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Abstract

Purpose: Build new musician-listener interaction using smart watch for online music.

Tools: Smart Watch, Kinect, Touchdesigner
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Heart Fire: A Smart Watch-based
Musician-Listener Interaction System for Online
Live-streamed Concerts: A Pilot Study

Tianyi WANG, Shima OKADA

Abstract—Online live-streaming has become the new status quo in live music performances in the post-COVID-19 era. However,
methods to enhance interaction between musicians and listeners at online concerts are yet to be adequately researched. In this pilot
study, we propose Heart Fire, a system to promote musician-listener interaction that visualizes the listeners’ mental states using a
smart watch-based architecture. Accordingly, the listeners’ heart rates are first measured using a Galaxy smart watch and then
processed into a real-time animation of a burning flame, whose intensity is dependent on the heart rate, using Azure Kinect and
TouchDesigner. The feasibility of the proposed system was confirmed using an experiment involving ten subjects. Each subject
selected two types of music—cheerful and relaxing. The BPM and energy of each song were measured, and each subject was asked
to answer a questionnaire about the emotions they experienced before, during, and after listening to the songs. The results
demonstrated that the proposed system is capable of visualizing audience response to music in real-time.

Index Terms—Online Live-streaming, Smart Watch, Musician-Listener Interaction, Visualization

<+

INTRODUCTION

1

TRICT quarantine and spatial distancing measures to
S contain the COVID-19 pandemic have altered people’s
lifestyles fundamentally on a global level. People are spend-
ing more time at home because they work and study online.
Fink et al. ranked the daily domestic activities performed
by people during the lockdown and found that listening
to music ranked third, just behind staying up-to-date with
the outside world (for example, talking to other people over
the phone or watching the news) and domestic chores (for
example, cleaning and cooking) [1]. This is a reasonable
observation because people use music as an effective tool
to cope with various forms of psychological distress such
as anxiety, depression, loneliness, stress, and poor sleep
quality [2], [3], [4], [5], which have been exacerbated by
the pandemic. Indeed, several studies have demonstrated
that listening to music aids relaxation, improves mood,
reduces negative emotions, abates loneliness, and relieves
daily stress [6], [7].

To prevent transmission of infections in crowded on-
site concerts, artists have started to perform music differ-
ently—primarily via online live-streaming. 70% of artists
were reported to have live-streamed since the COVID-19
breakout, with 40% of live-streaming once a month or more
and over 80% of them willing to make live-streaming a
permanent part of their performance plans even after in-
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Fig. 1. Present Online Musician-Listener Interaction.

person events are resumed. Similarly, over 70% of music lis-
teners have reportedly watched a live-stream at home, and
60% plan to continue live-streaming even after in-person
concerts are resumed [8], [9]. Thus, online live-streaming of
concerts can be expected to become the new status quo in
the music industry for the foreseeable future.

Besides performances, interactions between musicians
and listeners are also being increasingly conducted online.
Fig. 1 depicts an example of musician-listener interactions
on online platforms. By using social media apps such as
Twitter (Fig. 1 (a)), music fans and artists can communicate
with each other. Popular live-streaming apps (Fig. 1 (b))
enable audiences to directly comment and send emoticons
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during a musical performance, which the artist can notice in
real time. Online video chatting software is another popular
tool used by artists to organize online concerts (Fig. 1 (c)).
Although audiences can turn on their cameras and display
their faces in such an architecture, it is difficult for artists
to read the atmosphere because of the overabundance of
faces on their screens. Thus, online music performances lack
real-time and dynamic interaction. Concert-goers usually
clap and wave their hands synchronously with the rhythm
of the ongoing song, sing along, and cheer excitedly and
loudly, which inspires the performing artists. In addition,
musicians may occasionally improvise based on their lis-
teners’ responses. Thus, online concerts weaken the bond
between musicians and listeners—if musicians are not able
to experience the listeners’ responses, their enthusiasm, in
turn, is discouraged.

In this context, several studies have been conducted
to improve musician-listener interaction in online concerts
through different perspectives. Yang et al. proposed a smart
light stick to improve interaction [10]. The stick is equipped
with a triaxial accelerometer and LEDs, whose colors change
when the stick is shaken at the correct frequency. Simi-
lar light-based interaction enabled using wireless motion
sensors were also proposed in other studies [11], [12],
[13]. Since the beginning of the smartphone era in 2007,
musician-listener interaction has been increasingly carried
out on smartphone-based systems through sound [14], text
[15], and control interface [16]. Hodl et al. established that
the utilization of a smartphone as a technical device can
inspire creative work in artists and enhance their interaction
with listeners [17]. An interesting application for musician-
listener interaction was proposed in [16]. The researchers
designed a smartphone app on which audience members
could draw using brushes of different shapes, colors, sizes,
and borders during musical events. These artworks were
visible to the musician during the concert. However, Hodl
et al. also argued that using smartphones during a musical
performance may also serve as a distraction [18], because of
the necessity of operating the device—whether by typing or
handling it in particular ways to convey their responses to
the performer.

In a recent study, heart rate variability (HRV) was an-
alyzed as a metric of mental state while listening to mu-
sic on different devices, for example, stationary speakers,
headphones, and smartphone speakers [19]. The authors
concluded that, in terms of HRV, live-streaming was less
impressive than an on-site concert due to poorer audio
quality on low-level audio devices. However, the study
analyzed mental state using retrospective analysis rather
than analyzing the mental state information continuously in
real-time. Thus, it does not encapsulate the real-time state of
mind of the audience members. Furthermore, the collection
of electrocardiograph (ECG) data, which is necessary to
apply traditional HRV analysis, of people attending online
concerts is difficult.

Therefore, it is essential to develop a real-time and user-
friendly method to visualize the mental states of online
concert attendees. In this study, we propose Heart Fire, a
smart watch-based system capable of visualizing the mental
states (for example, calm or excited) of people attending
online concerts. The right-hand figure in Fig. 2 depicts an
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Fig. 2. Concept of Proposed System.
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illustration of the proposed system. The audience member’s
mental state is detected using a smart watch and trans-
mitted to a local computer via Wi-Fi. It is then visualized
using Azure Kinect and processed using TouchDesigner.
The output of Heart Fire is depicted at the top-left corner
of Fig. 2. When the audience member is calm, the visualized
fire burns slowly, whereas when they are excited, the fire
burns intensely. We believe that the proposed system will
inspire novel musician-listener interaction during online
performances.

The remainder of this paper is organized as follows. In
Section 2, the details of the proposed system are presented in
addition to an experiment conducted to evaluate its perfor-
mance. The results are presented in Section 3. Social aspects
and technique notes are discussed in Section 4. Finally, the
paper is concluded in Section 5.

2 METHODS

Fig. 3 depicts an overview of the proposed system. Briefly,
the system consists of two parts—a smart watch to record
real-time heart rate and a local computer equipped with
Azure Kinect and TouchDesigner to process the recorded
heart rate signal and convert it into visualized data.

2.1 Smart Watch

In this study, we used the SAMSUNG Galaxy Watch with
a 42 mm body (GW42) to record the heart rate. GW42 is a
Tizen-based wearable device with a 1.15 GHz Exynos 9110
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Fig. 4. The Smart Watch App.

Dual core processor and 4-GB NAND memory. The external
network is connected via Bluetooth® 4.2, Wi-Fi b/g/n,
NFC, and A-GPS/Glonass. Besides a heart rate sensor,
GW42 is also equipped with a gyroscope, an accelerometer,
a barometer and an ambient light sensor [20]. In order
to record heart rate using GW42, a Python program was
written to transfer the data to a local computer referenced
from [21]. Heart rate data is read/written using the Base
HTTP Request Handler. Thus, the IP address and port ID of
the local computer is required for transmission of heart rate
data.

Fig. 4 depicts an image of a GW42 app named Heart Fire
used to record heart rate data. This app was constructed by
Tizen, and a shortcut to it can be placed on the smart watch
home page after installation (see Fig. 4 (a)). Once the icon is
clicked, the app interface is displayed, and users can input
the IP address and the port ID of their computers. Delay
denotes the interval of heart rate monitoring—for instance,
a 500-ms delay implies that heart rate is monitored twice
per second (at a frequency of 2 Hz). Users can alter this
setting; however, we take the delay to be 500 ms in this
study considering both the smart watch memory capacity
and the average duration of songs.

To confirm the reliability of the recorded heart rate
data, a cross-check experiment was performed to compare
the heart rate recorded using the smart watch with that
recorded using the gold standard. A subject wore the GW42
and a heart rate sensor (AP-C030 (a), Polymate V AP5148,
Sample Frequency 100 Hz) was attached to the tip of his
middle finger. We asked the subject to listen to a piece of
music (length 3 m 20 s) and recorded his heart rate using
both equipment at the same time. The heart rates during a
30-s interval of the experiment are plotted on the right-hand
side of Fig. 5 (a). Linear regression was performed using the
statistic software, JASP (version 0.14.1.0, The Netherlands).

During the cross-check experiment, the heart rate was
recorded 200 times. Linear regression reveals that the smart-
watch can significantly predict HR F(1, 198) = 375.61, p <
0.001 using the following regression equation:

HR = 1197 + 0.858 x HRSmartWatch (1)

where HR denotes the heart rate recorded using the
gold standard, and H Rgmartwatch denotes the heart rate
recorded using the smart watch. The Q-Q plot (Fig. 5 (b))
demonstrates that the standardized residuals fit well along
the diagonal, indicating that both assumptions of normality
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Fig. 5. Recorded Heart Rates during the Cross-Check Experiment.

and linearity are satisfied. Fig. 5 (c) illustrates the partial
regression plot—the blue dashed lines represent the 95%
confidence intervals, and the green dashed lines represent
the 95% prediction intervals. It is evident that the proposed
smart watch system predicts heart rate with high reliability.

2.2 Heart Rate Visualization

Fig. 6 depicts an overview of the visualized heart rate. In
this study, we used Azure Kinect (Developer Kit, Microsoft,
USA) and TouchDesigner (version 099, 64-Bit, 2021.14360) to
perform the Heart Fire visualization. The Azure Kinect cam-
era consists of an RGB camera and an IR camera. Compared
to other commercial cameras, Azure Kinect exhibits higher
accuracy [22]. TouchDesigner is a node-based programming
language that has been used for real-time interactive mul-
timedia content by software designers, artists, and creative
coders [23], [24]. Fig. 6 (a) depicts the steps of the visualiza-
tion process using TouchDesigner. In the figure, each square
represents a node and the arrows indicate the direction of
data flow. The solid arrows represent wires, which connect
the output of each node to the inputs of other nodes, and
dashed arrows represent links, which represent data flow
between nodes. Usually, a link is used for transforming
parameter variables. In this study, TouchDesigner nodes
are classified into four main categories in terms of their
functions. Nodes corresponding to blue squares are used for
human detection using Azure Kinect. Green squares com-
prise four nodes, which are used to configure visualization
settings. Nodes corresponding to red squares are used to
import and process the heart rate data recorded using the



JOURNAL OF IATEX CLASS FILES, VOL. , NO. ,

—p Wire ====p> Link

\ .
Color lmage/ Level / Scale
l Composite
IIIIIIII ‘IIIHi!!I_’IIlEiill/’ I

Index Image Edge Analyze

Heart Rate

Ratio

[ N

i Nvidii Flow

PUTE R P ——

~,

Nvidia Flow
Emitter

Camera

Color Data

(a) Concept of Visualization Process

GAF =05+2 (HR 1)
—os+2x(MR_
50

Gravity Alternate Frequency
(Hz)

60 70 80 90 100 110 120
Heart Rate (bpm)

(b) Heart Rate and Gravity Alternate Frequency

Gravity Ratio

| 0.0 0.5 1.0 1.5 2.0
Time (s)
(c) Example of Gravity Ratio (60 bpm, GAF = 0.5 Hz)

Fig. 6. Converting Heart Rate to Visualized Media.

smart watch and then converted to a parameter used for
visualization.

Firstly, the index image was used to separate the user’s
image from the background. Then, parameters such as
brightness, gamma, and contrast of the video were adjusted
to clarify the user’s silhouette. Following that, the edge of
the user’s image was identified after adjusting the size of the
image. The rescaled image and image of the edge were then
combined into one file and used as one of the parameters of
visualization. The ramp node was used with color data to
stimulate the effect of fire, and the camera node was used to
ensure a proper viewing angle. Finally, real-time recorded
heart rate was used to simulate a burning fire. In Heart
Fire, the heart rate is directly proportional to the intensity
of the fire. Intensity was selected to be the variable property
instead of size (e.g., fire size> 1) to represent the mental
state owing to the constraint of window size to display the
user’s video. Nvidia Flow was used to control the intensity
of the flame by adjusting the gravity of the fire effect along
the Y-axis (that is, in the vertical direction). Thus, a Gaussian

4

curve with maximum value of 1 and different frequencies
was used to control the gravity alternate frequency (GAF).
Fig. 6 (b) illustrates the GAF with respect to the heart rate.
Assuming that the heart rate of a healthy person usually
ranges from 60 to 120 beats per minute (bpm), the heart rate
was fitted using the following equation to determine the
interactive GAF:

H
GAF = o.5+2x(6—f—1) @)

When the heart rate lies between 60 and 120 bpm, the
GAF lies between 0.5 and 2.5 Hz. Higher heart rates are
visualized using more intensely burning fire. Fig. 6 (c)
depicts an example of the temporal variation of the gravity
ratio corresponding to a heart rate of 60 bpm and a GAF of
0.5 Hz. Details of each node are summarized in Table 1. A
screenshot of the TouchDesigner interface is depicted in Fig.
7.

2.3 Experiment

The feasibility of the proposed system was experimentally
verified. Ten subjects (eight males and two females, age:
252 £ 3.5 y.o0.) participated in the experiment, and the
contents of the study were explained to them orally before
the experiment. Data that contains any information that
may identify any individual person were not used in this
research.

We asked all subjects to choose two pieces of music by
themselves—one that cheers them up (Type 1) and another
that relaxes them (Type 2). Then, the beats per minute (BPM)
and energy of both types of music were investigated using
a music analysis website, Musicstax [25]. BPM is defined
as the tempo of a track in beats per minute, and energy is
a measure of how intense a track sounds based on mea-
surements of dynamic range, loudness, timbre, onset rate,
and general entropy—0% indicates low energy and 100%
indicates high energy.

During the experiment, each subject wore a smart watch
and listened to their chosen music on YouTube. Heart rate
data were recorded 1 min before playing the music (Pre),
while playing the music (Music), and 1 min after the music
had finished playing (Post), for reference. The correspond-
ing GAFs were calculated using Eq. 2. All three GAFs
were normalized using the average Pre-GAF. Based on the
concept of the proposed interaction system, the following
visualized effect was expected: 1. Subjects’ heart rates were
expected to increase while listening to Type 1 music (Type 1
HR) and the GAF was expected to be higher (Type 1 GAF);
2. Subjects’ heart rates were expected to remain constant or
decline while listening to Type 2 music (Type 2 HR) and the
GAF was expected to be lower (Type 2 GAF).

After the experiment, a follow-up Semantic Differential
scale (SDs)-based survey was conducted to record the emo-
tions experienced by the subjects after listening to music.
The SDs consist of eight pairs of factors that were designed
to capture user attitude towards particular pieces of music
[26]. Every pair of factors was rated on a 5-point bipolar
rating scale (£2: strong, £1: slight, 0: neutral), and subjects
were asked to rate each factor. An example of SDs is de-
picted in Fig. 8.
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TABLE 1
Parameters of TouchDesigner Node
Name Node Main Parameter Value
Color Image Kinect Azure (TOP) Image Color
Index Image Kinect Azure (TOP) Image Player Index
Brightness 2
Level Level (TOP) Gamma 3
Contrast 5
Scale Transform (TOP) Scale 1 (according to need)
Type Luminance
Edge Edge (TOP) Black Level 0.7
Strength 7
AT Quality High
Analyze Anti Alias (TOP) Edge Detect Source Luminance
Composite Composite (TOP) Input Scale + Analyze
DAT Rampl1 keys
Ramp Ramp (TOP) Hue 360
Color Data TOP to (CHOP) TOP Ramp
Type Shape TOP
Nvidia Flow Emitter Nvidia Flow Emitter (COMP) Shape OP Composite
Material Color Color Data
Cameraa Camera (COMP) Transform Scale Rotate Translate
Heart Rate Table (DAT) Input GW42
. Input Heart Rate
Gravity Alternate Frequency (GAF) Evaluate (DAT) Algorithm Self-Decided
. . Type Gaussian
Gravity Ratio LFO (CHOP) Frequency GAF
Nvidia Flow Nvidia Flow (TOP) Gravity y Gravity Ratio

TOP: Texture Operators
CHOP: Channel Operators
COMP: Components

DAT: Data Operators

We used JASP (version 0.14.1.0, The Netherlands) to per-
form statistical analysis. The mean and standard deviation
of BPM, Energy, SDs, and normalized GAF were calculated.
The Shapiro-Wilk test was used as the normality test and
Levene’s test was used to confirm the equality of variances.
Based on the results of appropriate tests, the Mann-Whitney
Test was used to analyze BPM, Energy, and SDs correspond-
ing to both types of music. The appropriate effect size was
calculated using Rank-biserial (rg), where an effect size rp
< 0.1 indicates a trivial effect, 0.1 < rp < 0.3 indicates small
effect, 0.3 < rp < 0.5 indicates medium effect, and rp >
0.5 indicates large effect. Nonparametric two-way ANOVA
(Kruskal-Wallis Test) was used to ascertain the presence
of a significant difference in GAF between the different
periods and the different types of music. In case a significant
difference was observed, Dun’s Post Hoc Comparisons were
tested. The significance level was defined to be 5%.

3 RESuULT

Table 2 summarizes the results of BPM, Energy, and SDs
corresponding to both types of music. Fig. 9 (a) and (b)
depict the BPM and Energy of both types of music. On
average, BPM of Type 1 songs was higher than those of
Type 2 songs, 139.2 £ 26.9 bpm and 125.7 £ 37.2 bpm,
respectively. However, there was no significant difference
in bpm between the two types of music (p = 0.38).

On average, Type 1 music exhibited higher energy than
Type 2 music (87.4 &= 9.3% and 45.5 £ 19.1%, respectively).
The Mann-Whitney test revealed that Type 1 music exhib-
ited significantly higher energy than Type 2 music, with U
= 98.00 and p < 0.01. Rank-Biserial Correlation (0.96) also
suggested that this effect was large.

TABLE 2
BPM, Energy, SDs Results for Two Types of Music
Factor Typel Type2 W P TB
?bl; M : (12369_92) (1327522 620 038 024
E,jo‘;frgy (89?'34) (1‘5"15) 980 <00l 096
Dark-Bright ('11."8 (fﬁ 32.0 0.16 -0.36
Light-Heavy (01_'71) (1%2) 730 008 046
Soft-Hard (19'3*; (11_ 4()’ 45.0 072 -0.10
Anxious-Peaceful 05 12 660 022 032
(1.3) (1.0)
Muddy-Clear ('1(_)49) &S 675 015 035
Crisp-Smooth (1(.)3 (_1069) 71.0 0.10 042
Gentle-Intense (61;; (01"76) 20 <001 -096
Thin-Thick (&(; (-0969) 765 004 053

Data: mean (SD)

The radar chart depicted in Fig. 9 (c) presents the SD
values. According to the subjective survey, on average, sim-
ilar emotions were reported on four metrics (Dark-Bright,
Soft-Hard, Anxious-Peaceful, Muddy-Clear) after listening
to music. For both types of music, subjects felt relatively
bright (both < 0), soft (both > 0), peaceful (both < 0),
and clear (both < 0). However, their responses on the
Light-Heavy, Crisp- Smooth, Gentle-Intense, and Thin-Thick
scales differed. Type 1 music made subjects feel more light,
crisp, intense, and thin emotions. Among these, signifi-
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cant difference was observed corresponding to the Gentle-
Intense emotion (Type 1: -1.3 £ 0.9, Type 2: 1.6 £ 0.7, U
= 2.00, p < 0.01), and Thin-Thick emotion (Type 1: 0.0 &+
1.1, Type 2: -09 £ 0.6, U= 76.5, p < 0.05). Rank-Biserial
Correlation (-0.96 and 0.53, respectively) suggests that these
are large effects.

TABLE 3
Results of Normalized GAF

Music Type Period Mean SD
Pre  1.000 0.000

Type 1 Music  1.029  0.029
Post  1.003 0.029

Pre  1.000 0.000

Type 2 Music 0995 0.036
Post  0.998 0.036

The normalized GAFs are summarized in Table 3 and
plotted in Fig. 10. As expected, GAF increased while lis-

TABLE 4
Kruskal-Wallis Test: Normalized GAF

Factor Statistic  df P

Music Type 7.569 1 0.006

Period 1.029 2 0.598
TABLE 5

Dunn’s Post Hoc Comparisons - Music Type

Comparison z W, W;
Type 1-Type2 2751 36.700 24.300

p
0.003

tening to Type 1 music, while it decreased slightly while
listening to Type 2 music. However, no significant difference
was noticed between the normalized GAFs corresponding
to different periods. Kruskal-Wallis tests revealed that dif-
ferent types of music significantly changed the normalized
GAF, H(1) = 7.569, p < 0.01. Dunn’s Post Hoc Comparisons
demonstrated that both types of music significantly affected
normalized GAF (p < 0.01).

4 DISCUSSION

In this exploratory study, we proposed a smart watch-based
musician-listener interaction system that visualizes audi-
ences’ mental states using real-time animation. Presumably,
this is the first attempt of visualize online musician-listener
interaction using an app on a wearable device.

The experimental results demonstrate that the proposed
Heart Fire architecture can successfully convert the audi-
ence’s mental state into visualized information. The various
emotions experienced by listeners of different types of music
was faithfully reflected by the intensity of the displayed
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fire determined by continuously monitoring the heart rate
using a smart watch. Although no significant difference
was noticed during the periods before and after listening
to the music, listeners generally felt excited while listening
to cheerful songs and felt calm while listening to relaxing
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songs.

No significant difference was noticed in BPM among the
two types of music. This can be attributed to the fact that the
pieces of music were chosen by the listeners, introducing a
degree of subjectivity into the selection process. However,
it was also noticed that, for most of the listeners (8 out
of 10), Type 1 music exhibited higher BPM than Type 2
music—this is evident from the dashed lines plotted in
Fig. 9 (a). The energy of the two types of music, on the
other hand, exhibited the expected trend—Type 2 music had
lower energy compared to Type 1 music.

The SD-based survey revealed the differences in emotion
experienced by listeners while listening to the two types
of music—it was relatively more intense for Type 1 music
and relatively gentler for Type 2 music. This could be one
of the reasons behind the higher heart rate in the first
case compared to the second. Although subjective emotions
regarding different types of music is beyond the scope of
this study, the proposed system was proved to be capable
of visualizing audience members’ emotions by converting it
into the animation of a burning fire.

In the following subsections, we further discuss this
research from the two perspectives indicated by our exper-
imental observations—social aspects that should be taken
into account while considering musician-listener interaction
during online live-streamed concerts and some notes on
techniques related to hardware and software.

4.1 Social Aspects

Previous studies attempted to improve musician-listener
interaction in different ways. Onderdijk et al. [27] enabled
listeners to vote for the final song that they want to hear in a
live-streamed concert, but they found the voting mechanism
to be incapable of increase the feeling of agency in listeners
by itself. This shortcoming was attributed to the one-off
nature of the exercise—voting was only enabled during the
last part of the concert. This indicates that inculcating a
sense of agency in online concert attendees is ineffective if it
is not implemented in a continuous manner. In this research,
heart rates of concert attendees were visualized using the
animation of a burning fire with a detection frequency of 2
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Hz. Thus, it enables musicians to be aware of the listeners’
mental states continuously. The current study is merely an
exploratory one, with no feedback from actual musicians
yet. But, it seems reasonable to expect that musicians will
be able to use this information to revise the order of their
setlists or even improvise based on the mental states of
listeners. On the other hand, such improvisations and modi-
fications to the setlist will correspond to the listeners’ moods
and improve their sense of agency by promoting the feeling
that they are part of the performance. In future studies,
we would like to enable collaborations between audience
members and onstage performers, such as an interactive
MTYV, creating an experience that would be truly unique to
each performance.

Application of virtual reality (VR) or 360° monitors
can also augment the physical and spatial presence and
involvement of listeners [28], [29]. However, although the
short-term use of VR could enhance connectedness be-
tween listeners and musicians, watching live-streamed per-
formances for longer duration is a more relevant contributor
to enhanced musician-listener interaction—as the watching
duration increases, the listeners’ empathy with the per-
former grows stronger [30]. Whether visualized musician-
listener interaction increases empathic concern and induces
a greater social bond is a question that remains to be
answered.

Other than video quality, which is an important fac-
tor in the aforementioned tools, audio quality is also a
crucial factor to enhance the sense of involvement and
presence in live-streamed performances and improving lis-
tener experience by promoting social connectedness with
the performance, as shown in [31]. In this study, listeners
used over-ear headphones (Beats Pro, frequency response
= 20-20000 Hz, sound pressure level = 115 dB) and Hi-Fi
stereo audio cables (MPS E-100, 1 m, 99.999997% OFC, with
customized 24 K gold-plated plug) during the experiment
to guarantee acceptable audio quality. The effect of the
quality of headphones on mental state of attendees of live-
streamed concerts is beyond the scope of this study. The
minimum requirements of audio equipment in order to
achieve an acceptable sense of presence in listeners should
be investigated.

Popular tools for attending online concerts include social
media platforms and conference software, where attendees
can also see other audience members besides the perform-
ers. Although such tools induce a greater sense of social
presence, viewing others or being watched by others may
distract listeners from the performance, thereby compro-
mising their sense of connectedness with the artist. Our
survey revealed an interesting observation—when we asked
a subject to choose a cheerful song, he first considered
selecting one by his favorite band of female performers
but hesitated to select it as he felt embarrassed in letting
other people know that his favorite musicians are a female
group. Although his final choice also cheered him up, we
considered the initial choice to have been a better choice as it
was his immediate response. Musical preferences comprise
private information—it is essential to avoid personal data
leaks especially on the internet. In this study, mental state
data were transmitted directly to a local PC, instead of a
cloud or a server. In fact, data is not recorded at all because
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the proposed method is based on real-time information.
Moreover, visualization using TouchDesigner only uses the
silhouette of the listener’s image and the animated fire
masks all identifiable features of the body. This makes it
difficult for third parties to discern a person’s identity based
on only their heart rate and a processed image. Thus, the
proposed system adequately protects its users’ privacy.

In a recent study, Yang et al. used an LED stick not only
for interaction during a musical performance, but also as a
social connection tool after the event [10]. Shaking the LED
stick at similar frequencies indicated that different audience
members shared similar levels of enthusiasm, after which
they were free to add each other as friends. It would be in-
teresting to apply this social function to the methodology of
our study as well. This would enable users to connect with
other who experience similar emotions or exhibit animated
fires of similar intensity while listening to a particular song.

4.2 Technique Note

Kayser et al. established that emotional responses of listen-
ers to pieces of music can be studied based on their facial
expressions [32]. However, analysis of facial expressions is
sensitive to illumination conditions and susceptible to occlu-
sion by hair or spectacles of the user. Moreover, all emotions
do not produce discernible facial expressions. Facial EMG
(fEMGQG) is another method for estimating audience emotions
during live-streams [33]. When listeners sing along with a
sad song, corrugator supercilii, which are muscles used in
frowning and are associated with negative valence, exhibit
higher activation. In contrast, when they sing along with
a happy song, zygomaticus major, which is a muscle used
while smiling and is associated with positive valence, ex-
hibits higher activation. However, although fEMG enhances
musician-listener interaction, it may disrupt the listener’s
experience as it uses surface electrodes attached to the
listener’s face. In this study, we used only a Samsung Galaxy
Watch to measure heart rate. There are several advantages
to this approach over fEMG—smartwatches are more non-
invasive devices, easier to use, and much cheaper. Further,
the proposed method does not require calibration and is
not affected by noise from the environment or by body
movement. Alternative smart watches, such as Apple Watch
Series, Fitbit, Garmin, Xiaomi Mi Band, may also serve the
purpose [34]. However, further investigation is required to
ensure if they can fulfil the requirements of direct trans-
mission of heart rate to TouchDesigner or other software,
without passing through an online server or a cloud.

Azure Kinect has been widely used in media enterprises
[34], healthcare [35], [36], and robotics [37]. In this study,
we used its depth sensor to identify the silhouette of the
human body. However, Azure Kinect is also equipped with
an RGB camera and an array of seven microphones, which
offers the advantage of expanding the scope of the proposed
architecture in the future. Further, TouchDesigner facilitates
the implementation of Azure Kinect by removing the dif-
ficulty of programming using a special prefabricated TOP.
A high-performance PC may be needed to ensure that the
animation is of high quality. Thus, a 1-GB GPU (for desktop
PC: Nvidia GeForce 600 Series or better, or AMD HD 7000
Series or better; for workstation: Nvidia Quadro K series or
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AMD W or V series or better) is recommended. The Heart
Fire effect is only available if the user is using an Nvidia
graphics card.

In a previous study, Onderdijk et al. underlined the
trend among musicians to use tools that they are already
acquainted with, rather than to explore new platforms,
while organizing online concert [38]. This unwillingness
can be primarily attributed to the steep learning curve of
learning to operate new tools and the general need for
technical knowledge. However, the proposed architecture
uses TouchDesigner, which supports codeless design of
visualization. Thus, it is much easier to use than other
popular programming languages, e.g., Python or C/C++.
The free account (non-commercial version) provided by
TouchDesigner is also an enabling factor for musicians on
a tight budget.

Popular video-conferencing platforms, for example,
Zoom and Skype, are not suitable for synchronized playing
and have been generally reported to be incapable of dealing
with latency issues [38]. Although a latency of 100 ms
is acceptable in live-streamed concerts, usually latencies
between 20 and 40 ms are considered optimal. The total
time between frames and playback rate of TouchDesigner
is 26.8 ms, which is optimal for visualization. This frame
time can be further decreased by optimizing the TouchDe-
signer nodes using the Null TOP node to avoid complicated
network updates.

This study suffers from certain limitations. Due to its
exploratory nature, only ten subjects were selected for the
experiment, because of which the results must be inter-
preted with caution. Moreover, the songs were selected by
the subjects themselves, and variance in their types and
lengths complicated the analysis. However, self-selected
music was still preferred as it was deemed to be effective
in motivating the subject’s emotions [7]. Finally, music was
played on YouTube and not live-streamed from any online
concert due to the difficulty of organizing such a concert
within the COVID-19 restrictions. In the future, we intend to
investigate feedback from musicians. Further, this study did
not implement VR or 360° monitors to enhance the sense
of involvement and presence among the audience. Such
realistic experiential environments must be considered in
subsequent studies.

5 CONCLUSION

Even after the pandemic, attending on-site concerts will re-
main riskier compared to watching live-streamed concerts.
This is because the lack of social distancing at such concerts
enables the spread of COVID-19. In this study, a smart
watch-based system was proposed to enhance musician-
listener interaction in online concerts. The listeners” mental
states were visualized based on their heart rates using
Azure Kinect and TouchDesigner. Experiments confirmed
that higher heart rates were visualized using larger and
more intense fire and lower heart rate were visualized using
smaller and less intense fire.
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