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Abstract— Craniomaxillofacial (CMF) fractures, often re-
sulting from traffic accidents, falls, and head traumas, ne-
cessitate prompt diagnosis and analysis with CT images.
Our study leverages a segmentation model named 3D Swin
UNETR to develop an automated detection system for these
fractures. The key finding of this study is the significant im-
provement in the quality of CMF fracture detection achieved
by incorporating an additional input channel containing
labels of skull regions, using an additional loss function
named Proximity loss, and performing an ensemble infer-
ence approach using different models trained by different
settings. Clinical evaluations were manually performed by
experts where the best-performing model achieved the pos-
itive predictive value (PPV) of 82.49%, true positive rate
(TPR) of 96.03%, false detection rate (FDR) of 17.51%, false
negative rate (FNR) of 3.97%, and F1-score (F1) of 88.23%.

Index Terms— Craniomaxillofacial injuries, detection,
segmentation, deep learning, CT images.

[. INTRODUCTION

LINICALLY known as craniomaxillofacial (CMF) frac-

tures, facial fractures are commonly caused by traffic
accidents, bicycle accidents, industrial accidents, assaults, do-
mestic violence and sports injuries. Airway obstruction is one
of the serious complications, where this is exacerbated by
the risk of aspiration and vomiting [1]. Additionally, CMF
fractures resulting from a significant impact to the head can
have a negative effect on the patient’s prognosis because they
can cause intracranial hematomas and infections [2]. Given
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the potential for early yet advanced complications leading to
suboptimal outcomes, prompt and precise initial diagnosis is
crucial [3], [4].

The computed tomography (CT) scan of the patient’s head is
considered the gold standard for diagnosing CMF fractures [5].
However, interpreting and diagnosing CMF fractures via CT
scan is challenging due to the complex anatomical structure
of CMF. For example, some CMF structures interdigitate with
each other causing CMF fractures to disrupt adjacent structures
in complex ways [6], often resulting in more complex CMF
fractures. Because of that, CMF fractures can appear in
several regions of the skull simultaneously (e.g., the mandible,
maxilla, skull base) which might complicate the diagnosis.
Therefore, diagnosing CMF fractures via CT scan by human
experts requires a lot of experience, precision, effort, and
time [3], [7] and is often prone to unintended omissions and
misjudgments [7]-[9].

Based on the challenges discussed above, this study devel-
oped an automated detection of CMF fractures from whole 3D
head CT scan images using ensembles of deep segmentation
neural networks (i.e., deep learning). Deep learning itself has
been increasingly utilized in various medical fields over the
past few years, exhibiting satisfactory performance in medical
image positioning, segmentation, and diagnosis [10]. Our con-
tributions in this study are (1) we presented the first study on
the automatic detection of CMF fractures from full 3D volume
images of CT scans using deep segmentation neural networks,
(2) we proposed a unique approach of incorporating labels of
skull regions, using a compound loss function for training,
and using ensembles of segmentation models to improve the
quality of CMF fracture detection, and (3) we performed not
only quantitative assessments but also clinical assessments to
assess the clinical applicability of our proposed approaches.

The rest of this paper is organized as follows. Section II
discusses related previous works on automated detection of
fractures on the head. Section III describes the dataset used
in this study. Section IV explains all different settings used in
our experiments. Section V describes and discusses the results.
Lastly, Section VI concludes this study.

Il. RELATED WORKS

Before the deep learning, only a few previous studies con-
ducted research on the automated detection of skull fractures.
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These studies mostly used computer vision techniques, such
as the black-hat transform, to detect fractures on the skull
from head CT scans [11], [12]. However, the computer vision
techniques were unreliable due to the variety and complexity
of the fractures that appear on the skull. In contrast, some
previous have proposed several deep learning models to auto-
matically detect skull fractures, which can be categorized into
classification, detection, and segmentation approaches.

The majority of previous studies using deep learning pro-
posed classification models to classify whether there are frac-
tures in head CT images with no localization of the fractures.
The input image can be a 2D slice of a head CT scan [13], a
2D image/patch of a specific area of the skull (e.g., mandible
[14]), or a 3D image/patch of a specific area of the skull (e.g.,
nasal [15]). One study developed a classification method to
classify whether any maxillofacial fractures appear on a 2D
slice of a head CT scan or not [16].

On the other hand, other previous studies proposed object
detection models by using variations of convolutional neural
networks (CNN) [17]-[19], such as Skull R-CNN [18] and
Fracture R-CNN [19] models, for skull fractures detection in
a 2D slice of a head CT scan. One previous study specifically
compared the effectiveness of object detection and semantic
segmentation models for detecting fractures in the cranial
vaults of the skull, where the semantic segmentation model
achieved better detection results [20]. This finding is inter-
esting because fracture segmentation is more difficult than
fracture detection. After all, fracture segmentation not only
looks for the location but also the shape and size of the
fracture [6]. Another study performed a clinical study of an
automated diagnosis system for skull fracture detection using
a combination of conventional and deep learning algorithms
[21].

[1l. DATASET
A. Data and Subjects

For this study, we collected a retrospective dataset consisting
of 20 CT images from 20 patients with CMF fractures admitted
to the Dr. Cipto Mangunkusumo Hospital (RSCM), Jakarta,

TABLE |: Baseline characteristic of the subjects.

Characteristic n (%)
Total patients 20
Male 19 (95)
Female 1(5)
Age (in years)
Mean 29.1
Range 6-60
Fracture location
Frontal cranial vault 2 (10)
Upper central midface 11 (55)
Intermediate central midface 2 (10)
Lower central midface 3 (15)
Maxillary body 12 (60)
Palate 1(5)
Zygomatic arch 6 (30)
Symphyseal and parasymphyseal mandible 2 (10)
Body mandible 9 (45)
Ramus mandible 1(5)
Condylar processus mandible 6 (30)

Indonesia in 2020. RSCM is an educational and research
hospital for the Faculty of Medicine, Universitas Indonesia.
The retrospective data used in this study were approved to be
used for research by the Health Research Ethics Committee
of the Faculty of Medicine Universitas Indonesia (No. KET-
1842/UN2.F1/ETIK/PPM.00.02/2023). The dataset consists of
CT images captured by Siemens SOMATOM Definition Flash
128 slice dual source, Philips Ingenuity 64 slice, and Siemens
SOMATOM Definition AS 64 slice, which produced CT
images with different sizes and voxel’s spacings. Characteristic
of the subjects is presented in Table I. In this dataset, each
subject has CMF fractures with various shapes, sizes, and
locations. Therefore, subjects who do not have CMF fractures
in a specific region of the skull are beneficial to measure the
probability of false detections in that region of the skull.

B. Ground Truth Labels

1) Labels of the CMF Fracture: The biggest challenge of this
study involved manually creating labels for CMF fractures for
all subjects. This labeling was carried out by experts, who
delineated both fractures and parts of the skeleton that should
have been connected (see yellow boxes in Fig. 1). Note that
CMF fractures, unlike other abnormal features in radiology
like brain lesions, do not have boundaries that can be easily
delineated by experts. Therefore, manual segmentation labels
in CMF fractures may extend beyond the skeleton. In addition,
as suggested by previous studies [7]-[9], there might be some
unintended omissions in the creation of manual labels for CMF
fractures by the experts.

2) Labels of the Skull and Skull Regions: Our previous
study suggested that global spatial information improved the
quality of segmentation tasks in biomedical images when
CNN models are used [22]. Therefore, in this study, we
proposed to incorporate global spatial information in the form
of either labels of the skull or labels of the skull’s regions.
We generated skull labels for each subject by applying CT
image intensity thresholding. Voxels were classified as skull
components if their intensities were > 600, and then the
non-head skeletons that appear in the head CT image (e.g.,
vertebrae) were manually erased. On the other hand, a trained
expert manually labeled the skull into 7 regions, which are
mandible, maxilla, zygoma, frontal cranial vault, spheno &
temporo lateral, occipital cranial vault, and parietal cranial
vault. Examples of 3D visualization of skull and skull region
labels are shown in Fig. 2. Note that the labeling processes
for CMF fractures, skull, and skull regions were conducted
separately.

V. EXPERIMENTAL SETTINGS
A. Deep Segmentation Model

In this study, we used the 3D Swin UNETR segmentation
model [23] from the MONALI library [27] with its default
hyperparameter values for our experiments. We chose this
model because it was the state-of-the-art deep learning model
for segmentation tasks in medical image analysis at the time
this study was conducted. Our preliminary experiments have
also shown that Swin UNETR outperformed the basic yet
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Fig. 1: Visualization of data and labels available for this study,
which are CT images and associated labels of the skull (red)
and CMF fractures (green). Note that labels for CMF fractures
cover not only the gaps between skulls but also some parts of
the skull that should have been connected in normal condition
(see yellow boxes).

commonly used U-Net model [28]. The visualization of Swin
UNETR architecture and how we used the Swin UNETR
are illustrated in Fig. 2. Note that we chose to perform the
semantic segmentation task over the object detection task
because we aimed to not only detect CMF fractures but also
segment the lines of CMF fractures and a previous study
showed that the semantic segmentation approach achieved
better results on the skull fracture detection [20]. In this
study, a voxel was predicted to be part of a CMF fracture
if the probability value produced by the 3D Swin UNETR
segmentation model > 0.5.

B. Training, Validation, and Testing

In this study, we performed a 5-fold nested cross-validation
where 20 volumes (from 20 subjects) were randomly divided
into 5 groups. In each fold, 3 groups were used for training, 1
group was used for validation (i.e., used for early stopping to
avoid overfitting), and 1 group was used for testing. All groups

were rotated evenly so that each group was used at least once
in the validation and testing sessions. In each fold, a 3D Swin
UNETR model was trained for 500 epochs by using the Adam
optimizer with a learning rate of 0.0004 and a weight decay
of 0.00001. Before the training, we pre-processed each 3D CT
image, where its intensities (i.e., Hounsfield units) were scaled
from [—1000,1000] (i.e., to cover both air and various bone
densities) to [0, 1]. Furthermore, the voxel’s dimension/spacing
for all subjects was normalized to 1 mm. Data augmentation in
the form of random left-and-right flipping (with a probability
of 0.75) and random intensity scaling and shifting (with both
factor and offset values of 0.5 with a probability of 0.5) were
also performed in the training. We conducted our experiments
using NVIDIA’s a100 GPUs with CUDA version 11.7, Pytorch
version 1.13.0, and MONAI version 1.1.0.

C. Input Image Settings

1) Patch-based vs. Full-image Training/Inference: Previous
studies discussed in Section II have tested both patch-based
and full-image training/inference approaches for skull fracture
detection and segmentation with varying degrees of success.
However, no previous studies have tried to perform a full 3D
volume head CT scan. Therefore, we performed two settings
of training/inference: (1) 3D grid patches of head CT scans
with a size of 128 x 128 x 128 (i.e., coded as P) and (2)
full 3D images of head CT scans with a normalized size of
160 x 160 x 160 (i.e., coded as F). In both settings, weight
updates in the training process were performed using mini-
batches with a size of 1 patch/image.

2) Number of Input Image Channels: Our previous study
indicated that spatial information improved the performance
of segmentation tasks in biomedical images [22]. Therefore,
we proposed the use of an additional input channel containing
either a binary label of the skull (i.e., S) or labels of the
skull’s regions (i.e., SR) to represent spatial information of
the head/skull in a head CT image. Therefore, we performed
three different experiments with different input channels for
this study, in which we only used CT images (i.e., CT),
a combination of CT and S images (i.e., CT+S), and a
combination of CT and SR images (i.e., CT+SR).

D. Loss Functions

1) Generalized Dice and Focal Loss: Generalized Dice and
Focal (GDF) loss is a compound loss formed of Generalized
Dice loss [24] and Focal loss [25]. It was used in our experi-
ments as the default/baseline loss function because it emerged
as the best loss function in the preliminary experiments
compared to other segmentation loss functions (i.e., Dice loss,
Generalized Dice loss [29], and Focal loss). In this study, we
used an implementation of the GDF loss function taken from
the MONALI library [27] with its default parameters.

2) Instance Proximity Loss: Instance Proximity loss (i.e.,
Proximity loss) is a novel instance-level loss function proposed
in our recent study crafted to refine the detection quality of
deep segmentation networks by pulling predicted segmentation
instances towards the ground truth instances [26]. Unlike other
segmentation losses, the Proximity loss not only calculates the
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Fig. 2: Tllustration of the proposed approach in this study. We tested three options of input to the deep segmentation networks
of Swin UNETR [23], which are CT image only, the combination of CT image and binary label of the skull (CT + S), and the
combination of CT image and labels of skull’s regions (CT + SR). Each input option could be fed into the Swin UNETR either
as a 3D patch or a 3D fully sized image of a CT scan. We also tested two options of loss function, which were a compound
of the Generalized Dice [24] and Focal [25] (GDF) loss functions and a compound of GDF and Instance Proximity [26] loss

functions.

fitness of the intersection of union (IoU) between the predicted
segmentation and ground truth masks but also calculates the
distance between the closest pairs of each predicted and
ground truth instance, which forces a deep segmentation model
to produce not only good segmentation but also good instance-
level detection.

To improve the detection quality of the segmentation results,
the Proximity loss utilizes an object detection loss named
Distance-IoU (DIoU) loss [30] which is formalized as

Cotow Tgoms Tyon) = 1 T0U(Tg s Ty ) + ey Cuen) (1

where €z, and €z, denote the centers of the bounding
boxes of instances Iyr m and Z, ,, p(-) is the Euclidean
distance function, and 7 is the diagonal length of the smallest
enclosing box covering the two boxes. If applied to all
predicted and ground truth instances, the DIoU loss produces
an N x M distance matrix of E( y“’I”C), which is used by
the Proximity loss in (3) and (4). This matrix describes the
closeness of all N ground truth instances and all M predicted
instances with value O indicating the maximal closeness.

The Proximity loss itself, which is formalized in (2), can
be optimized by minimizing the mean square error (MSE)
between two values of £ and £ST). The L), formal-
ized in (3), represents the summation of all instance-wise
segmentation loss values for each predicted segmentation (P)
instance (i.e., GDF) weighted by a distance value to the
closest ground truth (GT) instance calculated by using the
DIoU loss function (i.e., the right term of (3)). Similarly,
the Eg‘g{)}, formalized in (4), represents the summation of all
instance-wise segmentation loss values for each GT instance
(.e., ((?DT}) weighted by a distance value to the closest P
segmentation instance calculated by using the DIoU loss (i.e.,
the right term of (4)). Symbols m and n represent indices for

the predicted and ground truth instances. Figure 3 shows the
illustration of Proximity loss’s calculation on toy images.
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In our experiments, we compounded the Proximity loss with

the GDF loss as suggested by the original paper [26], which
is coded as GDF+Proximity in this paper and formalized as

(GT)
DIoU

) min (L6 (nm)) @)

£GDF+Pr0ximity = EGDF +0.1- ACProximity 5

where Lgpr represents the GDF loss and Lproximity T€presents
the Proximity loss with a weight of 0.1.

E. Performance Metrics

We first measured the quality of the CMF fracture seg-
mentation by using the Dice similarity coefficient (DSC) at
the voxel level. To avoid a bias towards background voxels,
we also measured the quality of CMF fracture segmentation
and detection at the fracture/instance level by using DSC
(DSC;s), positive predictive value (PPV), sensitivity (SEN),
false detection rate (FDR), false negative rate (FNR), and F1-
score (F1S). For the fracture/instance level metrics, an instance
of ground truth CMF fracture is a correct detection (i.e., true
positive or TP) if any of its voxels are segmented and is a
missed detection (i.e., false negative or FN) if none of its
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Fig. 3: Illustration of the use of Distance-IoU loss (Lpiou)
[30] in the Instance Proximity loss [26]. Lpju is computed
by using (1). Cyan indicates the ground truth instances,
magenta indicates the predicted segmentation instances, the
yellow frame indicates the instance of interest, the green frame
indicates the closest instance from the instance of interest, and
the red frame indicates other irrelevant instances. Everything
illustrated in red color located outside the DIoU box means
that the gradients are available for computation (see [26]).

voxels are correctly segmented. On the other hand, an instance
of predicted CMF fracture is a false positive (FP) if it does
not intersect with any ground truth CMF fracture instances.

Lastly, to determine which models produced the best overall
results, a numeric rank (r) was assigned to each performance
measurement, such that mean ranks could be calculated (i.e.,
Rank All or RA).

V. RESULTS

A. Quantitative Results: Patch-based vs. Full-image
Training/Inference Approaches

Tables II and III show all quantitative performance metric
values produced by different settings of training using the
Swin UNETR model for both 3D patch-based and 3D full-
image training/inference, respectively. Both tables show that

incorporating CT and labels of skull regions (CT+SR) into
the Swin UNETR model as input produced better detection
and segmentation results compared to using only CT or CT
combined with the binary label of the skull (CT+S), where the
RA values for CT+SR are always lower and better than the RA
values for CT and CT+S. In addition, the experiments show
that the models trained with 3D full images (results in Table
IIT) produced better detection results than the models trained
with 3D patch-based images (results in Table II). The best and
second best performing models trained with 3D patch-based
images (Table II) are the P3 and P6 with RA values of 2.3
and 2.6, respectively, and F1S values of 0.5121 and 0.4448,
respectively. Similarly, the best and second best performing
models trained with 3D full images (Table III) are the F3
and F6 with RA values of 1.3 and 2.3, respectively, and F1S
values of 0.5902 and 0.5534, respectively. Note that P3 and
F3 were both trained by using the GDF loss, while the P6 and
F6 were both trained by using a compound loss of GDF loss
and Proximity loss (GDF+Proximity).

B. Ensemble Inference Results

Although the best-performing models in Tables II and
I produced relatively high F1S values, both P3 and F3
still missed many CMF fractures as indicated by relatively
high FNR values (i.e., 0.3787 and 0.4031 for P3 and F3,
respectively) and low PPV values (i.e., 0.4356 and 0.5837 for
P3 and F3, respectively). The pixel-level and instance-level
segmentation of CMF fractures (i.e., DSC and DSC;,,) were
also noticeably low where the best values were produced by
the P6 in Table II with DSC of 0.2995 and DSC;,; of 0.1561.

To further improve the performance, we tested an en-
semble inference approach by combining two segmentation
results from two different models, one from patch-based
training/inference and one from full-image training/inference.
Soft voting ensemble inference was performed where two
probability values from two different segmentation models are
averaged and then considered as part of the CMF fracture if the
average value is > 0.5. The models chosen for the ensemble
inference are the best and second best performing models from
both patch-based and full-image inference approaches, which
are the P3, P6, F3, and F6 models.

Table IV shows that the ensemble inference approach im-
proved the detection results of all tested ensemble models,
where the P6+F3 model emerged as the best-performing model
and produced the best SEN, FNR, and F1S values of 0.7708,
0.2292, and 0.6339, respectively. However, it is worth men-
tioning that the ensemble inference approach produced only
slight or no improvement for DSC, DSC;,;, PPV, and FDR
measurement metrics. This finding suggests that segmenting
CMF fracture lines is a difficult task, as indicated by low DSC
and DSC;,, values because they do not have clear borders that
can be easily delineated even by an expert. In addition, the low
PPV values and high FDR values indicate that CMF fractures
are ambiguous due to the complex anatomical structure of
the skull in which some normal structures are segmented and
detected as CMF fractures (i.e., false positive detection).
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TABLE II: Results for segmentation and detection of CMF fractures by performing 3D patch-based training and inference.
Alphanumeric characters written in bold indicate the best values/rankings in each metric while the underlined ones indicate
the second best values/rankings. Arrow symbols of 1 and | indicate that higher and lower values are better, respectively.

Code  Input Loss RA| DSCT rl| DSCut rl PPVt r| SENT r| FNR, r| FDR| r| FIST r|
Pl CT GDF 60 00393 6 00139 6 02173 6 0186 6 08134 6 07827 6 02008 6
P2 CT+S  GDF 3102813 3 0349 3 06031 1 03969 5 06210 5 06192 3 04788 2
P3  CT+SR  GDF 2302773 4 01322 4 04356 2 06213 2 03787 2 05644 1 05121 1
P4 CT GDF+Proximity 2.9 02946 2 01430 2 03842 3 05528 4 04472 4 06158 2 04533 3
P5  CT+S  GDF+Proximity 4.1 02462 5 01155 5 03415 4 05795 3 04205 3 06585 4 04298 5
P6  CT+SR  GDF+Proximity 26 02995 1 01561 1 03392 5 06456 1 03544 1 06608 5 04448 4

TABLE llI: Results for segmentation and detection of CMF fractures by performing 3D full-image training and inference.
Alphanumeric characters written in bold indicate the best values/rankings in each metric while the underlined ones indicate
the second best values/rankings. Arrow symbols of 1 and | indicate that higher and lower values are better, respectively.

Code Input Loss RA| DSCtT ry DSCyst rl PPVT r| SENt r] FNR| r| FDR] r] FIST r|
F1 CT GDF 5.7 0.1810 6 0.0592 6 0.5119 6 0.4416 5 0.5584 5 0.4881 6 0.4742 6
F2 CT+S GDF 3.6 0.2104 3 0.0862 3 0.5579 4 0.4768 4 0.5232 4 0.4421 4 0.5142 3
F3 CT+SR  GDF 1.3 0.2660 1 0.1067 1 0.5837 2 0.5969 1 0.4031 1 0.4163 2 0.5902 1
F4 CT GDF+Proximity 4.0 0.2040 4 0.0856 4 0.5223 5 0.4866 3 0.5134 3 0.4777 5 0.5038 4
F5 CT+S GDF+Proximity 4.1 0.1970 5 0.0688 5 0.6075 1 0.4298 6 0.5702 6 0.3925 1 0.5034 5
F6 CT+SR  GDF+Proximity 23 0.2384 2 0.0926 2 0.5596 3 0.5473 2 0.4527 2 0.4404 3 0.5534 2

TABLE IV: Results for segmentation and detection of CMF fractures by performing ensemble inference using the best and
second best models from patch-based and full-image training (i.e., the P3 and P6 from Table II and the F3 and F6 from Table
IIT). Alphanumeric characters written in bold indicate the best values/rankings in each metric while the underlined ones indicate
the second best values/rankings. Arrow symbols of 1 and | indicate that higher and lower values are better, respectively.

Code  Input Loss RA| DSCt r| DSCyt rl PPV r| SENT r| FNR, r| FDR| r| FIST r|
P3+F3 CT+SR  GDF 37 03026 4 01234 4 05074 4 06948 3 03052 3 04926 4 05865 4
PO+F6  CT+SR  GDF+Proximity 2.6 ~ 03065 3 01273 3 05182 3 07669 2 02331 2 04818 3 06185 2
P3+F6 CT+SR  Mixed 5S4 02939 5 01192 5 04833 6 06820 5 03180 5 05167 6 05657 6
P6+F3 CT+SR  Mixed L6 0313 2 01285 2 05384 2 07708 1 02292 1 04616 2 06339 1
P3+P6  CT+SR  Mixed 36 03206 1 01388 1 05046 5 06938 4 03062 4 04954 5 05842 5
F3+F6 CT+SR  Mixed 41 02787 6 01137 6 05516 1 06601 6 03399 6 04484 1 06010 3

TABLE V: Clinical assessments of CMF fracture detection produced by the P1 model (i.e., the baseline model) and the P6+F3
model (i.e., the best performing model) on different regions of the skull. Alphanumeric characters written in bold indicate
the best values in each metric. Arrow symbols of 1 and | indicate that higher and lower values are better, respectively. Dash
symbol “-” indicates that the value cannot be calculated due to division by zero because there are no CMF fractures in the

manual labels.

P1 (baseline)

| P6+F3 (best)

Region

PPVT TPRT FDR| FNR| FIS1T \ PPVT TPRT FDR|] FNR| FIS1T
R1 - Mandible 0.5000  0.0909  0.5000  0.9091  0.1538 | 0.6842  0.7222  0.3158  0.2778  0.7027
R2 - Maxilla 0.6818 05172 0.3182  0.4828  0.5882 | 0.7400  1.0000  0.2600  0.0000  0.8506
R3 - Zygoma 0.6000  0.2143  0.4000  0.7857  0.3158 | 0.6667 1.0000  0.3333  0.0000 0.8000
R4 - Frontal Cranial Vault 0.3333  0.5000 0.6667  0.5000  0.4000 | 0.7500 1.0000 0.2500  0.0000 0.8571
RS5 - Spheno & Temporo Lateral ~ 0.0000  0.0000  1.0000 1.0000  0.0000 | 0.9333  1.0000 0.0667  0.0000 0.9655
R6 - Occipital Cranial Vault 0.0000 - 1.0000 - - - - - - -
R7 - Parietal Cranial Vault - - - - - - - - - -
All Regions 0.5556  0.2985  0.4444  0.7015 0.3883 | 0.7431  0.9419  0.2569  0.0581  0.8308

C. Visual and Clinical Assessment Results

To validate the feasibility of using the proposed automated
CMF fracture detection in the real world, we performed a
clinical assessment in which experts visually assessed the
results produced by the P1 (baseline) and P6+F3 (best) mod-
els. In contrast to the quantitative performance analysis, we
assessed whether the predicted CMF fractures were located in
the same skull region as the actual CMF fracture and ignored
small spatial translations such as under-/over-segmentation
(i.e., the predicted CMF fracture does not have to be in
the exact location of the actual CMF fracture). This type

of clinical assessment was primarily performed to explore
whether the proposed approach could be used to pinpoint
potential locations of CMF fractures in clinical conditions
(e.g., screening). Examples of CMF fracture visualization used
for clinical assessment are shown in Fig. 5. We tabulated the
clinical assessment as PPV, TPR, FDR, FNR, and F1S values
shown in Table V and visualized them in Fig. 4.

Table V and Fig. 4 show that the P1 (baseline) model missed
many CMF fractures with high FNR values whereas the P6+F3
(best) model missed some CMF fractures only in the mandible
region (R1). The P6+F3 model produced several false positive
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Fig. 4: Visualization of the tabulated clinical assessment results performed by experts in the forms of TP, FN, and FP values
for each skull’s regions produced by the P1 (baseline) and P6+F3 (best) models. This visualization is based on Table V.
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Fig. 5: Visualization of CMF fractures segmentation from three different subjects in the mandible and maxilla regions of the
skull based on manual labeling or ground truth (GT) and different training settings of 3D Swin UNETR, which are the P1
(baseline), P6, F3, and P6+F3 (best) models. Red represents the skull area while green represents the CMF fractures. For each

subject, only part of the skull is shown to maintain anonymity.

detections, but they are easily recognized as such by experts
and are beneficial for pinpointing potential CMF fractures in
the screening (i.e., faster screening process by experts). Thus,
it is clear that the P6+F3 model performed much better in
the clinical assessment than the P1 model with better PPV,
TPR, FDR, FNR, and F1S values (i.e., 0.7431, 0.9419, 0.2569,
0.0581, and 0.8308, respectively) in all regions of the skull.

The experts also gave several important feedback about
the proposed automated detection and segmentation of CMF
fractures for further development, which are:

(1) the tested segmentation models often under-/over-
segment the CMF fractures, which led to low DSC scores
in the quantitative results,

(2) CMF fractures were often segmented as multiple fractures
that did not link to each other and some of them did not
intersect with the manual labels, which led to low PPV
and high FDR values in the quantitative results,

(3) CMF fractures were often difficult to detect and seg-
ment due to various types of fractures (e.g., bone loss,
displacement, fragmentation, etc.), which led to under-
segmentation or no detections,

(4) several gaps in the skull were not labeled as CMF
fractures by the experts due to various reasons (e.g.,
low quality of CT scan images that led to unintended

omissions, joints or gaps between different bones instead
of CMF fractures, and gaps were not classified as CMF
fractures because experts considered other parameters
such as the presence of hematoma), and

(5) CMF fractures present in subjects with many CMF frac-
tures were more easily detected and segmented by the
model compared to those in subjects with fewer and
smaller CMF fractures.

VI. CONCLUSION

In this study, we developed an automated detection system
for craniomaxillofacial (CMF) fractures from head CT images
using ensembles of deep segmentation neural networks using
the 3D Swin UNETR model. The combination of a state-of-
the-art 3D Swin UNETR model, additional input in the form
of labels of skull regions, a compound loss of Generalized
Dice, Focal, and Proximity losses, and an ensemble inference
approach successfully achieved good detection results in both
quantitative and clinical assessments. Clinical evaluations were
manually performed by multiple experts where the best-
performing model achieved the PPV of 82.49%, TPR of
96.03%, FDR of 17.51%, FNR of 3.97%, and Fl-score of
88.23%. However, the best-performing model often under-
/over-segmented the CMF fractures because CMF fractures
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have unclear boundaries that are even difficult for experts
to delineate, resulting in low DSC scores. Furthermore, al-
though the best-performing model still produced some false
positive detections, they can easily be recognized as such
by experts and the results are still beneficial for pinpointing
potential CMF fractures and speeding up the diagnostic pro-
cess in screening. These findings confirm the feasibility of
an automated CMF fracture detection via segmentation but
also highlight inherent limitations. Further assessment using
prospective data is needed to demonstrate the real potential use
in clinical settings. Furthermore, studies on the development
of automated skull region segmentation are needed for a fully
automated system.
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