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Abstract

Prediction and identification of faults in track circuit are crucial for improving the safety and efficiency of railway

transportation. However, the task of track circuit fault prediction through deep learning methods facing significant

challenges due to the absence of reliable data. In this paper, a novel heterogeneous transfer learning method is

proposed, aiming to reduce track circuit data reliance in model training by using publicly available datasets in other

similar fields. An index describing the data distribution based on autoencoder feature extraction and maximum mean

discrepancy is used to demonstrate the transferability between heterogeneous data firstly. Then a heterogeneous

transfer learning method is constructed to accelerate track circuit fault prediction model training. Furthermore, the

resulting deep learning model is compared to existing fault prediction methods. Finally, by adjusting the degree of

involvement of transfer learning throughout model training, this paper comprehensively examines its effect on model

training process. The simulation experimental results show that the proposed method can transfer useful knowledge

in other similar fields for tasks in track circuit fault prediction, and the resulting model can correctly classify over 99%

on the test dataset while reducing the amount of required track circuit data to 10% of the traditional training methods.

The relevant methods proposed in this paper can significantly enhance the practical application value of fault prediction

models based on deep learning methods in the field of intelligent maintenance of track circuit.

Keywords

Track circuit, fault prediction, fault diagnosis, heterogeneous transfer learning, domain adaptation

Introduction

Track circuit equipment is essential for ensuring transporta-
tion safety in the railway system. It plays a crucial role in
the smooth running of trains and helps prevent accidents.1

Therefore, it is crucial to maintain and update track circuit
equipment regularly to meet safety standards. However, track
circuit equipment operates in demanding conditions, includ-
ing shocks and vibrations. Electrical and physical damage
arising from such poses a significant threat to reliable and
secure railway operations.2

In order to ensure the safety and optimal functionality
of the railway network, preventing track circuit faults is
of utmost importance. Currently, track circuit maintenances
are predominantly carried out through human experience,
which is less efficient. To enhance the efficiency of track
circuit maintenances, researchers have increasingly turned
to machine learning methods for intelligent fault diagnosis
in recent years.3−5 The utilization of machine learning
algorithms has significantly improved track circuit fault

diagnosis efficiency, making it a viable alternative approach
to achieving intelligent track circuit maintenances.

The approach of track circuit fault prediction is using Deep
Neural Network (DNN) which delivered a new development
prospect of Intelligent Maintenance (IM) research for track
circuit. Theoretically, a Deep Learning (DL) model can
finely fit any complex high-dimensional nonlinear function,
allowing for flexible solutions to fault prediction tasks.
Kang et al. put forward a DL model for predicting the
number of compensation capacitors needed for track circuit
maintenance using Long Short-Term Memory network
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(LSTM).6 Shi et al. make research on switch equipment fault
prediction method based on Gated Recurrent Unit (GRU).7

Dai et al. make the fault prediction study based on data
provided by a major rail transit agency in the United States
that can identified around one-third of signal failures one
month in advance by concentrating on 10% of locations on
the network.8

Although DL models can achieve fault prediction of
track circuit, it usually necessitates a substantial quantity
of labelled data for training, which frequently requires a
lengthy period and extensive resources for the collection
and labelling of data. Especially for researches on track
circuit fault prediction, researchers can hardly collect enough
real data for DL model training. Most researchers have
attempted to reduce the cost of data collection by using
data augmentation algorithms or software simulation.9,10

However, data obtained through these techniques fails
to satisfy the crucial basic assumptions of classical
machine learning as they do not achieve independent and
identical distribution with the actual data.11 Consequently,
the generalization capability of DL models is reduced
in practice, even leading to total malfunctioning in
some instances.12,13 And a few other researchers acquire
data through performing laboratory experiments, yet this
approach proves to be exceedingly expensive.14

In order to address the issue of insufficient training data
for DL models aimed at track circuit fault prediction, the
primary solution is to implement transfer learning. Transfer
learning can decrease the requirement of track circuit data
for track circuit fault prediction DL model training by
acquiring empirical knowledge from related tasks. Many
applications of homogeneous transfer learning can be found
in the literature especially in the field of bearing IM. Tang et
al. put forward a novel lightweight transfer learning network
is proposed that can adaptively select the input length and
accurately identify the bearing health states under different
work conditions.15 An other example given in is that Su
et al. proposed a convolution deep belief network-dynamic
multilayer perceptron for bearing fault recognition under
alterable running states.16

Not like IM researches on bearing or other fields, in the
field of railway track circuit fault prediction researches lies
in the lack of public datasets available to researchers which
makes a great challenge for DL researches in track circuit
fault prediction. And this problem can be solved through
introducing heterogeneous transfer learning that using public
datasets in other relevant research fields to help track circuit
fault prediction DL model training.

There are three major contributions of this paper:

1) A track circuit fault prediction DL model based on
Bidirectional LSTM (Bi-LSTM) and multi-head attention
mechanism is proposed which introduce multi-head attention
mechanism into track circuit fault prediction innovatively.
The proposed model can extract track circuit fault omen
features and output the prediction result in real time. And it
is able to overcome the difficulty of extract high-dimensional
time series data features which is able to achieve track circuit
fault prediction with high accuracy and efficiency.

2) A comprehensive index for heterogeneous transfer
learning assessment is proposed. This index can quantitative
analysis the DL model transferability between different
domains from the aspect of data distribution that can
facilitate the evaluation of transfer learning’s feasibility
before its implementation.

3) A novel heterogeneous transfer learning method
is proposed to utilize publicly available aircraft engine
degradation dataset to reduce the track circuit fault prediction
DL model training data requirements so that enhance the
application value of DL methodology in practical track
circuit maintenance work and thereby raise the efficiency of
track circuit maintenance.

The overall framework of the heterogeneous transfer
learning-based track circuit fault prediction method proposed
in this paper is shown in Figure 1.

Figure 1. Overall framework of proposed track circuit fault
prediction method.
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IM methods based on DNN

General structure of DL-based IM methods

The architecture of IM methods based on DL can be
summarized as Figure 2 which is a typical kind of encoder-
decoder structure. The x refers to input data, such as data
from track circuit or aircraft engine monitoring sensors.
The function of input layer is normalize input data x to
enhance the training speed and convergence progress of the
DL model.

Figure 2. General IM methods structure based on DL.

The encoder’s role is to extract high-dimensional features
from the input data. And encoder can be multi-layers
so that it can extract more complex high-dimensional
features. The most commonly used component units for
encoder including fully connected layer, convolutional layer,
recurrent neural layer, and etc. The output of encoder i.e.,
the high-dimensional features of input data, can be seen as
the key information describing the degradation process of an
equipment.

The decoder’s role is to map the high-dimensional data
features produced by the encoder onto an expected output as
ŷ in this figure. Then the loss function can calculate model
loss by ŷ and real label y, and then the model parameters can
be updated by backpropagation algorithm.

DL-based prognostics methods

Prognostics is an important research area in the field
of IM, and its main research includes fault prediction
and Remaining Useful Life (RUL) prediction. In the
researches of prognostics, researchers commonly employ
DL methods like Recurrent Neural Network (RNN) and
attention mechanism.17,18 These DL methods can effectively
mine the time serial features of data information to achieve

prognostics. The following describes DL methods and
general DL model structure used in prognostics study.

For the tasks of prognostics, LSTM is a logical option as
its recurrent connections enable the storage of past events.
LSTM networks have the capability to learn long-term time
dependences by incorporate specialized memory cells into
the network architecture.19 The structure of LSTM unit is
shown in Figure 3.

Figure 3. LSTM unit structure.

At the current time step t, the input to each LSTM cell
consists of the input data at that time step xt, and the
outputs of all LSTM cells at the previous time step ht−1.
The equations that describe the relationships between input
and output of LSTM unit are:

ft = σ(Wxf ⊗ xt + Whf ⊗ ht−1 + bf ) (1)

it = σ(Wxi ⊗ xt + Whi ⊗ ht−1 + bi) (2)

ĉt = tanh(Wxc ⊗ xt + Whc ⊗ ht−1 + bc) (3)

ot = σ(Wxo ⊗ xt + Who ⊗ ht−1 + bo) (4)

ct = ft ⊗ ct−1 + it ⊗ ĉt (5)

ht = ot ⊗ tanh(ct) (6)

while ⊗ in these equations means Hadamard product with
two vectors.

In order to excavate the contextual semantic information
in the current time step, this paper introduces bidirectional
structure in the LSTM to obtain the contextual feature.20

Figure 4 shows the structure of the Bi-LSTM unfolding in
three time steps.

The Bi-LSTM network contains forward and backward
network. The hf

t and hb
t are the output of forward and

backward network at current time step. And the output of
Bi-LSTM at time step t can be written as ht = [hf

t ; hb
t].

And to further enhance the performance of the model
while mitigating the overfitting problem, this paper adds
multi-head attention mechanism21,22 behind the Bi-LSTM
structure. The essence of the multi-head method is to perform
multiple independent attention mechanism calculations, and
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Figure 4. Structure of bidirectional LSTM.

splicing the calculation results into an integrated result. The
structure of multi-head attention mechanism is shown in
Figure 5. And the equations that describe the input and output
of relationships between multi-head attention mechanism
are:

mi = tanh(Wm
i ⊗ xi) (7)

si = Softmax(mi) (8)

zj =

n∑
i=1

xi ⊗ si (9)

Figure 5. Structure of multi-head attention mechanism.

The output form after Contat is [z1; z2; ...; zk], and the
Linear layer is a single-layer fully-connected neural network
without nonlinear activation. The ct is the final output.

So, the structure overview of general prognostics DL
model can be summarized as Figure 6. There are multi layers
of Bi-LSTM containing several LSTM cells each, followed
by one multi-head attention layer with several heads. Then
followed by Flatten & Dropout structure.

Figure 6. Structure of general prognostics DL model.

Transfer learning method for track circuit
fault prediction

Heterogeneous transfer learning

Heterogeneous transfer learning involves utilising knowl-
edge from the source domain to enhance model perfor-
mance in the target domain. And the heterogeneous approach
assumes distinct feature spaces, data distributions and
labelling spaces between the source and target domains. This
assumption is more practical in real-world applications.23

For example, this paper attempts to using aircraft engine
RUL prediction data to help achieve track circuit fault pre-
diction since there is a shortage of research data in the field of
track circuit fault prediction, whereas there are large publicly
datasets in the field of aircraft engine RUL prediction.

The issue with heterogeneous transfer learning lies
in how to address dissimilarities between the source
and target domains. The commonly used heterogeneous
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transfer learning approaches include domain adaptation,
multiple instance learning, heterogeneous feature selection,
heterogeneous feature mapping, and heterogeneous label
transformation.24 Since there are differences in both the data
and label between aircraft RUL prediction and track circuit
fault prediction, a combination of heterogeneous feature
mapping and heterogeneous label transformation methods is
necessary for effective heterogeneous transfer learning.

Transfer learning assessment index

It is clear that there is no direct link between aircraft
engine RUL prediction and track circuit fault prediction. In
general, however, both tasks are concerned with the process
of degradation of a particular piece of equipment. In order
to show the DL model transferability between two tasks, an
evaluation index is proposed to assess the difference in the
distribution of the data between the two tasks.

Autoencoder is an unsupervised artificial neural network
that utilises encoder-decoder structure. The encoder com-
presses high-dimensional data into lower-dimensional data
(the code), while the decoder then attempts to reconstruct
the original high-dimensional data.25 The ultimate goal of
this process is to obtain a representation of the data in lower
dimensions. So the transfer learning assessment index can
be constructed through autoencoder uniform dimensional
extraction of data features. The structure of the autoencoder
based feature extractor is shown in Figure 7.

Figure 7. Structure of autoencoder based feature extractor.

After feature extracted by using autoencoder, the transfer
learning evaluation index is constructed using the MMD loss.
To calculate the MMD loss d̂mmd, refer to equation (10)
where oc· and oa· represent feature extraction outcomes of the
data from the two tasks, respectively. The nc and na represent
the number of sample data for two tasks, respectively. And
k(a, b) = Φ(a) · Φ(b), which Φ(·) means the feature map

to map the data a and b to the reproduction kernel Hilbert
space. The result of d̂mmd is using as the transfer learning
assessment index.26

d̂mmd =
1

n2
c

nc∑
i=1

nc∑
j=1

k(oc
i , o

c
j) +

1

n2a

na∑
i=1

na∑
j=1

k(oai , o
a
j )

− 1

ncna

nc∑
i=1

na∑
j=1

k(oc
i , o

a
j ) (10)

Transfer learning-based model training method

In order to apply the knowledge gained from aircraft engine
RUL prediction to facilitate fault prediction of track circuit
aiming to reduce the data dependency within the model
training process, this paper proposes a novel heterogeneous
transfer learning method for track circuit fault prediction DL
model training and its structure is shown in Figure 8. The
structure of trained aircraft engine RUL prediction model in
this figure is designed as Figure 6, which has two Bi-LSTM
layers containing 128 LSTM cells each, one multi-head
attention mechanism layer with eight heads and two dropout
layers with dropout probability 0.25 and 0.55 separately.
And the model output layer has one unit to output the RUL
prediction result.

Figure 8. Transfer learning-based model training method.
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The key components in this method are the data
distribution fitting network and the feature re-decoding
network. The two networks correspond to heterogeneous
feature mapping and heterogeneous label transformation
methods, respectively. The role of the data distribution fitting
network is to harmonise the dimension and distribution of the
track circuit data with the aircraft engine data, and its specific
structure is shown in Figure 9.

Figure 9. Structure of data distribution fitting network.

The data distribution fitting network contains 4 fully
connected layers of 110, 220, 330 and 330 units respectively.
The purpose of designing the data distribution fitting network
as multiple fully connected layers is to prepare for better fit
the data distribution of aircraft engine RUL prediction data
and track circuit fault prediction data.

And the specific structure of feature re-decoding network
is similar with the structure of data distribution fitting
network which is shown in Figure 10. The feature re-
decoding network contains 3 fully connected layers of 2048,
1024 and 9 units respectively.

Figure 10. Structure of feature re-decoding network.

The feature re-decoding network within the heterogeneous
transfer learning method is notably more intricate than the
decoder component of the aircraft engine RUL prediction DL

model, i.e., the one unit in output layer. This is due to the
need to consider the significant heterogeneous distinctions
in output between the two relevant tasks which makes the
original decoder component lacks the capability of mapping
the extracted high-dimensional feature information from
the encoder to track circuit fault prediction output space.
Therefore, a more complex feature decoding networks need
to be designed so as to map the high-dimensional data
features extracted by the model to the labelling space of the
track circuit fault prediction task.

The process of implementing heterogeneous transfer
learning-based model training can be summarized as Figure
11.

Figure 11. Flowchart of heterogeneous transfer learning-based
model training method.

(1) The initial phase of heterogeneous transfer learning
is to examine the transferability from aircraft engine RUL
prediction task to track circuit fault prediction task by using
the proposed transfer learning assessment index.

(2) If the transferability between two tasks is acceptable,
the data distribution fitting network can be trained by using
track circuit data and aircraft engine data with a loss function
defined as MMD. And the aircraft engine RUL prediction
model can be trained by relevant dataset.

(3) Track circuit fault prediction model is then established
as depicted in blue background frame in Figure 8. The
parameters of relevant layers are initialised using the
corresponding parameters present in the trained aircraft
engine RUL prediction model and trained data distribution
fitting network.

(4) The constructed network, developed in processes (3),
can then be trained utilising track circuit data and labels.
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And the cross-entropy loss will be implemented as the loss
function.

(5) The heterogeneous transfer learning-based training
process is finally achieved, the resulting model can predict
the classes of fault that will occur in the future based
on the track circuit data. And the knowledge gained from
the aircraft engine RUL prediction task can be used to
significantly speed up the training process of the track
fault prediction task and reduce the amount of training data
required for the track fault prediction task.

Experiments and analysis

This section tries to present the important results of the
current works. To verify the experiment results in this
paper, the experimental data of C-MAPSS aircraft engine
RUL prediction dataset27 (FD001), and track circuit fault
prediction dataset28 (TC-A and TC-B) had selected to
validate this study. The function of FD001 dataset is train
the aircraft engine RUL prediction model, aiming to gain
the relevant knowledge so that can use the proposed transfer
learning method to help track circuit fault prediction model
training. The details of datasets used in this paper is shown
in Table 1.

Table 1. Details of used datasets.

Dataset name Size of dataset Number of classes

FD001 training 14241 -
FD001 test 100 -
TC-A training 90 9
TC-A test 810 9
TC-B 225 9

Class code Class label

F0 No failure
F1 Sender failure
F2 Sender cable failure
F3 Track ballast resistance failure
F4 Compensation capacitor failure
F5 Receiver cable failure
F6 Attenuation redundancy controller failure
F7 Sender transformer failure
F8 Receiver transformer failure

Transferability assessment

Firstly, assessment of the transfer learning is carried out
to verify the transferability performance of the proposed
modelling solution. The encoder of the feature extractor has
two layers with 128 and 10 units, respectively. So, the size
of extracted features are 1 × 10 vectors. And the decoder
of the feature extractor has two layers with 128 and n units,
respectively. The value of n depends on the data dimension of

the original input data. The learning rate is set at 0.001, and
batch size is 16. And the Mean Square Error (MSE) shown
in equation 11 will be implemented as the loss function. And
x̂i is the reconstructed data, xi is the original data.

MSE =
1

n

n∑
i=1

(x̂i − xi)2 (11)

The heatmap of the extracted features correlation is shown
in Figure 12. Figure 12 corresponds to the extracted features
of the TC-A data. And Figure 13 corresponds to the extracted
features of the FD001 data.

Figure 12. Correlation heatmap of TC-A extracted features.

Figure 13. Correlation heatmap of FD001 extracted features.

As depicted in Figure 12 and Figure 13, the correlation
measure illustrates a less significant linear relationship
between the 10 extracted features from the original data,
which can also be a side effect to demonstrate that
the extracted features might possess a strong non-linear
relationship with each other. Then the transfer learning
assessment index is calculated from FD001 to TC-A by using
equation (10).

The transfer learning assessment index value shows the
absolute distance of the probability distribution between two
datasets. Yet in the absence of an appropriate comparative
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benchmark, a isolated index will not aid in determining the
level of complexity regarding transfer learning between the
two datasets. To address this issue, this paper undertakes
the uniform approach to compute the transfer learning
assessment index from TC-A to TC-B. These two datasets
were collected from identical type of track circuit situated in
distinct environments, and the solitary discrepancy between
them is the variation in data distribution. As such, the transfer
learning assessment index, from TC-B to TC-A, can serve as
a suitable benchmark to be compared.

In order to compute the transfer learning assessment index
from TC-B to TC-A, extract the TC-B features using the
same feature extractor initially. The heatmap of the extracted
features of the TC-B data is shown in Figure 14.

Figure 14. Correlation heatmap of TC-B extracted features.

To further evaluate the efficiency of the extracted features,
the Root Mean Square Error (RMSE) is then computed to
determine the deviation between the original data and the
reconstructed data as shown in equation 12.

RMSE =

√√√√ 1

n

n∑
i=1

(x̂i − xi)2 (12)

The RMSE results are summarized in Table 2. And it can
be seen that the extracted features reflect the original data’s
characteristics effectively.

Table 2. The values of RMSE.

Original dataset name RMSE value

TC-A 0.26
TC-B 0.21
FD001 0.08

Then calculate the transfer learning assessment index,
from TC-B to TC-A, using equation (10). And the two
transfer learning assessment indices mentioned above are
summarised in Table 3.

Table 3. The value of transfer learning assessment index.

Transfer direction Index value

FD001 to TC-A 2.1618
TC-B to TC-A 2.0459

The assessment index for transfer learning from FD001 to
TC-A is slightly higher compared to that of TC-B to TC-
A, as shown in Table 3. Therefore, we can infer that the
transferability from FD001 to TC-A is similar to that from
TC-B to TC-A.

Aircraft engine RUL prediction

Based on demonstrating the transferability of aircraft
engine and track circuit data, this paper conducted further
heterogeneous transfer learning experiments. Firstly, the
aircraft engine RUL prediction DL model is constructed, and
train the model by utilising the FD001 training dataset. The
learning rate of training is set at 0.001, and without using
mini-batch in training process. The MSE loss of the DL
model in each training epoch is shown in Figure 15.

Figure 15. Aircraft engine RUL prediction DL model training
process.

To further evaluate the RUL prediction performance of the
trained DL model, this paper compared the RUL prediction
Mean Absolute Error (MAE) in FD001 test dataset with other
RUL prediction methods. The calculation method of MAE is
shown in equation 13. In this equation, Ti is the real RUL
value, T̂i is the predicted RUL value and ni is the current
useful life.

MAE =
|T̂i − Ti|
ni + Ti

(13)

The MAE values of the aircraft engine RUL prediction
results with different methods at different actual RUL levels
is shown in Figure 16.
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Figure 16. MAE values on aircraft engine RUL prediction
results with different methods.

In this figure, the dash lines are the prediction
errors of each different existing aircraft engine RUL
prediction methods, i.e., the nonparametric method29, the
semiparametric method30, the SNR-based method31, Kernel-
based method32, and DNN-based method14. The solid line
is the MAE value plotted based on the prediction results of
our proposed method. And the MAE variances of the RUL
prediction results for different methods is shown in Figure
17.

Figure 17. MAE variances of RUL prediction results with
different methods.

It can be observed that the mean of the RUL prediction
result MAE by proposed DL model achieves the minimum
error in general with a significance prediction improvement
in the early stage of actual RUL levels than other methods,
which means that the proposed method is an available
RUL prediction method. Moreover, the variance of the RUL
prediction results MAE by proposed DL model is also very

small, thereby indicating a stable RUL prediction of the
proposed method.

Track circuit fault prediction

The training process of data distribution fitting network
is carried out by using FD001 and TC-A data, and the
heterogeneous transfer learning model training method is
constructed as shown in Figure 8. Then, the TC-A training
dataset is used to train the DL model for track circuit
fault prediction by the heterogeneous transfer learning-based
method.

To preliminary confirm whether the knowledge gained
from DL model learning in the aircraft engine RUL
prediction task can hasten the training of the track
circuit fault prediction model, this paper compared the
aforementioned training process and the training process
of same structural track circuit fault prediction DL
model without transfer learning, i.e., without parameters
initialization in Figure 8, under the same training settings.
The learning rate of training is set at 10−6, and batch size is
32. The training processes are shown in Figure 18.

Figure 18. Model training process with and without transfer
learning.

The heterogeneous transfer learning-based model training
approach can make track circuit fault prediction DL model
reached 100% accuracy at approximately the 200th epoch,
as shown in Figure 18. In contrast, the non-transfer learning-
based model training approach under the same conditions
only makes DL model with same structure achieves
maximum 70% accuracy at around the 270th epoch and then
decreases apparently thereafter. That is due to the limited
amount of training data available and the presence of noise
in the data. This result shows that the transfer learning-based
training method can significantly mitigate the issues caused
by the inadequate amount of training data and data noise,
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that can make model training process faster and smoother.
Therefore, it can be inferred that the knowledge gained from
predicting the RUL of aircraft engine can significantly assist
the DL model in the task of track circuit fault prediction.

This paper tested the proposed model using the TC-A test
dataset after model training. Figure 19 shows the confusion
matrix for the fault prediction result of the dataset.

Figure 19. Confusion matrix of fault prediction results on TC-A
test dataset.

To perform a more comprehensive quantitative analysis of
the model’s performance, this paper has further calculated
four model performance evaluation indices using the
provided confusion matrix including accuracy, precision,
recall, and F1 score for the DL model of track circuit fault
prediction in the TC-A test dataset. The resulting data is
presented in Table 4.

Table 4. Model performance evaluation indices.

Index name Value

Accuracy 99.8765%
Precision 99.8779%
Recall 99.8765%
F1 score 99.8765%

The model performance evaluation indices results indicate
that the DL model proposed in this paper has good
performance in all track circuit fault prediction classes, and
the prediction result accuracy, precision, recall, and F1 score
are all higher than 99%. Thus, it can be concluded that the
proposed DL model can satisfy the reliability requirement of
the track circuit fault prediction.

To further validate the performance of the proposed track
circuit fault prediction model on TC-A test dataset, this paper
using the above evaluation indices to compare the proposed
track circuit fault prediction DL model with other classical
model frameworks, i.e., the Bi-GRU-AM model28, the Bi-
LSTM-AM model8, the Bi-GRU model7, the Convolutional

Neural Network (CNN) model33, and the LSTM model4.
Table 5 displays the performance evaluation indices of
different models.

Table 5. Comparison of model performance evaluation indices.

Model name Accuracy Precision Recall F1 score

Bi-GRU-AM 97.77% 97.77% 97.88% 97.78%
Bi-LSTM-AM 95.56% 95.71% 95.69% 95.54%
Bi-GRU 97.78% 97.88% 97.78% 97.79%
LSTM 96.44% 96.71% 96.44% 96.44%
CNN 94.22% 95.10% 94.22% 94.21%
Our model 99.87% 99.87% 99.87% 99.87%

From Table 5, it is evident that the DL model advanced
in this paper surpasses other traditional models in predicting
track circuit faults. In addition, the data required for training
this model is reduced by 90% relative to training traditional
models by transferring expertise from the domain of aircraft
engine RUL prediction.

As the TC-A track circuit fault prediction dataset used
in this paper is derived from the data collected in the field,
and the dataset involves more comprehensive and specific
types of track circuit faults as shown in Table 1, it can
be assumed that the track circuit fault prediction model
designed and implemented in this paper is able to predict
most of the common faults that may occur in the future
of track circuit in the real operating environment in a real-
time high credibility prediction. By applying the relevant
methods, it can be realised that the specific location of
future faults can be determined before faults occur in track
circuit, so as to realise the preventive maintenance of track
circuit equipment. So the proposed DL model can further
improve the maintenance efficiency and reduces the cost of
maintenance of track circuit, while increasing the continuous
availability of the relevant equipment.

It is also worth noting that although the training process
utilising heterogeneous transfer learning may be more
intricate and time-consuming, it can ease the data necessities
significantly in the domain of track circuit fault prediction
DL model training by utilising openly available datasets
from other related research areas. So, the DL model training
method proposed in this paper can ability to significantly
reduce the workload of actual data collection, so that can
greatly enhance the possibility of DL-based IM methods for
practical deployment in railway sites so as to enhance the
application value of DL algorithms in the field of IM of track
circuit practice.

Transfer learning effects analysis

In the preceding subsection, it was initially demonstrated
that the DL model training progress in track circuit fault
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prediction task can be enhanced by utilizing the knowledge
acquired from aircraft engine RUL prediction task. In this
subsection, we will continue to examine the effect of transfer
learning on the training of DL model for track circuit fault
prediction. And a more detailed analysis of this impact will
be provided by ablation experiments.

Initially, the processes of data distribution fitting network
parameters initialisation (DDFN init) and other main
layers parameters initialisation (OML init) in heterogeneous
transfer learning-based DL model training method shown in
Figure 8 is masked, respectively. And then the DL model is
trained in the above two cases with all other factors keep
constant. The process of training the model is illustrated in
Figure 20 for both cases mentioned above.

Figure 20. Model training process of DDFN init masked and
OML init masked.

The model training process with DDFN init masked can
make track circuit fault prediction DL model reached 100%
accuracy at approximately the 280th epoch, as shown in
Figure 20. It can be found that the model delays reaching
100% training accuracy by almost 100 training epochs in the
DDFN init masked case compared with relevant results in
Figure 18. Therefore, it can be concluded that the DDFN
init plays a significant role in accelerating the convergence
of model training, and OML init plays a decisive role in the
convergence of the model.

It is noteworthy that this model training process does
not even perform as well as in the model training without
transfer learning shown in Figure 18. Therefore, it could be
contended that the isolated process of fitting data distribution
creates challenges in the convergence of model training.
In this experiment, the process of transforming the data
distribution converts the simple feature space in which the
data originally exists into a more intricate feature space. As
a result, it enhances the nonlinear correlation between the

data and makes it increasingly challenging for the DL model
training to converge. Consequently, the training performance
of DL model deteriorates instead when applying solely the
DDFN init.

To further examine the effect of implementing transfer
learning to the primary parts of the DL model, we have
masked the initialisation process of the parameters of the
first Bi-LSTM layer (Bi-LSTM-1 init), the second Bi-
LSTM layer (Bi-LSTM-2 init), and the multi-head attention
mechanism layer (MAM init) in the DL model, respectively.
And then the track circuit fault prediction DL model is
trained in these above cases with all other factors keep
constant. The process of training the model in all of the above
cases is depicted in Figure 21.

Figure 21. Model training process of Bi-LSTM-1 init masked,
Bi-LSTM-2 init masked and MAM init masked.

According to Figure 21, it can be found that the early
training stages of DL model with MAM init masked and
Bi-LSTM-2 init masked outperform the performance even
than transfer learning-based training process that have faster
and smoother accuracy increase. However, the growth rate
of model’s accuracy on the training data starts to slow down
and reaches a rather low accuracy at last during in the middle
to late stages of model training. This implies that although
randomly initialized network parameters following a normal
distribution can enhance the model’s performance in the
early stages of training by adapting better to input data, the
DL model’s final performance can benefit much more from
the acquired knowledge in aircraft engine RUL prediction.

It can also be noticed that with MAM init masked, the
DL model training speed and final accuracy is rather low
compared with transfer learning-based training process. So
it can be concluded that the MAM init provides an adjunct to
accelerate model training.
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Conclusions and future work

Regarding the important impact of track circuit on the
safety and efficiency of railway transportation systems and
facing problems that DL based fault prediction models lack
sufficient real data for training, the study is carried out on
the training methodology of track circuit fault prediction
DL models based on heterogeneous transfer learning. This
study attempts to propose a transfer learning method that
can accelerate the training process of track circuit fault
prediction models and reduce the dependence on track
circuit data for model training by utilising data from similar
domains. Besides, this study also proposes a autoencoder-
based index for assessing the feasibility of implementing
transfer learning.

The simulation experimental results demonstrate that data
from track circuit fault prediction has some similarity with
data from aircraft engine RUL prediction in the view of data
characteristic. And the transfer learning method proposed in
this research can accelerate the model training process with
substantially reducing the amount of data used for model
training by using aircraft engine RUL prediction data. The
relevant researches in this paper can greatly increase the
efficiency in the maintenance of track circuit and enhance the
relevance of DL-based track circuit maintenance methods.

Future extensions can investigate the generality of the
methodology proposed in this study. Also, it is worth
studying the methods for transferability assessment.
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