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Abstract

With the development of communication systems and the Internet, as well as with the growth of services created on the basis

of communication networks, the need to increase the capacity of communication channels is increasing. Theoretically, it is

shown that it is possible to increase the capacity of communication channels and exceed the “Shannon limit” by moving from

the real space of signals on a plane to a multidimensional one with dimension M. In a multidimensional space, each signal is a

multidimensional vector, and when such a signal passes through a channel, a MIMO (Many-Input – Many-Output) scheme is

formed. As an alternative to existing methods for implementing a MIMO scheme in a physical space with multiple antennas

at the input and output of a communication channel, a method for transmitting information using a MIMO scheme in a

hypercomplex vector space with one antenna for transmission and one for reception is proposed for wireless communication

systems and communication cables.
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Abstract 

With the development of communication systems and the Internet, as well as with the 

growth of services created on the basis of communication networks, the need to increase the ca-

pacity of communication channels is increasing. Theoretically, it is shown that it is possible to 

increase the capacity of communication channels and exceed the “Shannon limit” by moving from 

the real space of signals on a plane to a multidimensional one with dimension M . In a multidi-

mensional space, each signal is a multidimensional vector, and when such a signal passes through 

a channel, a MIMO (Many-Input – Many-Output) scheme is formed.  

As an alternative to existing methods for implementing a MIMO scheme in a physical space 

with multiple antennas at the input and output of a communication channel, a method for trans-

mitting information using a MIMO scheme in a hypercomplex vector space with one antenna for 

transmission and one for reception is proposed for wireless communication systems and commu-

nication cables. 

It is known that hypercomplex numbers are an extension of complex numbers through the 

doubling procedure and form a hypercomplex space on imaginary orthogonal axes and one scalar 

axis orthogonal to them. For example, a quaternion in algebraic form is written as q= s+xi+yj+zk, 

где s, x, y, z – real numbers, i, j, k – imaginary units. A quaternion forms a four-dimensional (4D) 

space. Hypercomplex numbers are also widely known, such as the octonion in 8D and sedenion in 

16D spaces. Accordingly, based on these numbers, MIMO schemes with dimensions of 4D, 8D, 

16D are implemented. 

Let us represent the mathematical model of a MIMO channel in a hypercomplex space 

using a square channel matrix of dimension MxM. From an energy point of view, this MIMO 

channel model is equivalent to the antenna diversity MIMO model. With an orthogonal channel 

matrix, maximum capacity is ensured. To synthesize the channel matrix, an exponential function 

of the quaternion and a polar form of representation of exponentials of imaginary units were used. 

To get rid of imaginary units in the algebraic form of writing a quaternion and for the purpose of 

forming a channel matrix, it is represented as a real matrix of dimension 4x4, i.e. three-frequency 

fundamental matrix Ф(ωi,ωj.ωk,t). 

Using trigonometry formulas, the channel matrix is decomposed into 4 single-frequency 

matrices of combination frequencies: Ω1 =ωi+ωj+ωk, Ω2 =ωi+ωj-ωk,, Ω3 =ωi-ωj+ωk,, Ω4 =ωi-ωj-

ωk. A three-frequency channel matrix will, accordingly, be equal to the sum of single-frequency 

matrices. Modulation of subcarrier frequencies is carried out by multiplying the channel matrix by 

information vectors: y(ωi,ωj.ωk,t)=Ф(ωi,ωj.ωk,t)x(0). As a result of multiplication, we obtain 

QPSK modulation for each combination frequency. When adding frequencies, we obtain a multi-

frequency oscillation in each element of the modulated vector. Moreover, each element of the 

output vector y(ωi,ωj.ωk,t) contains information about all elements of the information vector (0)x

, transmitted at all 4 combination frequencies.  

Elements of the modulated vector are transmitted sequentially as information elements ar-

rive, and the speed of information transmission at the output is equal to the speed of information 

arrival at the input of the transmitter. Moreover, each multi-frequency element consumes the entire 

transmitter power, which is distributed between 4 frequencies and 4 spatial orthogonal coordinate 

axes. In addition, in the proposed solution only the elements of the multi-frequency vector are 

transmitted, and not the elements of the channel matrix, as in existing methods. Thus, using the 

space-time channel matrix synthesized on the basis of a hypercomplex number, we implement the 
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MIMO scheme in M=2n - dimensional vector space, where n=2,3,4,… for the number of frequen-

cies F=2M-2. 

According to the transmission model, interference is added to each pulse of the modulated 

vector when passing through the communication channel. It is clear that the interferences are not 

correlated, and with a constant dispersion of the interferences, the interference vector has circular 

symmetry. Consequently, the interference power is distributed along orthogonal axes and frequen-

cies. Since the interference is white noise, the optimal receiver for the received vector will be a 

correlator using transposed basis matrices for each combinational frequency. 

By multiplying incoming modulated multi-frequency elements in the sum with interference 

by single-frequency basis matrices with subsequent integration, we obtain an estimate of each in-

formation element with uncorrelated interference and at different frequencies. Since when sum-

ming signals add up by energy, and noise - by power, the gain in the signal-to-noise ratio (SNR) 

based on different basic matrices for the quaternion will be equal to 4. After adding up the obtained 

estimates for different frequencies, we also obtain a gain in SNR by another 4 times. The total gain 

in SNR will be 16. It is possible to increase the information transmission speed by an appropriate 

number of times at a given transmission power. By expanding the frequency band, it is also pos-

sible to increase the noise immunity and secrecy of transmitter operation. Since the same infor-

mation is transmitted in each symbol of a multi-frequency vector, the noise immunity to signal 

fading in time and frequency increases. 

I. Introduction 

The need to increase the capacity of communication lines is increasing. For example, in 

the new next-generation 5G mobile communications standard, it is necessary to provide downlink 

speeds of up to 20 Gbit/s and subscriber speeds of up to 100 Mbit/s. The use of traditional modu-

lation schemes requires a transition to a higher wave range (more than 20 GHz), which is associ-

ated with an increase in the power of transmitting devices or a significant decrease in the commu-

nication distance. 

Theoretically, increased capacity is possible by using a Many-Input – Many-Output 

(MIMO) scheme [1-4]. This requires that the signal and noise be multidimensional Gaussian pro-

cesses. Maximum capacity is achieved with a square orthogonal channel matrix. If the dimension 

of the channel matrix is MxM, then the throughput of the MIMO channel will be M times greater 

than the throughput of a channel using real 1D or 2D signals. 

To increase the speed of information transmission, the multi-frequency information trans-

mission is mainly used, for example, orthogonal frequency division multiplexing - (OFDM). How-

ever, such a signal has a high crest factor and, accordingly, increases transmission power costs. 

The transmission speed in 6G is expected to increase from 1 Tbit/s. To increase capacity, 

it is planned to use massive and ultra-massive MIMO, in which hundreds and thousands of active 

antennas in the form of multi-element digital antenna arrays are connected to base stations. At the 

same time, multi-element digital antenna arrays must also be implemented on user terminals. 

To increase capacity in 6G, it is also planned to use the terahertz range from 300 GHz to 3 

THz. However, the communication distance at terahertz waves decreases significantly due to in-

creased propagation losses in free space. There is also an increase in propagation losses through 

obstacles, such as urban areas, and losses due to rain or fog. In fact, communications on terahertz 

waves are limited by line-of-sight range. 

Currently MIMO scheme is implementing in physical space using many antennas for trans-

mission and reception, which significantly complicates its use. As the number of antennas in-

creases, the difficulties in implementing this method increase. In addition, this implementation 

makes it impossible to use MIMO in wireline communications. 

In works [5, 6], methods were proposed for transmitting and receiving information using 

the MIMO scheme not in physical space with many antennas, but in complex and hypercomplex 

spaces using one antenna for transmission and one for reception. It is shown that when using 
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complex numbers in a matrix representation, we obtain a 2-fold gain in noise immunity, and when 

using quaternions, a 4-fold gain compared to BPSK. Accordingly, it is possible to increase the 

speed of information transfer by the same amount. Moreover, this method of using the MIMO 

scheme can also be applied in wired communication channels. 

However, to increase the capacity of communication channels, it is also necessary to ex-

pand the frequency band. In this case, problems arise regarding the frequency efficiency of the 

proposed methods. As already mentioned, the use of the OFDM method leads to a large crest factor 

and, as a consequence, to a loss of power in the amplifiers. 

The purpose of this work is to present a method for increasing the capacity using a MIMO 

scheme in the hypercomplex space of a three-frequency quaternion. 

 

II. MATERIALS AND METHODS FOR SOLVING THE PROBLEM 

The mathematical model of a MIMO channel with the same number of inputs and outputs 

is written in the form [1-4]: 

( ) ( ) (0) ( )t t t= +s H x n , (1) 

where ( )tH  – square channel matrix of dimension MxM, (0)x  - M - dimensional vector infor-

mation symbols, ( )tn  - zero-mean noise vector with circular symmetry. 

To implement the MIMO channel model (1) in a hypercomplex space, we formulate the 

basic requirements for the channel matrix ( )tH : 

1) Based on the requirement for maximum throughput, the channel matrix ( )tH  must be 

orthogonal. Physically, this means that the signal space must have a maximum volume, which is 

achieved when the coordinate axes of such a space are orthogonal. It is clear that a space of a given 

dimension and maximum volume makes it possible to increase the diversity of signals to the max-

imum extent; 

2) Since the channel matrix ( )tH  is used as an M-dimensional function, which is modu-

lated by M-dimensional information vectors (0)x , and then radiated into space, the M-dimensional 

function must be continuous and harmonic; 

3) It is known that the main way to increase capacity is to increase the frequency band. 

Therefore, the channel matrix must be multi-frequency and decomposed into single-frequency ma-

trices; 

4) Since optimal signal reception under the influence of white noise is carried out using a 

dual basis and correlation processing using basis functions, the channel matrix must be decom-

posed into basis matrices. 

Let's consider the problem of synthesizing a multi-frequency channel matrix using a qua-

ternion as a hypercomplex number. In algebraic form we write the quaternion as [6]: 

q s xi yj zk= + + + , (2) 

where s, x, y, z – real numbers. 

Let's present operations with imaginary units in the form of a table. 

Table 1. Quaternion imaginary unit multiplication operations. 
1

1 1

1

1

1

i j k

i j k

i i k j

j j k i

k k j i



− −

− −

− −

. 

For the quaternion (2) we write the exponential function: 

( )( )( )e e e cos sin cos sin cos sinq s xi yj zk s x i x y j y z k z+ + += = + + + . (3) 

For a single-frequency quaternion x y z= =  therefore expression (3) will take the form: 
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( )ˆ( ) ( ) ˆe e e e e e e cos sinq s x i j k s x i j k s xi s x i x+ + + + += = = = + ,  (4) 

where ˆ ( ) 3i i j k= + +  - imaginary unit. Expression (4) was also used in [7 - 10] to obtain spec-

tra from a single-frequency quaternion and as a channel matrix for a 4×4 MIMO scheme [6]. 

Just as for a complex number in exponential representation, the coefficients for the imagi-

nary units of the quaternion in the polar form of notation have the physical meaning of the rotation 

angle. In addition, frequency conversions in radio engineering problems are considered mainly for 

time-varying signals. Therefore, we write the angles x, y, z in (3) as functions of time: ( ) ix t t= , 

( ) jy t t= , ( ) kz t t= , where i , j , k  are the angular frequencies on the axes i, j, k. The radius 

of rotation in 4D space is calculated as 2 2 2 2r s x y z= + + + . After multiplying the expressions 

in parentheses in formula (3) and grouping by the real and imaginary parts, we obtain an exponen-

tial function in the form of a three-frequency quaternion, which we denote as 

( )( , , , )i j kf q t   =  (5) 

( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j kp t iu t jv t kw t           = + + + . 

After grouping similar terms, the components in expression (5) will take the form: 

( , , , ) cos cos cos sin sin sini j k i j k i j kp t t t t t t t        = − , (6) 

( , , , ) sin cos cos cos sin sini j k i j k i j ku t t t t t t t        = + , 

( , , , ) cos sin cos sin cos sini j k i j k i j kv t t t t t t t        = − , 

( , , , ) sin sin cos cos cos sini j k i j k i j kw t t t t t t t        = + . 

As can be seen from (6), we received 8 combinations of products of cosines and sines of 

different frequencies. Let us transform expressions (6) using well-known trigonometry formulas 

for products of three combinations with sines and cosines. According to these formulas, the prod-

ucts of three sines and cosines in various combinations are converted into the sum of sines and 

cosines from the sum of frequencies in various combinations. Let us denote the combinations of 

angular frequencies obtained as a result of the expansion as 

1 2 ( )i j k i j kf f f    = + + = + + , 2 2 ( )i j k i j kf f f    = + − = + − , (7) 

3 2 ( )i j k i j kf f f    = − + = − + ,. 4 2 ( )i j k i j kf f f    = − − = − − . 

So, for three generating (reference) frequencies i , j , k  we get 
4 2 22 2 4− = =  combi-

nations of positive frequencies n , 1,2,3,4n = . Negative frequencies will appear when the signal 

spectrum is transferred to the carrier frequency c . After decomposing the products of sines and 

cosines (6) into sums of sines and cosines, bringing similar terms and grouping by combination 

frequencies, we obtain the following expressions of functions (6) for combination frequencies (7): 

1 2 3 44 ( , , , , )p t    =  (8) 

1 1 2 2 3 3 4 4cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )t t t t t t t t=  +  +  −  +  −  +  +  , 

1 2 3 44 ( , , , , )u t    =  

1 1 2 2 3 3 4 4cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )t t t t t t t t= −  +  +  +  +  +  −  +  , 

1 2 3 44 ( , , , , )v t    =  

1 1 2 2 3 3 4 4cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )t t t t t t t t=  +  −  +  +  −  −  −  , 

1 2 3 44 ( , , , , )w t    =  

1 1 2 2 3 3 4 4cos( ) sin( ) sin( ) cos( ) sin( ) cos( ) cos( ) sin( )t t t t t t t t= −  +  −  −  +  +  +  −  . 

Thus, we have obtained expressions for the exponential function (3) of a three-frequency 

quaternion in the form of a sum of functions (5), which are represented by 8 combinations of 

products of cosines and sines (6) of different reference frequencies (7). Also, using trigonometry 

formulas for the products of three combinations with sines and cosines, we obtained the 
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exponential function (3) in the form of sums of cosines and sines (8) from various combination 

frequencies (7). 

To get rid of imaginary units in the algebraic form of writing the quaternion (2), we present 

it in the form of a real matrix of dimension 4×4 [6-10]: 

s x y z

x s z y

y z s x

z y x s

 
 
− −
 =
 − −
 
− − 

Q . (9) 

Matrix (9) is decomposed into basis matrices E, I, J, K and quaternion (9) is written as a 

sum of matrices: 

s x y zQ E I J K ,  

where  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 =
 
 
 

E , 

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 
 
−
 =
 −
 
 

I , 

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 
 
 =
 −
 

− 

J , 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 
 

−
 =
 
 
− 

K . 

The corresponding basis matrices of the quaternion, as well as the elements i, j and k, are 

related by the multiplication rules presented in Table 2: 

Table 2. Multiplication operations of quaternion basis matrices. 


− −

− −

− −

E I J K

E E I J K

I I E K J

J J K E I

K K J I E

. (10) 

As can be seen from (10) the structure of the basis matrices E, I, J, K, they are spatial basis 

matrices, i.e. bases of 4D space. These matrices are also permutation matrices with a change of 

sign of 2 elements. The basis matrices will be orthogonal: 
T =II E , 

T =JJ E , 
T =KK E . Note that 

the basis matrices of a quaternion are also quaternions in matrix representation. 

It is convenient to represent the information transfer model as a model in state space using 

the dynamics equation in the form [11]: 

( ) ( )t t=x Ax . (11) 

We write the state transition matrix A using the imaginary part of matrix (9) in the form: 

i j k  = + +A I J K . (12) 

Let's call matrix A as a matrix of quaternion reference frequencies, where 

2 2i i iT f  = =  is the angular frequency of the imaginary axis i, radians/s; 1i iT f=  – period of 

frequency if , s.; 2 2j j jT f  = = - angular frequency of the imaginary axis j, radian/s; 

1j jT f= – period of frequency jf , s.; 2 2k k kT f  = = - angular frequency of the imaginary 

axis k, radian/s; 1k kT f=  – period of frequency kf , s. 

The matrix of quaternion reference frequencies A is a differential operator for the state 

space model (11). The solution to equation (11) will be the exponent of matrix (12) for functions 

(6): 
( )

( , , , )i j k tt
i j ke e t

  
  

+ +
= = =

I J KA Φ  (13) 

( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j kp t u t v t w t           = + + +E I J K . 
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Since matrix (13) is a solution to the differential equation (11), the matrix ( , , , )i j k t  Φ  

is called the fundamental matrix. 

Substituting expressions (6) into the matrix ( , , , )i j k t  Φ , we obtain a fundamental ma-

trix in the form of sums of products of cosines and sines in various combinations: 

( , , , )i j k t   =Φ  (14) 

cos cos cos sin sin sin sin cos cos cos sin sin

(sin cos cos cos sin sin ) cos cos cos sin sin sin

(cos sin cos sin cos sin ) cos co

i j k i j k i j k i j k

i j k i j k i j k i j k

i j k i j k i

t t t t t t t t t t t t

t t t t t t t t t t t t

t t t t t t t

           

           

      

− +

− + −
=

− − s sin sin sin cos

(cos cos sin sin sin cos ) (cos sin cos sin cos sin )

j k i j k

i j k i j k i j k i j k

t t t t t

t t t t t t t t t t t t

    

           




 +

− + − −

cos sin cos sin cos sin cos cos sin sin sin cos

(cos cos sin sin sin cos ) cos sin cos sin cos sin

cos cos cos sin sin sin (sin cos

i j k i j k i j k i j k

i j k i j k i j k i j k

i j k i j k i

t t t t t t t t t t t t

t t t t t t t t t t t t

t t t t t t t

           

           

       

− +

− + −

− − cos cos sin sin )

sin cos cos cos sin sin cos cos cos sin sin sin

j k i j k

i j k i j k i j k i j k

t t t t t

t t t t t t t t t t t t

   

           




+


+ − 

 

As in the case of a communication line with a single-frequency quaternion [6], the three-

frequency matrix (14) will serve as the channel matrix of the MIMO scheme. Therefore, by anal-

ogy with a single-frequency matrix, let's call it a three-frequency quaternion carrier. 

Let us denote the basis matrices for the fundamental matrix (14) of the reference angular 

frequencies , ,i j k   , as 

( )( , , , ) cos( )cos( )cos( ) sin( )sin( )sin( )i j k i j k i j kt t t t t t t        = −EΦ E , (15) 

( )( , , , ) sin( )cos( )cos( ) cos( )sin( )sin( )i j k i j k i j kt t t t t t t        = +IΦ I , 

( )( , , , ) cos( )sin( )cos( ) sin( )cos( )sin( )i j k i j k i j kt t t t t t t        = −JΦ J , 

( )( , , , ) cos( )cos( )sin( ) sin( )sin( )cos( )i j k i j k i j kt t t t t t t        = +KΦ K . 

Using notation (15), we write the three-frequency fundamental matrix (14) as a sum of 

basis matrices: 

( , , , )i j k t   =Φ  (16) 

( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j kt t t t           = + + +E I J KΦ Φ Φ Φ . 

The fundamental matrix (16) is orthogonal, since 
T T( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j kt t t t           = =Φ Φ Φ Φ E . 

Using expressions (8), we decompose the fundamental matrix (14) of the reference angular 

frequencies i , j , k  into single-frequency matrices of frequency combinations (7). 

Let's group by frequencies and write single-frequency matrices through the basis matrices 

E, I, J, K in the form: 

( ) ( )( ) ( ) ( )( )1 1 1 1 1 1

1
( , ) cos sin cos sin

4
t t t t t =  +  + −  +  +Φ E I  (17) 

   ( ) ( )( ) ( ) ( )( )1 1 1 1cos sin cos sint t t t +  +  + −  +  J K , 

( ) ( )( ) ( ) ( )( )2 2 2 2 2 2

1
( , ) cos sin cos sin

4
t t t t t =  −  +  +  +Φ E I  

          ( ) ( )( ) ( ) ( )( )2 2 2 2cos sin cos sint t t t + −  +  + −  −  J K , 

( ) ( )( ) ( ) ( )( )3 3 3 3 3 3

1
( , ) cos sin cos sin

4
t t t t t =  −  +  +  +Φ E I  

             ( ) ( )( ) ( ) ( )( )3 3 3 3cos sin cos sint t t t +  −  +  +  J K , 
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( ) ( )( ) ( ) ( )( )4 4 4 4 4 4

1
( , ) cos sin cos sin

4
t t t t t =  +  + −  +  +Φ E I  

             ( ) ( )( ) ( ) ( )( )4 4 4 4cos sin cos sint t t t + −  −  +  −  J K . 

From this we can conclude that the fundamental three-frequency quaternion matrix (14) is 

equal to the sum of single-frequency quaternion matrices: 

1 1 2 2 3 3 4 4( , , , ) ( , ) ( , ) ( , ) ( , )i j k t t t t t   =  +  +  + Φ Φ Φ Φ Φ . (18) 

In accordance with (7), we present the matrix for converting reference frequencies i , j

, k  into combinational ones n , 1,2,3,4n = , as: 

1 1 1

1 1 1

1 1 1

1 1 1

 
 

−
 =
 −
 

− − 

Ω . 

We write the reference frequencies as a vector  
T

1 2 3f f f=f  and the vector of combi-

nation frequencies, as  
T

1 2 3 4F F F F=F . From here =F Ωf . 

The matrix for converting combination frequencies into reference ones will look like: 

T

1 1 1 1
1

1 1 1 1
4

1 1 1 1

 
 

= − −
 
 − − 

Ω . 

For example, at  
T

6 2 1= − −f  we get 

1 1 1 3
6

1 1 1 5
2

1 1 1 7
1

1 1 1 9

   
    

−     = = − =
    −
 −    

− −   

F Ωf , 

and 

T

3
1 1 1 1 6

51 1
1 1 1 1 2

74 4
1 1 1 1 1

9

 
    
    = = − − = −
    
   − − −    

 

f Ω F . 

As can be seen, the matrix TΩ  is a pseudo-inverse. Thus, we can obtain the necessary 

values of the reference and combination frequencies. 

 

III. INFORMATION TRANSMISSION LINE DIAGRAM 

Modulation of three-frequency quaternion carrier 

We will modulate the three-frequency carrier in the same way as in [6], by multiplying the 

information vector  
T

0 1 2 3(0) x x x x=x  by the fundamental matrix (14), which acts as a chan-

nel matrix in the MIMO scheme (1). As a result, we obtain the output modulated vector 

( , , , ) ( , , , ) (0)i j k i j kt t     =y Φ x . (19) 

Since the channel matrix is the fundamental matrix for the dynamics equation in state space 

(11), then, by definition, the information vector (0)x  is also the vector of the initial state of the 

dynamic system. 
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Let's consider the case of a binary information vector  
T

(0) 1 1 1 1=    x . We write 

all possible combinations of information vectors in the form of a matrix: 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(0)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

− − − − − − − − 
 

− − − − − − − −
 =
 − − − − − − − −
 

− − − − − − − − 

x . (20) 

More generally, the initial vector can take on any value in 4D space. A binary vector (0)x  

can take on 16 different values. We will depict possible combinations of information vectors as 

states in two 3D spaces, as shown in Figures 1 and 2. Positive values of the most significant bit of 

the information vector are shown in red in the form of a point mass (charge), and negative values 

in blue. 

 

  
Figure 1. Vectors of information pulses in the form of a 

quaternion for positive values of the first element of 

the information vector 

Figure 2. Vectors of information pulses in the form of a 

quaternion for negative values of the first element of 

the information vector 

Since the three-frequency matrix is equal to the sum of single-frequency matrices (18), then 

modulation by single-frequency matrices will, accordingly, have the form: 

1 2 3 4( , , , , ) ( , , , ) (0) ( , , , )i j k i j kt t t         = = =y Φ x y  (21) 

1 1 2 2 3 3 4 4( , ) (0) ( , ) (0) ( , ) (0) ( , ) (0)t t t t=  +  +  +  =Φ x Φ x Φ x Φ x  

1 1 2 2 3 3 4 4( , ) ( , ) ( , ) ( , )t t t t=  +  +  + y y y y . 

Since channel matrix ( , , , )i j k t  Φ  is orthogonal, the power of the output vector will be 

the same as the input one. 

Figure 3 shows a visualization of the formation of a modulated signal in a transmitting 

device with an information vector of  
T

(0) 1 1 1 1= −x . The input of the transmitting device 

receives binary data pulses 0, 1. This data sequence is converted into bipolar pulses by replacing 

0 1→  and 1 1→− . The first 4 pulses of the bipolar sequence, as they arrive, are converted into a 

4D vector by delaying the 1st received pulse by a pulse duration of 3T, the second by 2T, the third 

by T, and the last pulse arrives in real time. During the arrival of the 4th pulse, the three-frequency 

quaternion carrier is modulated in the form of a 4x4 matrix (14) by multiplying it by the vector of 

incoming pulses. Multiplication occurs by four rows of the matrix during the arrival and formation 

of the next 4D vector of pulses. 

Since a three-frequency matrix is equal to the sum of single-frequency ones (18), modula-

tion is easier to implement by multiplying the vector by single-frequency channel matrices fol-

lowed by summation (21). 
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Figure 3. Modulator diagram 
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Let us first consider multiplying the information vector by a channel matrix with frequency 

1 : 

1 1( , )t =Φ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

cos sin cos sin cos sin cos sin

cos sin cos sin cos sin cos sin
1

4 cos sin cos sin cos sin cos sin

cos sin cos sin c

t t t t t t t t

t t t t t t t t

t t t t t t t t

t t t t

 +  −  +   +  −  + 

− −  +   +  − −  +   + 
=

−  +  −  +   +  − −  + 

− −  +  −  +  − ( ) ( ) ( ) ( )1 1 1 1os sin cos sint t t t

 
 
 
 
 
 

 +   +   

. 

To obtain modulated elements in real time, i.e., sequentially for each clock period, it is 

necessary to represent all the rows in the form of columns, i.e., transpose the matrix, and write 

these columns in reverse order: 
T
1 1( , )t =Φ  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

cos sin cos sin cos sin cos sin

cos sin cos sin cos sin cos sin1

4 cos sin cos sin cos sin cos sin

cos sin cos sin co

t t t t t t t t

t t t t t t t t

t t t t t t t t

t t t t

− −  +  −  +  − −  +   + 

−  +  −  +   +  −  + 
=

−  +   +  − −  +   + 

 +  − −  +  ( ) ( ) ( ) ( )1 1 1 1s sin cos sint t t t

 
 
 
 
 
 
  +  −  + 
 

. 

As you can see, matrix elements ( ) ( )( )1 1cos sint t  +   and ( ) ( )( )1 1cos sint t  −   are conju-

gate oscillations with the initial phase 4 , 3 4 , 5 4  and 7 4 . Thus, when an information 

vector is multiplied by a matrix, QPSK modulation occurs. 

As shown in Figure 3, simultaneously with the time-sequential multiplication of the infor-

mation vector by the elements of the columns at the duration of the cycle, summation occurs, as a 

result of which we obtain oscillations with the corresponding initial state. In 4 clock cycles we 

obtain a sequence of modulated oscillations with a frequency with the corresponding initial states 

that determine the initial phases of the oscillations. 

In the same way, at the same time, we obtain modulated oscillations with frequencies 2 , 

3 , and 4 . As shown in the lower part of Figure 3, modulated oscillations with different fre-

quencies are added in real time, resulting in a vector of elements from combination frequencies: 

1 2 3 4( , , , , ) ( , , , )i j kt t      =y y . Since the three-frequency fundamental matrix is orthogonal, 

the power of each resulting three-frequency element will be equal to the power of the information 

element, i.e. in our case 1. According to (17), the power of each single-frequency element will be 

equal to 1/4. Note that for some combinations of information elements we can obtain single-fre-

quency signals not only with phase modulation, but also with amplitude and space modulation. 

In the process of obtaining combined oscillations, they enter, according to Figure 3, a 

power amplifier and are sequentially emitted into space or transmitted through wires. First, from 

right to left, the 1st element of the vector is emitted 1 1 2 3 4( , , , , )y t    , then the 2nd 

2 1 2 3 4( , , , , )y t    , 3rd 3 1 2 3 4( , , , , )y t     and 4th 4 1 2 3 4( , , , , )y t    . 

It is possible to use a separate power amplifier for each single-frequency oscillation, and 

summation should be done after amplification. In the process of emitting oscillations, a new infor-

mation vector is formed from newly received impulses and the process is repeated. Thus, the mod-

ulation scheme requires a time delay of 3T. 

 

Demodulation of a three-frequency quaternion carrier 

When modulated oscillations from combination frequencies pass through the communica-

tion channel, interference is added to them. As a noise, consider 4D white noise with circular 
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symmetry. Let's imagine the interference as a 4D vector and write the received signal (19) or (21) 

as: 

1 1 2 3 4 1

2 1 2 3 4 2

3 1 2 3 4 3

4 1 2 3 4 5

( , , , , ) ( )

( , , , , ) ( )
( )

( , , , , ) ( )

( , , , , ) ( )

y t n t

y t n t
t

y t n t

y t n t

      
   

   
   = +
      
   

      

s . (22) 

Just as in [6], demodulation will be carried out using transposed basic single-frequency 

matrices. When separating the signal spectra and at a constant spectral density of the interference 

power, we obtain that in the signal band for each element of the output vector the interference will 

be 4 times less than the total power. That is, the interference dispersion vector when distributing 

the interference power over the frequencies of each element can be written as 
T

2 2 2 2 21
4
    =  σ . As stated, 4 information elements are distributed along orthogonal 

axes within each single-frequency element. The circular symmetry of the interference in the form 

of white noise means that the noise on the orthogonal coordinate axes is not correlated. Conse-

quently, the interference acting on them is also distributed in power over 4 orthogonal axes and, 

accordingly, has 4 times less power. Hence, the vector of interference dispersion acting on a sep-

arate information element, taking into account the distribution over frequencies and orthogonal 

axes, has the form 
T

2 2 2 2 21
16

    =  σ . 

Thus, when using the MIMO scheme in a 3-frequency hypercomplex quaternion space, the 

power of both the signal and the interference is distributed over 4 frequencies and 4 orthogonal 

axes so that each information element and the interference acting on it have a power of 16 times 

less and maintain the signal-to-noise ratio (SNR). 

In accordance with the theory of optimal reception in white noise, demodulation will be 

carried out using transposed basic single-frequency matrices. Let's first consider the demodulation 

circuit for combination frequency 1 i j k   = + + . Let us decompose the single-frequency 

channel matrix (17) for frequency 1  into basis matrices, which we denote as 

( ) ( ) ( )( )T T
1 1 1 1, cos sint t t =  + E E , ( ) ( ) ( )( )T T

1 1 1 1, cos sint t t = −  + I I ,  (23) 

( ) ( ) ( )( )T T
1 1 1 1, cos sint t t =  + J J , ( ) ( ) ( )( )T T

1 1 1 1, cos sint t t = −  + K K . 

Since white noise is considered as interference, the optimal receiver for each element is a 

correlator. Demodulation will be carried out by multiplying the received vector (22) by transposed 

basis matrices (23) with subsequent integration over the pulse duration T. Since during integration 

high-frequency components are compensated, at the end of integration the basis matrices (23) will 

be orthogonal: 

( ) ( ) ( ) ( )( )
2T

1 1 1 1 1 1
0 0

, , cos sin
T T

t t dt t t dt  =  +  = E E E E , (24) 

( ) ( ) ( ) ( )( )
2T

1 1 1 1 1 1
0 0

, , cos sin
T T

t t dt t t dt  =  −  = I I E E , 

( ) ( ) ( ) ( )( )
2T

1 1 1 1 1 1
0 0

, , cos sin
T T

t t dt t t dt  =  +  = J J E E , 

( ) ( ) ( ) ( )( )
2T

1 1 1 1 1 1
0 0

, , cos sin
T T

t t dt t t dt  =  −  = K K E E . 

The basis matrices for matrices (17) with frequencies 2  , 3  , 4  will also be orthogonal. 

The demodulation circuit is shown in Figure 4. As shown in the diagram, multiplication of 

the received sequence of elements of vector ( )ts  (22) by elements of basic single-frequency ma-

trices (23) and their integration (24) with subsequent summation of the results is carried out in real 

time. Multipliers and integrators are grouped into 4 groups in accordance with the number of  
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Figure 4. Demodulator diagram 
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elements in one bus. The first received element 1 1 1 2 3 4 1( , , , , ) ( )s y t n t=     +  is fed to 

bus 1 and multiplied by the elements of the transposed basis matrices located in the first columns 

of the basis matrices. At the same time, we obtain from the first element 1s  estimates of all 4 

elements of information vector (0)x . 

In Figure 4, the arrows show that from the first bus, the accumulation results are distributed 

to the corresponding locations of the pulses on the graph located at the bottom of the basis matrix 

( )T
1 1,tE . Since the final result of accumulation is important to us, at the end of accumulation all 

4 samples are counted and stored in RAM. 

Next, the second element 2 2 1 2 3 4 2( , , , , ) ( )s y t n t=     +  arrives and is fed to bus 2. Sim-

ilarly, during the arrival process, it is multiplied by the elements of the basis matrices in the second 

columns. At the same time, we also obtain from the second element 2s  estimates of all 4 elements 

of the information vector. In the figure, the arrows show that from the 2nd bus, the accumulation 

results are distributed on the graph located at the bottom of the basis matrix ( )T
1 1,tI . At the end 

of accumulation, all 4 counts are counted and stored. 

The following elements 3 3 1 2 3 4 3( , , , , ) ( )s y t n t=     +  and 

4 4 1 2 3 4 4( , , , , ) ( )s y t n t=     +  are supplied to buses 3 and 4, and are multiplied by the elements 

of the basis matrices in columns 3 and 4, respectively. The results of integration for each matrix 

are shown in the figure directly below matrices ( )T
1 1,tJ  and ( )T

1 1,tK . Below is the sum of 

the results for the single-frequency fundamental matrix 1 1( , )tΦ  as a whole. 

As can be seen from the diagram, each input element produces 4 outputs and thus the 

MIMO scheme is implemented. At the same time, the estimation of each information element 

occurs under different noise conditions. Since interference affects signal elements at different 

times, they are not correlated. When adding the integration results, the information components 

are added by energy, and the interference components are added by power. The signal amplitude 

increases 4 times. 

Demodulation occurs in a similar way for single-frequency matrices 2 2( , )tΦ , 3 3( , )tΦ

, 4 4( , )tΦ . If the frequencies are sufficiently separated, the interference will also be uncorrelated. 

As shown at the bottom of Figure 4, when summing up the evaluation results, we obtain a 16-fold 

increase in the signal amplitude. Accordingly, the ratio of signal power to noise power will increase 

by 16 times. The total results of the readings are sent to the decision device (solver), in which the 

received information elements are evaluated. 

Diversity of the symbols 

The task of the solver is to determine the vector that was transferred from all possible 16 

vectors in (20). We will make the decision using the maximum likelihood criterion. In this case, 

we must compare the received vector with all possible information vectors (20) using some norm. 

To do this, it is necessary to determine the distance between the received vector and all vectors. 

We will also present the resulting estimate as a vector ˆ(0) (0) (0)= +x x x , where (0)x  is the esti-

mation error caused by the noise. We calculate the distance between any pair of vectors as 

( )
2

2 ,nm n m nd = −s s s , , 1,2,...,16n m = , where ( ),m ns s  scalar product of the vector. 

In our case, we receive the transmitted vector using the basis matrices with subsequent 

addition, leading to an increase in the SNR. Consequently, as a result of adding the estimates of 

information vectors, we obtain the amplitude of each information element 4 times greater than the 

amplitude of the original element. Consider the scalar product of vectors that differ in one symbol: 
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 1 4 1 1 1 1= −x  and  2 4 1 1 1 1= − −x . Minimum distance: 

( )
2

2 , 2 64 32 8nm n m nd = − = − =s s s . As you can see, the minimum distance between vec-

tors has increased 4 times. 

As described above, we transmit information vectors in 4D space using matrices (17). From 

the point of view of separability of information symbols, it is important to note that the fundamen-

tal matrix (14) is decomposed into basic matrices (17), i.e. is equal to the sum of the basis matrices. 

Therefore, when multiplying one of the possible information vectors (20) by the basis matrices E, 

I, J, K, we obtain 4 orthogonal information vectors. 

Figure 5 shows the corresponding 4 vectors in 3D space obtained after multiplying the 

information vector  (0) 1 1 1 1= −x  by the basis matrices when depicting the scalar as a point 

mass. Figure 6 shows 4 vectors for the information vector  (0) 1 1 1 1= − −x , which differs 

from the original vector by the value of the 1st element.  

 

  
Figure 5. Information vectors obtained from the initial 

state vector [1-111] by multiplication by spatial basis 

matrices 

Figure 6 Information vectors obtained from the initial 

state vector [-1-111] by multiplication by spatial basis 

matrices 

As can be seen from Figures 5, 6, the difference between four spatial vectors in 4D is more 

significant than the difference between two vectors that differ only in one symbol, determined by 

the scalar product. Let's write these vectors in the form of matrices: 

5

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

− 
 
− − −
 =
 −
 

− − − 

F ,   13

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

− − 
 
− −
 =
 
 

− − 

F , 

where the matrix indices show the column numbers in (20) for the initial state vector, which is 

written in the first row.  

The matrix data is orthogonal because 
T T
5 5 5 5 4= =F F F F E  и 

T T
13 13 13 13 4= =F F F F E . 

Thus, we are faced with the task of distinguishing not two vectors, but two matrices for 

different hypotheses. This problem is solved by calculating the square of the Euclidean norm of 

the matrix or the Frobenius norm. 

It is shown that all 16 resulting matrices will be orthogonal. The squared Frobenius norm 

of these matrices will be 
2

16n F
=F , or    T T

5 5 5 5tr tr 16= =F F F F  and    T T
13 13 13 13tr tr 16= =F F F F

. The squared Frobenius norms for two matrices formed from opposite vectors will be equal -16, 

for example, for a matrix 5F  and 10F  we get  T
5 10tr 16= −F F . Having calculated all possible 
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Frobenius norms for matrix products, we obtain 4 norms 8, 4 norms -8, 6 norms 0 and 1 norm -16. 

Therefore, the minimum distance between norms will be equal to 16 – 8=8. 

Thus, we have obtained that the result of calculating the maximum likelihood does not 

depend on whether we calculate the distance between two vectors with amplitude 4 times larger 

using the scalar product or between two matrices using the Frobenius norm. 

 

Orbits of rotation of the vector of initial states in the three-frequency space 

of the quaternion 

Of the 16 possible combinations of information bipolar vectors, we have 8 vectors with a 

positive scalar part and 8 with a negative one. Figure 7 shows various orbits of rotation of the 

scalar part of the quaternion for initial states equal to the numbers of information vectors 1, 3, 10, 

12 for reference frequencies 1 6f = , 2 2f = − , 3 1f = −   Hz. The corresponding combination fre-

quencies are 1 3F = , 2 5F = , 3 7F = , 4 9F =  Hz. From 16 orbits, identical orbits are selected and 

grouped into four with positive and negative scalar parts, such as 1, 6 and 11,16; 2, 3 and 1, 15; 4, 

7 and 10, 13; 5, 8 and 9,12. Thus, we got 4 different orbits for 4 different initial states of each. 

For a single-frequency quaternion, we also obtained 4 orbits for 4 different initial states of 

each [6]. However, a comparison of these orbits with the orbits of a three-frequency quaternion 

shows that the orbits of a three-frequency quaternion occupy a significantly larger volume of qua-

ternion space and, as a consequence, the signals have a significantly greater variety. As is known, 

the greater the diversity of the signal, the less susceptible it is to interference and the higher the 

information transmission speed it is possible to obtain. In the limiting case, when the signal is 

similar to white noise and occupies the entire volume, we obtain the throughput [3]. 
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Figure 7. Orbits of rotation of the scalar part of the quaternion 

 

From Figure 7 you can also visually draw the following conclusion. Since in the MIMO 

scheme each information pulse will be simultaneously transmitted at different frequencies and at 

different times, the influence of frequency selective fading and time selective fading will also be 

reduced. 

 

V. CONCLUSION 

Thus, in contrast to existing technologies for increasing the capacity of communication 

channels using a MIMO scheme with many antennas at the input and output, the proposed tech-

nology using a MIMO scheme in a hypercomplex vector space, which has a patent [12], has sig-

nificant advantages: 

Instead of transferring the entire MxM matrix to the space-time code, i.e. channel matrix, a 

multi-frequency modulated vector is transmitted, obtained by multiplying the information vector 

by the channel matrix. In this case, all phase relationships between elements obtained during mod-

ulation are preserved, and the entire transmitter power is spent on each multi-frequency element 

of the vector; 

Instead of M antennas for transmission and reception, one antenna is used for transmission 

and reception, and the MIMO signal is generated in a multidimensional hypercomplex space, 

which significantly reduces the complexity of implementing MIMO schemes and instead of M 

antennas, M multipliers and adders are used for transmission and reception; 

As the dimension of the MIMO scheme increases, the degree of increase in throughput 

does not decrease, as is the case in physical space due to the limitation of its dimension; 

There is no need to increase the size of mobile radios and mobile phones when increasing 

the MIMO dimension, since there is no need to place multiple antennas in them; 

Since the phase relationships are preserved during the formation of the modulated vector, 

there is no need to know the phase shift of the signal from M transmitting antennas in each of the 

M receiving antennas. Instead of a complex synchronization system with a return channel, only 

knowledge of the carrier frequency and phase synchronization with it is required, as in the case of 

coherent reception of a one-dimensional signal; 

Obtaining a gain in noise immunity of M times allows us to provide the necessary speed of 

information transmission in 5G and 6G without the need to switch to the terahertz range and, 

accordingly, without reducing the communication range to line-of-sight range; 

Without a transition to the terahertz range there will be no significant impact on the human 

body, and the technological difficulties of creating electronic elements in this range will not in-

crease;  
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The absence of a large crest factor in hypercomplex signals, unlike multi-frequency signals, 

does not require an increase in amplifier power; 

The use of MIMO in the hypercomplex space allows for increased throughput in wireline 

communication systems; 

When using the MIMO scheme in hypercomplex space, each multi-frequency pulse con-

tains information about all M information elements, which significantly reduces the impact of fre-

quency and time selective fading. 
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