starts with the QR code being read (scanned)
by the user and ends with its execution in a specific virtual
machine. Here, the virtual machine has to be intended as a
software environment that executes the binary code retrieved
from the QR code. From a conceptual point of view, its

if cond1:

if cond2:

out1

else:

out2

else:

out3
000001

010001

…

QRbytecode

Source language

QRcode

Title and description

out1: more information

about out1

out2: more information

about out2

out3: more information

about out3

Cmd Arg1 Arg2 Res

(1) op1 v1 v2 t1

(2) op2 t2 t3 t4

(3) op3 t5 t6 v3

000001

010001

…

Sheet or Sticker

QRbytecode

Intermediate code

(three-address code)

Virtual machine

(application)

G
e

n
e

ra
ti

o
n

E
x
e

cu
ti

o
n

Cmd Arg1 Arg2 Res

(1) op1 v1 v2 t1

(2) op2 t2 t3 t4

(3) op3 t5 t6 v3

Intermediate code

(three-address code)

Fig. 2. Example of all the steps involved in the generation of the QR code (left side) and in the execution of the program from the QR code (right side).

purpose and behavior are similar to a Java Virtual Machine
(JVM) for java or a python interpreter (which is actually
a virtual machine).

A. QRbytecode generation

The program to be encoded in the QR code can be described
by means of a high-level programming language. The target
of this first step is the generation of a sort of bytecode, we
named QRbytecode, which represents the sequence of bits that
must be encoded in the QR code in a binary form. The reason
why we defined it as a bytecode is because the program is not
intended to be executed by a dedicated hardware platform, but
rather it is interpreted by a specific virtual machine. The main
target of the QRscript programming language is the definition
of the QRbytecode, which has stringent requirements about
the dimension of the generated code, because it has to be
embedded in a QR code whose maximum size is currently
2953 bytes (when version 40 with low error correction is
employed).

The high-level source programming language is not the
focus of this paper, and can be any language translatable into
QRbytecode. Due to the aforementioned constraints related to
code dimension and to satisfy different programming needs, a
number of dialects (e.g., sub-languages) can be defined, each
one with different features and expressive power. By limiting
the kinds of operations that can be performed, some dialects
may allow the generation of a more compact QRbytecode.
At the same time, doing so constrains the characteristics and
constructs of the high-level programming language.

The simplest dialect, which is the one we describe in this
work, only supports decision trees. In this case, the source
language could be limited to input operations, output opera-
tions, and “if” statements. Consequently, only the sequence
and selection (choice) constructs of structured programming
languages can be implemented, but not the repetition (loop).
In addition, the ability to define and use variables could
be omitted in some specific dialects. This implies that for
these dialects the source programming language is necessarily
streamlined, and only a small subset of algorithms can be
actually implemented (which, however, includes many of those
we are actually interested in).

As said before, the exact definition of the high-level pro-
gramming language is outside the scope of QRscript, therefore
all the pieces of code written in this language that appear
in this work must be considered only as examples of a
possible source language. When performing the translation
from the source programming language to the QRbytecode, an
intermediate representation can be possibly employed, like the
three-address code. Typically, doing so eases both the design
and the implementation of the translator. For this reason, in
this work it was decided to follow this direction.

Once the QRbytecode has been generated and possibly
optimized, it can be encoded in a QR code and, eventually,
printed on a sheet or sticker that can be attached to the related
industrial machinery, in a convenient place to be seen and
used by workers. In addition to the QR code itself, the sticker
can also contain some printed information written in natural
language, which explains how to use the QR code and how to
interpret the output of the program.

B. QRbytecode execution

The execution process starts when the QR code is read by
a client device (a smartphone, a tablet, or more in general an
application) that, as the first step, performs the conversion from
the QR code back to the QRbytecode. Then, the interpreter
transforms this language into a suitable internal representation
(which is typically the tree-address code) and executes it by
means of a dedicated virtual machine.

From a practical point of view, all the applications installed
in the client need the ability to interpret and execute the
code stored in the QRbytecode. Typically, it is an Android or
Apple iOS app, which can be possibly customized for specific
application contexts and modified by the system manager
(or users, in general) so as to meet some requirements. In
particular, the way input and output operations are performed
is highly dependent on the characteristics of the industrial
process and environment. For instance, in dusty/dirty industrial
environments, input can be made easier if the application uses
large fonts for the condition (i.e., when asking questions) and
large on-screen buttons for every possible response. Likewise,
in contexts where hands-free operation is demanded, the use of

0 0 0 Decision tree dialect (DTD) for factory management…

0 0 1 … Other dialect

…

1 1 1 0 0 0 …

…

1 1 1 1 1 1 0 0 0 …

Other dialect with second level extend format

Other dialect with third level extend format

b0 b1 b2

b0 b1 b2 b3 b4 b5 b6 b7 b8

Fig. 3. Definition of the initial part of the QRbytecode specifying the dialect.

text to speech (TTS) and automatic speech recognition (ASR)
modules could facilitate the interaction with the worker.

It is worth stressing that QR codes embedding QRscript
programs are mostly valuable when the device used to carry
out configuration and guided diagnostics is not provided with
a reliable/stable Internet connection, otherwise a simple web
browser coupled with a QR code containing the URL of a
suitable web resource is perhaps the best choice. This may
also happen in those installations where wireless access is not
authorized for devices of the maintenance staff.

C. QRscript dialects

Different dialects can be defined for the QRscript program-
ming language, in order to reach a compromise between the
dimension of the generated QRbytecode and the expressive-
ness of the programming language. In the current proposal, the
first 3 bits of the QRbytecode are used to identify the dialect
that is being used in the following part of the code. As shown
in the schema of Figure 3, the dialect characterized by code
000 corresponds to the decision tree dialect (DTD), which is
the one analyzed and described in this work.

As a matter of fact, the operations that are requested for
configuring and maintaining industrial equipment can be often
described using a simplified version of a decision tree model,
with only decision and end nodes, but without any chance
nodes (chance nodes are a kind of nodes that represent a
probabilistic decision). In the context of this work, we want
that all the decisions are taken by the user who is interacting
with the algorithm. An example of this kind of decision tree
is reported in Figure 4, in which every decision node can have
more than two responses (we decided not to limit it to binary
decisions).

For every outcome, which is represented by an end node, a
specific decision rule is associated. In the case of the decision
tree of Figure 4, six decision rules can be generated. For the
first outcome the decision rule is if (condition 1 ==
response 1-a) AND (condition 2 == response
2-a) then out 1. A decision tree can be directly (and
easily) transformed into a flow chart, which is a more efficient
representation because it does not require the use of variables
to store the results of conditions, and is also more deterministic
and faster from the point of view of the execution time.

The other combinations of the first 3 bits of the QRbytecode
can be used to define other dialects. As previously mentioned,

condition 1

condition 2

condition 3

response 1-b

response 3-b

out 1

out 2

out 3

out 4

out 5

out 6

Decision node End node

Fig. 4. Example of a decision tree without chance nodes.

they are just languages with different capabilities in terms
of the available instruction set and the dimension of the
QRbytecode. As far as we know, this is the first time that
a programming language is compiled and fit into a QR code.
Nevertheless, in the case some pre-existing languages were
defined, they could be easily included in this representation
by assigning them a specific dialect code. The format for
representing dialects is defined in such a way that it can be
easily extended to a number of dialects that exceeds what can
be encoded on three bits. In particular, if the first three bits are
equal to 111, the next 3 bits are used to identify additional
dialects. Likewise, if the first six bits are all equal to 1, the
next 3 bits can be used to identify new dialects, and so on.

IV. DECISION TREE DIALECT

The DTD is a dialect of the QRscript programming language
that permits to encode well-known decision trees without
chance nodes. Consequently, it can be exploited to define algo-
rithms to help workers to solve certain problems, which are for
instance related to network (or machinery) configuration and
maintenance. In DTD, an improved version of decision tree
is defined that supports the concatenation of several decision
trees. In particular, every condition has a default response, we
named other, that, if selected, permits the user to move to the
following decision tree.

In this subsection, DTD is described and defined starting
from a compact and illustrative example. Some of the main
parts involved in the generation of the QRbytecode, starting
from a sample high-level programming language, were imple-
mented using the jflex scanner and the cup parser, which
produce a translator implemented in the java language.
However, they can be implemented with any other bottom-up
parser, like the pair flex/bison that produces a translator in
the C programming language, or ply that produces a translator
in the Python programming language.

To make understanding easier, we explained this dialect
with an example in a top-down fashion, i.e., starting from
a high-level graphical representation to arrive to the binary
QRbytecode that is encoded in the QR code.

Wi-Fi

Change Ethernet

cable

Change Ethernet

cable category

<= 100

No

…

…
Which kind of technology has communication problems?

Is link status active?

What is the speed in Mbps?

input 1

input "Which kind of technology has communication

problems?"

if "Ethernet":

input 2 # input "Is link status active?"

if "No":

print "Change Ethernet cable"

exit

inputs 3 #inputs "What is the speed in Mbps?"

if <= 100:

print "Change Ethernet cable category"

exit

exit

else if "Wi-Fi":

...

else if "WSN":

...

No solution

Graphical representation of a decision tree

Corresponding high-level language representation

Fig. 5. Example of decision tree and corresponding high-level language that
can be encoded in a QR code using QRscript (“#” denotes comments).

A. High-level representation

Figure 5 shows the graphical representation of a decision
tree that can be implemented using QRscript, and the corre-
sponding representation through a Python-like pseudo-code.
In this simplified example, the decision tree is used to guide
the worker in solving a connectivity problem. After asking the
user to identify the kind of technology that is having a problem
(i.e., Ethernet, Wi-Fi, or WSN), in the case the response is
“Ethernet” the algorithm described by the decision tree tries
to identify the problem by asking if the link status is active.
Typically, if the Ethernet cable is disconnected or broken the
link status led is inactive. If the user selects a response other
than “No”, the algorithm switches to the next concatenated
decision tree, identified with the number 3⃝ as root, which
corresponds to the question “What is the speed in Mbps?”. If
the value entered by the user does not match the condition
“<= 100” the algorithm ends without a solution, otherwise it
recommends to “Change Ethernet cable category” (we assume
that cabling must support Gigabit Ethernet, whose expected
speed is 1000Mb/s).

The representation of the algorithm with a high-level pro-
gramming language is reported in the lower part of the same

1) Which kind of technology has communication

problems?

Ethernet Wi-Fi WSN Other

2) Is link status active?

No Other

3) What is the speed in Mbps?

Response: 10

Proposed solution:

Change Ethernet cable category

Fig. 6. Example of interaction between the user and the QR code mediated
by a suitable application provided with a graphical interface (the interface can
be automatically built when executing the QRbytecode of the DTD).

figure. The input/inputs instruction prints a message on
the screen and requests a string as input, which can be entered
by the user either directly through a textual interface, when
the inputs instruction is used, or indirectly, for instance
by means of a decision button, in the case of the input
instruction. In this dialect only the string type can be used
for input values, and the virtual machine aimed at executing
the code tracks only the last entered value (i.e., every time
a new input instruction is executed the previously entered
string is definitely lost).

When the argument of the instruction is an unsigned integer,
as for input 1 and inputs 1, a reference is printed
instead of a string. See, for instance, the symbol 1⃝. The idea
behind this option is that the string associated to reference
1⃝ can be physically printed on a sheet or a sticker (likely

the same on which the QR code is found), instead of being
encoded in QRbytecode. In this way, a fair amount of space
is saved in the QR code, since the characters that make up the
string are left out of it.

Comparison with integer (e.g., <= 100) and floating point
(e.g., > 3.5) values is also possible. In these cases, the
virtual machine performs an automatic conversion of the string
entered by the user into an internal integer or floating point
value, respectively.

A possible interaction between a user and the application
(i.e., the virtual machine that executes the QR code), based
on the above discussed program, is depicted in Figure 6.
As shown on the right side of Figure 2, the application and
its virtual machine are the final step in the chain related to
code execution, which is directly based on the QRbytecode
automatically generated by the translator and read from the
QR code. We decided to start our discussion about the whole
chain from the end, and to begin with the interaction with the
user, to permit a complete and thorough understanding of the
example. As can be seen, the questions asked by the algorithm
depend on the previous responses provided by the user. To
each question, a default response named “Other” (and reported
in grey in the figure) is added. If selected, this response

(1) input "Which kind of technology has
communication problems?"

(2) if "Ethernet" (6)
(3) if "Wi-Fi" (15)
(4) if "WSN" (20)
(5) goto (25)
(6) input "Is link status active?"
(7) if "No" (9)
(8) goto (10)
(9) printex "Change Ethernet cable"
(10) inputs "What is the speed in Mbps?"
(11) ifc <= 100 (13)
(12) goto (14)
(13) printex "Change Ethernet cable category"
(14) printex ""
(15) # Code related to Wi-Fi

...
(20) # Code related to WSN

...
(25) printex ""

Fig. 7. Example of three-address code derived from the high-level language
representation reported in Figure 5.

causes the program flow to jump to the next concatenated
question (or decision tree). In the case of input sets made up
of enumerated values (e.g., related to an input instruction),
they could be represented by a number of buttons. Instead,
a typical rendering for an inputs instruction is through a
textual box.

B. Translation of DTD to three-address code

Starting from a high-level description of the decision tree
(graphical or textual), an intermediate representation based
on the three-address code can be automatically obtained by
means of a translator. It is worth remarking again that the
high-level language proposed in this work is just an example.
The specifications related to QRscript in general, and DTD
in particular, are related to QRbytecode generation, and from
a certain perspective to three-address code generation as
well, because there is a direct mapping between these two
formalisms.

Three-address code typically consists of a
numbered/ordered list of quadruples, where the fields of
each quadruple represent the instruction (or operation), its
first and second arguments, and the result, respectively. For
some instructions the second argument is not used.

In DTD three-address code, seven instructions are defined:
• input <constant> (or inputs <constant>):

requires an indirect (or direct) input of a string, re-
spectively. The term <constant> can be either a
<string> or a <reference> (i.e., an unsigned in-
teger value).

• print <constant>: prints the string or the reference
identified by <constant>.

• printex <constant>: same as print, but after the
instruction the execution is terminated.

• goto (x): jumps to instruction number x, which is
identified by the label (x).

• if <string> (x): if the last entered string value is
equal to string, it jumps to instruction number x.

• ifc <rel_op> <operand> (x): if the compari-
son between the last entered string value and the
<operand> using the rel_op relational operator is
true, it jumps to instruction number x. If <operand> is
an integer or a floating point value, the last entered string
is automatically converted to an integer or a float number,
respectively. An error is returned if the conversion is not
possible. Possible rel_op are ==, !=, <=, >=, <, and
>. This is the only instruction that makes use of both the
arguments of the three-address code representation based
on quadruples.

The most important and complex part to pay attention in
three-address code generation is related to semantic actions
aimed to the generation of unconditional (goto instruction)
and conditional (if and ifc instructions) jumps. In any case,
this aspect is completely addressed by compilers’ theory, and
for bottom-up parsers it can be easily solved through the use
of specific inherited attributes.

Figure 7 reports the three-address code obtained from the
decision tree described by the high-level language in Figure 5.
The fields of each quadruple are separated by means of white
spaces. Analyzing one of the possible execution flows, if the
answer to the first choice about the network technology is
“Ethernet” a jump is performed to instruction (6), in which
the second input is requested. If the user, at this point, replies
“No”, there is a jump to instruction (9). Then, the proposed
solution is consequently displayed (“Change Ethernet cable”),
after which the program terminates. In the case the reply to
the second question in line (6) is “Other” (whose meaning is
that link status is active), a jump is made to instruction (10),
and another input is requested, which in this case is direct.
If the user enters a value greater than 100, the goto (14)
instruction is executed. In this case the program jumps to line
(14) and, with the instruction printex "", it terminates
its execution without printing any message.

C. QRbytecode generation for DTD

Starting from the three-address code representation, the
QRbytecode of the DTD can be directly generated. In this
step, the main goal we pursued was to reduce the dimension
of the generated code as much as possible. Consequently,
when defining the translation rules, we paid great attention
to generating a compact code. This section is aimed at the
definition of the syntax (and semantics) of the QRbytecode,
and it shows how the DTD dialect can be transformed bitwise
into bytecode and how, starting from bytecode, the relevant
three-address code can be retrieved. The description on how to
implement the virtual machine that executes the QRbytecode
has not been reported because it does not add any relevant
details.

The first three bits of the QRbytecode are 000, to identify
the DTD dialect and to instruct the virtual machine to use
DTD rules. Each instruction in three-address code has a direct
mapping in QRbytecode. In particular, the first three bits (i.e.,
the instruction code) identify the instruction: 000 for input,
001 for inputs, 010 for print, 011 for printex, 100

1) input / inputs / print / printex

0 0 0 0

1

<string>

<reference>0 0 1

0 1 0

0 1 1

input

code type

<string /

reference>

inputs

print

printex

2) goto

b0 b1 b2 b3

b0 b1 b2

b3

1 0 0
b0 b1 b2

relative jump

b3 b4 b5 b6

code

1 1 1

b3 b4 b5

1

b6 b7 b8 b9 b10

relative jump

extension

3) if

1 0 1
b0 b1 b2

code
type

<string /

reference>
b3

relative jump

bx+1
bx+2

bx+3
bx+4

bx

4) ifc

1 1 0
b0 b1 b2

code type

<Integer /

float>
b6

relative jump

bx+1
bx+2

bx+3
bx+4

bx

b3 b4 b5

rel_op

0 0 0
b3 b4 b5

== 0 0 1
b3 b4 b5

!= 0 1 0
b3 b4 b5

<=

0 1 1
b3 b4 b5

>= 1 0 0
b3 b4 b5

< 1 0 1
b3 b4 b5

>

<string>

0

stype

b1

dimension

b2 b3 b4 b5

1 1 1

b2 b3 b4

1

b5 b6 b7 b9 b9

dimension

extension
<7-bits ASCII>

<7-bits ASCII>

<reference>

unisigned

integer

b1 b2 b3 b4

1 1 1

b1 b2 b3

1

b4 b5 b6 b7 b8

unsigned

integer

extension

Fig. 8. Conversion rules from three-address code to QRbytecode.

for goto, 101 for if, and 110 for ifc. The code 111 was
left unused to permit possible extension of the instruction set.
A schematic view of how the instructions have been encoded
is reported in Figure 8.

Starting from the input/output instructions (i.e., input,
inputs, print, and printex), the type bit after the
code identifies whether the provided output is either a string
(<string>) or a reference (<reference>).

Since storing strings requires a fair amount of space, we
paid attention to their definition. Each string in its binary
representation starts with a stype bit which, if set to 0, defines
a compact string, and it is followed by a dimension, encoded
as an unsigned integer on 4 bits, which represents the number
of characters that are subsequently encoded. Similarly to the
encoding of dialects, when the previous 4 bits are equal to
1111, the dimension is extended recursively by another 4 bits.
Characters are encoded using a 7-bit character set, typically
ASCII, but if both the generation and the execution steps agree
on the standard to be used, other solutions like ISO/IEC 646
and 8-bit character sets are other viable options. Clearly, the
latter increases the dimension of the generate binary code. The
value stype=1 was currently left unused (reserved), and can
be exploited to extend string coding to other character sets.
References are coded as unsigned integers on 4 bits, and can
be recursively extended to represent numbers of any size.

The goto instruction executes unconditional jumps, and
is identified by the starting sequence of bits 100. The code
is followed by a relative jump, which specifies a recursively
extensible jump width, encoded as an unsigned integer on 4
bits, that represents the number of instructions to be skipped
starting from the next instruction (i.e., 0000 means jump to
the next instruction). It is worth pointing out that only forward
jumps are possible, because DTD does not foresee loops.
Conversely, in the case of a dialect with backward jumps, the
relative jump has to be encoded as a signed integer.

Two conditional jump instructions are defined, namely if
and ifc. The first is identified by the code 101, followed by
a type that specifies whether the value inserted by the user

has to be compared with either a string or a reference, and
a relative jump is executed when the comparison matches.
The ifc instruction differs from if because, after the code
110, it defines a relation operator (rel op) using a 3 bits
representation. For this instruction, type=0 identifies a signed
integer number, while type=1 identifies real number encoded
as a half-precision floating point on 16 bits. Integer numbers
are stored using the two’s complement representation with 16
and 32 bits. The first bit is used to select between 16 and 32
bits representations.

At the end of the translation process, the QRbytecode is
padded with up to 7 bits taken from the sequence 1000000,
in such a way that the final dimension of the generated
QRbytecode is a multiple of 8 bits, as possibly requested
by the binary coding mode. If the number of bits added by
padding is not enough to encode a complete instruction, the
virtual machine will simply discard it at runtime. Otherwise,
the instruction the virtual machine will interpret in the padding
corresponds to a goto conditional jump to the next instruction
(that does not exists). In both cases no problems are caused
to the virtual machine.

Using the translation rules described above, the three-
address code presented in Figure 7 can be directly translated to
QRbytecode, and vice-versa. In terms of storage occupation,
the space needed to store instructions from (1) to (14) of
Figure 7 is 654 bits (82 bytes with padding). Instead, the
translation between QRbytecode and QR code is trivial, be-
cause a number of libraries exist free of charge to perform this
operation2.

V. CONCLUSIONS

The ability to embed an executable program inside a QR
code is of particular interest, because it enables a number
of applications. Decision support and configuration, as well
as maintenance and diagnostics of industrial equipment and

2An example is the PyQRCode module for the Python programming
language.

networks, are just few examples of the possible scenarios that
can take advantage by this technology. Systems located far
away from the main industrial plant, where Internet access is
not available (or unreliable) for whatever reason, including
military applications, can all benefit from our technology.
Unlike techniques that make the device used for configuration
(a mobile phone) interact directly with intelligent equipment
by means of, e.g., NFC or visible light communication, our
solution does not require any modification to the existing
equipment and is extremely inexpensive.

The proposed QRscript programming language has been
conceived bearing extensibility in mind, and permits to define
a number of sub-languages termed dialects. In this work, all
the steps needed to generate a QR code containing a program
in binary form starting from its description given in a high-
level programming language, and the corresponding chain with
which the program is read from the QR code and executed on
a virtual machine, have been thoroughly detailed. The DTD
dialect, which is aimed at coding a decision tree inside a
QR code, was carefully defined, along with an intermediate
representation of the program based on three-address code.
The description of the dialect and the translation process were
explained by using a very simple, yet realistic example.

We believe that the ability to embed a program in a QR
code that can be read and executed on handheld/portable
devices is a really appealing option. Consequently, our future
works on this subject will focus on identifying new areas
where this technology can be profitably employed, and on
providing concrete examples to show how this can be done.
Moreover, we plan to define additional dialects in order to
enhance the features and capabilities of QRscript, and to
add security features based on asymmetric cryptography to
distinguish among user roles (those enabled to forge QR codes,
to just execute them, or to do nothing).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1389128610001568

[2] H. Cañas, J. Mula, M. Dı́az-Madroñero, and F. Campuzano-Boları́n,
“Implementing Industry 4.0 principles,” Computers and Industrial En-
gineering, vol. 158, p. 107379, 2021.

[3] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “In-
dustrial Internet of Things: Challenges, Opportunities, and Directions,”
IEEE Trans. Ind. Informat., vol. 14, no. 11, pp. 4724–4734, 2018.

[4] S. Scanzio, L. Wisniewski, and P. Gaj, “Heterogeneous and dependable
networks in industry – A survey,” Computers in Industry, vol. 125, p.
103388, 2021.

[5] S. K. Panda, L. Wisniewski, M. Ehrlich, M. Majumder, and
J. Jasperneite, “Plug & Play Retrofitting Approach for Data Integration
to the Cloud,” in 16th IEEE International Conference on Factory
Communication Systems (WFCS 2020), 2020, pp. 1–8.

[6] B. Caruso, L. Leonardi, L. L. Bello, and G. Patti, “Design of a
framework for enabling TSN support in heterogeneous platforms with
virtualization and preliminary experimental results,” in 26th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation
(ETFA 2021), 2021, pp. 01–04.

[7] G. Cena, S. Scanzio, and A. Valenzano, “Experimental Evaluation
of Techniques to Lower Spectrum Consumption in Wi-Red,” IEEE
Transactions on Wireless Communications, vol. 18, no. 2, pp. 824–837,
2019.

[8] S. Scanzio, M. G. Vakili, G. Cena, C. G. Demartini, B. Montrucchio,
A. Valenzano, and C. Zunino, “Wireless Sensor Networks and TSCH:
A Compromise Between Reliability, Power Consumption, and Latency,”
IEEE Access, vol. 8, pp. 167 042–167 058, 2020.

[9] G. Cena, S. Scanzio, and A. Valenzano, “Improving Effectiveness
of Seamless Redundancy in Real Industrial Wi-Fi Networks,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 5, pp. 2095–2107,
2018.

[10] T. R. Doebbert, C. Cammin, and G. Scholl, “Safety Architecture
Proposal for Low-Latency Sensor/Actuator Networks using IO-Link
Wireless,” IEEE Access, vol. 10, pp. 3030–3044, 2022.

[11] M. Cheminod, L. Durante, L. Seno, F. Valenza, and A. Valenzano, “A
comprehensive approach to the automatic refinement and verification of
access control policies,” Computers and Security, vol. 80, pp. 186–199,
2019.

[12] M. Ehrlich, L. Wisniewski, H. Trsek, D. Mahrenholz, and J. Jasperneite,
“Automatic mapping of cyber security requirements to support net-
work slicing in software-defined networks,” in 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA
2017), 2017, pp. 1–4.

[13] S. Scanzio, G. Cena, A. Valenzano, and C. Zunino, “Energy Saving in
TSCH Networks by Means of Proactive Reduction of Idle Listening,”
in Ad-Hoc, Mobile, and Wireless Networks, L. A. Grieco, G. Boggia,
G. Piro, Y. Jararweh, and C. Campolo, Eds. Cham: Springer Interna-
tional Publishing, 2020, pp. 131–144.

[14] G. Cena, S. Scanzio, and A. Valenzano, “Ultra-Low Power Wireless
Sensor Networks Based on Time Slotted Channel Hopping with
Probabilistic Blacklisting,” Electronics, vol. 11, no. 3, 2022. [Online].
Available: https://www.mdpi.com/2079-9292/11/3/304

[15] A. Muller, A. Crespo Marquez, and B. Iung, “On the concept of e-
maintenance: Review and current research,” Reliability Engineering and
System Safety, vol. 93, no. 8, pp. 1165–1187, 2008.

[16] E. Permin, F. Lindner, K. Kostyszyn, D. Grunert, K. Lossie, R. Schmitt,
and M. Plutz, Smart Devices in Production System Maintenance. Cham:
Springer International Publishing, 2019, pp. 25–51.

[17] C. Toro, C. Sanı́n, J. Vaquero, J. Posada, and E. Szczerbicki, “Knowledge
Based Industrial Maintenance Using Portable Devices and Augmented
Reality,” in Knowledge-Based Intelligent Information and Engineering
Systems, B. Apolloni, R. J. Howlett, and L. Jain, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 295–302.

[18] S. Tiwari, “An Introduction to QR Code Technology,” in International
Conference on Information Technology (ICIT 2016), 2016, pp. 39–44.

[19] ISO/IEC, “Information technology - Automatic identification and data
capture techniques - QR Code bar code symbology specification,” in
ISO/IEC 18004:2015, 2015, pp. 1–117.

[20] K. Saranya, R. Reminaa, and S. Subhitsha, “Modern applications of QR-
Code for security,” in IEEE International Conference on Engineering
and Technology (ICETECH 2016), 2016, pp. 173–177.

[21] S. L. Fong, D. Wui Yung Chin, R. A. Abbas, A. Jamal, and F. Y. H.
Ahmed, “Smart City Bus Application With QR Code: A Review,” in
IEEE International Conference on Automatic Control and Intelligent
Systems (I2CACIS 2019), 2019, pp. 34–39.

[22] T.-W. Kan, C.-H. Teng, and W.-S. Chou, “Applying QR Code
in Augmented Reality Applications,” in Proceedings of the 8th
International Conference on Virtual Reality Continuum and Its
Applications in Industry, ser. VRCAI ’09. New York, NY, USA:
Association for Computing Machinery, 2009, pp. 253–257. [Online].
Available: https://doi.org/10.1145/1670252.1670305

[23] C. Teuta, S. P. Payal, A. Ramesh, and T. Sakaguchi, “QR Code: A
New Opportunity for Effective Mobile Marketing,” Journal of Mobile
Technologies, Knowledge and Society, vol. 2013, p. ID748267, 2013.

[24] A. Abas, Y. Yusof, R. Din, F. Azali, and B. Osman, “Increasing
data storage of coloured QR code using compress, multiplexing
and multilayered technique,” Bulletin of Electrical Engineering and
Informatics, vol. 9, no. 6, pp. 2555–2561, 2020. [Online]. Available:
https://beei.org/index.php/EEI/article/view/2481

[25] M. Arora, C. kumar, and A. K. Verma, “Increase Capacity of QR Code
Using Compression Technique,” in 3rd International Conference and
Workshops on Recent Advances and Innovations in Engineering (ICRAIE
2018), 2018, pp. 1–5.

[26] S. Vongpradhip, “Use multiplexing to increase information in QR code,”
in 8th International Conference on Computer Science Education, 2013,
pp. 361–364.

https://www.sciencedirect.com/science/article/pii/S1389128610001568
https://www.sciencedirect.com/science/article/pii/S1389128610001568
https://www.mdpi.com/2079-9292/11/3/304
https://doi.org/10.1145/1670252.1670305
https://beei.org/index.php/EEI/article/view/2481

	Introduction
	QR code technology
	QRscript programming language
	QRbytecode generation
	QRbytecode execution
	QRscript dialects

	Decision tree dialect
	High-level representation
	Translation of DTD to three-address code
	QRbytecode generation for DTD

	Conclusions
	References

