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Abstract

Processing large amount of data with many input features is always time consuming and expensive. In machine learning (ML),

the number of input features play a crucial role in determining the performance of the ML models. Studies show that ML has

potential for dimensionality reduction. This work proposes a methodology to reduce the number of input features using ML

to facilitate cost-effective data analysis. Two different data sets for water quality prediction from Kaggle are used to run the

ML models. First, we use Recursive Feature Elimination with Cross-Validation (RFECV), Permutation Importance (PI), and

Random Forest (RF) models to find the impact of input features on predicting water quality. Second, we conduct experiments

applying seven ML models: RF, Decision Tree (DT), Logistic Regression (LR), K-Nearest Neighbors (KNN), Gaussian Näıve

Bayes (GNB), Support Vector Machine (SVM), and Deep Neural Network (DNN) to explore water quality using the original and

reduced datasets. Third, we evaluate the impact of the optimized data features on computations and cost to test water quality.

Experimental results show that reducing the number of features from nine to five for Dataset 1 helps reduce computations by up

to 59% and cost up to 65%. Similarly, reducing the number of features from 20 to 16 for Dataset 2 helps reduce computations

by up to 20% and cost up to 14%. This study may help mitigate the curse of dimensionality, via improving the performance of

ML models by enhancing data generalization.
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Abstract—Processing large amount of data with many input 

features is always time consuming and expensive. In machine 
learning (ML), the number of input features play a crucial role in 
determining the performance of the ML models. Studies show that 
ML has potential for dimensionality reduction. This work 
proposes a methodology to reduce the number of input features 
using ML to facilitate cost-effective data analysis. Two different 
data sets for water quality prediction from Kaggle are used to run 
the ML models. First, we use Recursive Feature Elimination with 
Cross-Validation (RFECV), Permutation Importance (PI), and 
Random Forest (RF) models to find the impact of input features 
on predicting water quality. Second, we conduct experiments 
applying seven ML models: RF, Decision Tree (DT), Logistic 
Regression (LR), K-Nearest Neighbors (KNN), Gaussian Naïve 
Bayes (GNB), Support Vector Machine (SVM), and Deep Neural 
Network (DNN) to explore water quality using the original and 
reduced datasets. Third, we evaluate the impact of the optimized 
data features on computations and cost to test water quality. 
Experimental results show that reducing the number of features 
from nine to five for Dataset 1 helps reduce computations by up to 
59% and cost up to 65%. Similarly, reducing the number of 
features from 20 to 16 for Dataset 2 helps reduce computations by 
up to 20% and cost up to 14%. This study may help mitigate the 
curse of dimensionality, via improving the performance of ML 
models by enhancing data generalization. 
 

Impact Statement—Studies suggest that there are techniques to 
reduce the input features from data fields by removing the features 
that have less importance on data analysis. However, processing 
large amount of data with many input features is very expensive 
and time consuming due to the complexity to collect and test 
samples. The machine learning based methodology we introduce 
in this work helps overcome these issues and reduce cost to analyze 
quality of given samples. By reducing the number of features from 
nine to five for a Kaggle dataset for water quality prediction, the 
proposed methodology helps reduce the computations by up to 
59% and the cost up to 65%. This study provides a scientific way 
to mitigate the curse of dimensionality, via improving the 
performance of machine learning models by enhancing data 
generalization and reducing overfitting.  
 

Index Terms—Machine learning, data analysis, input dataset, 
data feature pruning, dimensionality reduction, water quality 
prediction 
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I. INTRODUCTION 
ACHINE learning (ML) is a subset of artificial intelligence 
(AI), where data sets are used to train and test the ML 

models. Once the model is trained on the available data, it is 
ready to predict results based on the new input data [1-3]. Based 
on the execution time and accuracy of predictions, the model 
may be applied to real time operations. ML models help reduce 
the overall time to analyze large data and make decisions more 
accurately. Nowadays, ML models are being applied for large 
data analysis in many fields including water quality prediction, 
healthcare and medical diagnosis, financial trading, fraud 
detection, and natural language processing [4-10]. 

Large input data (both in data features, i.e., columns and data 
size, i.e., rows) helps the ML model learn the true pattern of the 
dataset and predict more accurately. However, as the input data 
increases, the number of computations and computational time 
increase [11-15]. Large input data consumes more resources 
including processing cores and memory. Preventive measures 
to reduce input features can lower the execution time and cost. 
ML inner working principle and high-performance computing 
techniques help reduce the execution time required by the large 
number of computations. Researchers have explored techniques 
for ML to reduce the input features from data fields [16-21], 
i.e., reduce the number of columns used for training and testing 
the ML algorithms. ML algorithms remove the features that 
have less importance on the model accuracy.  

In our work, we use water quality prediction using ML as a 
test case. Water treatment plants process and filter water that is 
obtained mostly from ground water and surface water. Water 
usually holds sulfate, pH level, chloramines, dissolved solid 
(DS) particles, hardness, and other substances that are harmful 
to our health. The Environment Protection Agency (EPA) 
mentions a total of 101 contaminants that influence water 
quality in a report entitled “Parameters of Water Quality” [22]. 
Thereby, state and local agencies are made responsible for 
enforcing and keeping water quality standards. For doing so, 
water samples are collected and tested by water quality testing 
labs, which is time consuming and costly. Environmental 
Testing and Research (ETR) Laboratories, which conducts tests 
on water and environment for household or industry, offer three 
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packages of water quality testing in the U.S. [23]. The cost and 
time of each package are shown in Table I. 

TABLE I 
Costs to Test Water Quality 

Category Number of 
Substances 

Time 
(days) Cost ($) 

Basic Water Test 53 2 to 4 139 

Premium Water Test 113 2 to 4 229 

Ultimate Water Test 249 4 to 7 699 

Another water testing service provider, Precision Analytical 
Services, charges $475 for full private water quality test for 
school, college, industry, or household [24]. The water testing 
package may not have all the required contamination testing as 
required by users. Moreover, the user may not need all the tests. 
For such a situation, the user needs to buy the required test 
individually. It costs a maximum of $195 per substance testing. 
Moreover, it takes up to seven days to get the results. 

We propose an ML-based dimensionality reduction method 
that has potential to reduce time and cost for applications 
including water quality prediction. The proposed method has 
two important working phases. In the first phase, an optimal 
(i.e., reduced) number of features are identified by prioritizing 
the importance of the input features. In the second phase, the 
performance (e.g., ML accuracy and water testing costs) of the 
reduced input features is obtained and evaluated. 

I. BACKGROUND MATERIALS 

A. Literature Review 
Haq et al. investigate the effect of k-fold cross validation for 

Decision Tree (DT) and four Naïve Bayes (NB) models. It is 
found that DT achieves the best accuracy of 97.23% [25]. 
Naqeb et al. provide a comparison analysis on five different 
machine learning models to classify water potability [26]. 
Among DT, K-Nearest Neighbors (KNN), Random Forest 
(RF), Light Gradient Boosting Machine (GBM), and Support 
Vector Machine (SVM), RF shows the highest accuracy. Zhu et 
al. present a review on the current state of machine learning 
applications for water quality evaluation and challenges.  ML is 
being applied to analyze marine environmental water, drinking 
water, ground water, and surface water [27].  

Zhou et al. work on a water quality forecasting method under 
data-missing situation [28]. The results show that the deep 
learning with the post-processing approach suitably figures out 
the dependability between the model’s output and observed 
water quality. Hasan and Azeez introduce a method on how 
Principal Component Analysis (PCA) can reduce the 
dimensionality of certain big data sets [29]. It improves 
interpretability without losing much information. 

B. Techniques to Reduce Input Data Features 
Existing popular techniques to reduce input data features 

include recursive feature elimination with cross validation 
(RFECV), permutation importance (PI), and RF. We apply 
these promising algorithms to prioritize the input features 
depending on the features’ impact on ML performance. 

1) RFECV  
This is a widely used method for selecting optimized input 

features from the original dataset [30]. It is an iterative process 
that starts with all features in the dataset and progressively 
eliminates the least important ones until a desired number of 
features is reached. The algorithm evaluates the accuracy of the 
model with each subset of features using k-fold cross-
validation, which involves splitting the dataset into training and 
validation sets, training the model on the training set, and 
evaluating its performance on the validation set. One of the key 
advantages of the RFECV algorithm is that it helps reduce 
overfitting and improve accuracy by identifying the most 
important features. It handles multi collinearity by removing 
one of the correlated features and thus improves performance. 
However, one drawback of this algorithm is that it does not 
provide any importance factor other than the optimized 
features. This method is used in our work to determine the 
optimized input features from the original dataset. 

2) PI  
This is another method for feature selection [31]. The 

algorithm measures the decrease in the model’s performance 
when the values of a feature are randomly shuffled, which 
provides an estimate of the feature’s importance. To determine 
the importance of each feature, the algorithm evaluates the 
model’s performance on a validation set using cross-validation. 
For each feature, the algorithm randomly shuffles the values of 
that feature in the validation set, while keeping the other 
features constant. If shuffling a feature’s values leaves the 
model error unchanged, then the feature is considered 
unimportant because the model ignored it for the prediction. 
The shuffled validation set is then passed through the model to 
get a new set of predictions. The permutation importance of a 
feature is calculated as the difference between the original 
model’s performance on the unshuffled validation set and its 
performance on the shuffled validation set. One of the big 
advantages of permutation feature importance is that it does not 
require retraining the model unlike RFECV. Permutation 
importance is typically used as an analysis tool to identify 
useful features in big data. However, it does not provide the 
optimized number of features among all the features. In our 
work, this method is used to do the ranking of all available 
features based on their importance on accuracy. 

3) RF  
It is one of the supervised machine learning methods used for 

regression and classification [32]. The algorithm first 
performed bootstrapping which creates multiple subsets of the 
training data by randomly sampling. Then, a decision tree is 
trained for each subset using a subset of the features selected at 
random. The decision tree is trained using a greedy algorithm 
that selects the best feature to split the data based on the 
impurity score. The Gini impurity score or Mean Squared Error 
(MSE) is commonly used to measure misclassification 
probability. A feature importance score can also be calculated 
based on the reduction in impurity achieved. The more a feature 
reduces impurity, the more important it is considered. This 
process is repeated recursively until all samples are assigned to 
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a leaf node. Predicting output by majority voting helps this 
model to improve accuracy by reducing overfitting.  

Existing popular ML models to classify a given dataset include 
RF (already discussed in Subsection II.B.3), DT, Logistic 
Regression (LR), KNN, Gaussian Naive Bayes (GNB), SVM, 
and Deep Neural Network (DNN). We use these models to 
classify a given dataset (with all original features and with the 
reduced features). 

4) DT  
This is one of the supervised ML models used for both 

classification and regression [33]. Its structure resembles a 
flowchart and is made up of internal nodes, branches, and leaf 
nodes. A leaf node shows the target value, a branch displays the 
decision rule, and an internal node represents the traits or 
attributes. Based on the values of several attributes, it creates a 
tree. It chooses the best feature for each node based on 
information gain, gini impurity, or entropy. To anticipate the 
target value, a homogeneous subset of data is to be created. The 
formula to calculate gini impurity is given in Equation (1). 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 1 − ∑𝑃𝑃𝑖𝑖2           (1) 

Gini impurity indicates the probability of misclassifying. 
Here, Ρ𝑖𝑖 is the probability of each class ‘i’ in that node. So, a 
lower gini impurity score indicates a purer node. In that pure 
node, all samples belong to the same class. Entropy is used to 
measure the randomness in the information being processed. 
Mathematically entropy is represented by Equation (2). 

𝛦𝛦(𝑆𝑆) = 𝛴𝛴𝑖𝑖=1𝑐𝑐 (−𝑝𝑝𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝𝑖𝑖)            (2) 

Where, E(S) represents the current state and 𝑝𝑝𝑖𝑖  is the 
probability of class 𝑖𝑖 in a node of state 𝑆𝑆. Information gain is 
the difference between entropy before and after splitting the 
dataset. The formula is given in Equation (3). 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) − Σ𝑗𝑗=1𝑘𝑘 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑗𝑗, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)     (3) 

Where, 𝑘𝑘 is the subset generated by the split and (𝑗𝑗, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) is 
the subset after the split. This model is simple to comprehend 
and apply. With numerical and categorical data, it performs 
well. However, overfitting occurs when the tree becomes too 
deep to detect noise in the data. 

5) LR  
This is another popular supervised ML model used for binary 

classification [34]. It is named from logistic function, also 
called sigmoid function. The logistic function converts any real 
number value to a value between 0 to 1. Taking this concept 
from statistics, logistic regression predicts the probability of 
certain classes from 0 to 1, as shown in Equation (4).  

Ρ(𝑦𝑦 = 1|𝑥𝑥) = 1
1+𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2+.  .  .  .+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛)     (4) 

Where, 𝛲𝛲(𝑦𝑦 = 1|𝑥𝑥) is the probability of positive class. 𝛽𝛽0 is 
the constant and 𝛽𝛽1, 𝛽𝛽2, . . . 𝛽𝛽𝑛𝑛 are the coefficients associated 
with the input features 𝑥𝑥1, 𝑥𝑥2, . . . 𝑥𝑥𝑛𝑛, respectively. The value of 
coefficients is obtained using maximum likelihood estimation 

or gradient descent method. The likelihood is estimated by 
Equation (5).  

ℒ ( 𝛽𝛽0,𝛽𝛽1, . . ,𝛽𝛽𝑛𝑛) =  Π𝑖𝑖=1𝑁𝑁 Ρ(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)         (5) 

Where, ℒ ( 𝛽𝛽0,𝛽𝛽1, . . ,𝛽𝛽𝑛𝑛)  is the likelihood function. 𝛲𝛲(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖) 
is the probability of the positive class for the 𝑖𝑖-th data point. 𝑁𝑁 
is the number of data points in the dataset. It is calculated by 
Equation (6).  

Ρ(𝑦𝑦𝑖𝑖 = 1|𝑥𝑥𝑖𝑖) = 1

1+𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝑥𝑥𝑖𝑖,1+𝛽𝛽2𝑥𝑥𝑖𝑖,2+.  .  .  .+𝛽𝛽𝑛𝑛𝑥𝑥𝑖𝑖,𝑛𝑛)    (6) 

One benefit of LR is its simplicity, interpretability, and 
effectiveness. It is frequently used for tasks like disease 
outcome prediction, credit risk assessment, customer churn 
prediction, and sentiment analysis in industries, healthcare, 
finance, marketing, and social sciences. 

6) KNN  
This is also used for both classification and regression and 

one of the supervised ML models [35]. In this algorithm, the 
distance between the new data point and the training data point 
is measured. From all those distances, 𝑘𝑘 number of neighbors 
are considered to vote for the class of the new data point. 
Usually, the 𝑘𝑘 number is chosen as odd. To measure the 
distance, Euclidian distance, Manhattan distance, and other 
metrics are used. The mathematical expression of Euclidean 
distance for 𝑛𝑛 dimensional space (𝑥𝑥1, 𝑥𝑥2, . . . . , 𝑥𝑥𝑥𝑥) and 
(𝑦𝑦1,𝑦𝑦2, . . . . ,𝑦𝑦𝑦𝑦) is given in Equation (7).  

𝑑𝑑 =  �((𝑥𝑥1 − 𝑦𝑦1)2 + (𝑥𝑥2 − 𝑦𝑦2)2+. . . . +(𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛)2)    (7) 

In the case of Manhattan distance, instead of square and root, 
it is using modulus operation as shown in Equation (8).  

𝑑𝑑 = |𝑥𝑥1 − 𝑦𝑦1| + |𝑥𝑥2 − 𝑦𝑦2|+. . . +|𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛|      (8) 

Because of this, KNN is computationally expensive when 
performing prediction, especially when working with huge 
datasets. Furthermore, the choice of k and the distance metric 
have an impact on KNN. 

7) GNB  
This is a probabilistic ML model used for classification and 

regression task [36]. This algorithm assumes all the features are 
independent and distributed according to Gaussian distribution. 
During the training phase, it calculates the mean and variance 
of the Gaussian distribution for each feature in the training 
dataset, individually for each class label. It uses the Gaussian 
probability density function to determine the likelihood that a 
new data point’s attributes belong to each class when predicting 
the class label for that data point as shown in Equation (9).  

𝑃𝑃(𝑦𝑦|𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑥𝑥) = 𝑃𝑃(𝑦𝑦) ∗ Π(𝑃𝑃(𝑥𝑥𝑥𝑥|𝑦𝑦))     (9) 

Where, 𝑃𝑃(𝑦𝑦|𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑥𝑥) represents the new probability of 
class 𝑦𝑦 with respect to the new feature values of 𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑥𝑥. 
The previous probability of class 𝑦𝑦 is shown by 𝑃𝑃(𝑦𝑦). 𝑃𝑃(𝑥𝑥𝑥𝑥|𝑦𝑦) 
represents the conditional probability of feature 𝑥𝑥𝑥𝑥 with respect 
to class 𝑦𝑦. Π represents the product of all features. 
Computationally efficient with high dimensional data is one of 
the advantages of this model.  
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8) SVM  
It is another supervised learning model suited for 

classification and regression analysis [37]. In this model, all the 
data points are plotted in 𝑛𝑛 dimensional spaces where 𝑛𝑛 is the 
number of features. The value of each feature is then tied up to 
a particular coordinate, making it easy to classify the data. The 
main objective is to separate hyperplanes that maximizes the 
margin between two classes. Using the equation of margin, the 
distance between a data point and hyperplane is computed using 
Equation (10).  

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (𝑤𝑤 ∗ 𝑥𝑥 + 𝑏𝑏)/||𝑤𝑤||          (10) 

Where, 𝑤𝑤 is the weight vector, 𝑥𝑥 represents the feature vector, 
𝑏𝑏 denotes the bias value, and ||𝑤𝑤|| is the Euclidian norm of the 
weight vector. The data points which are closest to the 
hyperplane are called support vectors. Using these support 
vectors, that hyperplane is determined. This is done by 
maximizing the margin between the support vectors from each 
class. SVM can handle high dimensional data with nonlinear 
relationship between features. It is also less prone to overfitting 
which makes this model more advantageous than other models. 
This SVM will be greatly related to our work due to the large 
number of features. To classify based on the available features, 
we expect that SVM will give high accuracy. 

9) DNN  
This is a special type of Artificial Neural Network (ANN), 

where the number of hidden layers is more than one [38]. DNN 
is a deep learning method that consists of three main parts: input 

layer, hidden layers, and output layer. The input layer depends 
on the input parameters and the hidden layers extract some of 
the most relevant patterns from the inputs and sends them to the 
next layer for further analysis. It accelerates and improves the 
efficiency of the model by recognizing the most essential 
information from the inputs and discarding the redundant 
information. Each neuron is connected to all the neurons of next 
layer through weighted connections. Each neuron of the next 
layer sum those weighted connections and applies activation 
function such as sigmoid, tanh, rectified linear unit (ReLU), etc. 
This process continues through each layer to get the output. In 
the output layer, it calculates gradient of the loss function with 
respect to the initial weights. Based on the error function, the 
weight is adjusted through backpropagation. One of the key 
benefits of DNN is that it can learn and model non-linear and 
complicated interactions. Since many of the real-life 
relationships between input and output are non-linear and 
complex, it has been well accepted as a methodology for 
classification of complex datasets such as environmental 
processes. 

II. METHODOLOGY FOR DIMENSIONALITY REDUCTION 
In this section, we describe the proposed methodology to reduce 
the input data fields without compromising the ML 
performance. We start with the raw input dataset that has all 
features. Figure 1 illustrates the major steps of the working 
principle of the proposed methodology.  First, the raw data is 
cleaned by removing any missing values and “Not a Number.”

 
Figure 1. Workflow diagram of the proposed methodology to reduce the number of input data fields.

During the preprocessing step, no input features are removed. 
Initially, say, there are 𝑁𝑁 number of input features. We apply 
RFECV and get the optimal number (say, 𝑥𝑥) of features. Where, 

𝑥𝑥 ≤ 𝑁𝑁. In parallel, (i) we get the ‘importance factor’ for all 
input features using PI and RF and (ii) calculate performance of 
ML models (RF, LR, DT, KNN, GNB, SVM, and DNN) using 

Start Raw input data with a number of features 

Preprocessing 

Apply RFECV to identify 
importance factors 

Apply PI to rank 
importance factors 

Apply RF to rank 
importance factors 

 

Break ties randomly or based on the 
degree of harmfulness and cost 
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No 

For all original input 
features, apply ML models 
and get their accuracy 
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features, apply ML 
models and get 
their accuracy 
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Add the next top 
feature from the 
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No 
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Any tie? 
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difference in 
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‘the optimal features’ 

Rank all features by combining 
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all input features. Considering the harmfulness and cost, we 
rank all input features by combining the outcomes of RFECV, 
PI, and RF. If there is any ‘tie’ among the outcomes, ties can be 
broken randomly or based on the degree of harmfulness and 
cost. Then we select the top 𝑥𝑥 number of features from the 
ranked features. The dataset with those 𝑥𝑥 features is called 
optimized dataset. Then, we calculate the performances of the 
ML models using the top 𝑥𝑥 input features. If the difference 
between the accuracy due to all original input features and the 
accuracy due the top 𝑥𝑥 input features is not acceptable, we 
understand that some impactful input features have been 
excluded. In that case, we add next important features from the 
ranked features and calculate performance of the ML models 
using more than the top 𝑥𝑥 input features. Not shown in Figure 
1, we may exclude the least impactful features from the top 𝑥𝑥 
features and calculate performance of the ML models using less 
than the top 𝑥𝑥 input features. The process stops when the 
accuracy is acceptable, i.e., the optimal number of features is 
satisfactory. 

III. EXPERIMENTAL DETAILS 

A. Dataset Used for ML Models 
Two different publicly available sets of data from Kaggle for 

water quality prediction are used in this study [39]. Dataset 1 
includes nine features and two labels. The features comprised 
of chloramines, conductivity, hardness, pH values, organic 
carbon, sulfate, total dissolved solids (TDS),  trihalomethanes, 
and turbidity. In Dataset 1, there is a total of 3276 raw 
datapoints, among which 1278 datapoints are potable and 1998 
datapoints are non-potable. The potable datapoints are labeled 
as 1 (one), whereas the non-potable datapoints are labeled as 0 
(zero). The type of values of all features is floating point. In the 
raw data, 1265 data values are missing. The raw dataset is 
cleaned by removing the missing datapoints. The clean dataset 
of 2011 datapoints includes 811 potable datapoints and 1200 
non-potable datapoints. To ensure that all features had equal 
importance during analysis, each feature is standardized by 
scaling them to have a mean of 0 (zero) and a standard deviation 
of 1 (one). In this dataset, there are no correlations between the 
features which makes this a good dataset to investigate 
dimensionality reduction. 

Dataset 2 includes 20 input features and two labels. The input 
features are: aluminum, ammonia, arsenic, bacteria, barium, 
cadmium, chloramine, chromium, copper, fluoride, lead, 
mercury, nitrates, nitrites, perchlorate, radium, selenium, silver, 
uranium, and viruses. There is a total of 7996 raw datapoints 
among which 912 datapoints are potable and 7084 datapoints 
are non-potable. Like Dataset 1, potable and non-potable 
datapoints are labeled in the same way. The type of data values 
of all features is floating point. There is no missing value in the 
datapoints. To ensure that all features had equal importance 
during analysis, each feature was standardized by scaling them 
to have a mean of 0 (zero) and a standard deviation of 1 (one). 
Dataset 2 is also a good dataset to investigate dimensionality 
reduction because there is no correlation among the features. 

B. Methods used for Dimensionality Reduction 
RFECV, PI, and RF methods are used for dimensionality 

reduction. In this study, 10-fold stratified cross-validation is 
used in RFECV algorithm. Using PI algorithm, each feature is 
randomly permuted 25 times to obtain a more exact estimate of 
the feature’s importance. The optimal RF model is achieved 
through a process of hyperparameter tuning using randomized 
search cross validation technique. RFECV provides an optimal 
number of features with importance factor value. It does not 
provide any importance factor value for other than listed 
optimal number of features. PI and RF provide importance 
factor value for all the features. The hyperparameters tested 
include the number of decision trees, ranging from 50 to 1000, 
and the maximum depth of each tree, from 1 to 50. To reduce 
computational costs, a 5-fold stratified cross validation is used. 
The model is then trained on 4-fold and confirmed on the 
remaining fold. This process is repeated five times such that 
each fold is used exactly once. 

C. Effectiveness of the Dimensionality Reduction Methods 
To validate the effectiveness of the proposed dimensionality 

reduction, we employ seven ML models, namely, RF, DT, LR, 
KNN, GNB, SVM, and DNN.  

The total number of computations for a RF model can be 
estimated based on the number of trees 𝑡𝑡, number of nodes in a 
tree 𝑛𝑛, and number of features 𝑓𝑓 as shown in Equation (11). 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂(𝑡𝑡 ∗ 𝑛𝑛 ∗ 𝑓𝑓)           (11) 

The DT model is trained with tree depth of 4 (four). Total 
number of nodes can be obtained in terms of depth (2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ −
1). The simplified computational complexity for decision tree 
model is given in Equation (12) [40]. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂(𝑁𝑁 ∗ 𝑀𝑀 ∗ log(𝑁𝑁))        (12) 

Where, 𝑁𝑁 represents the number of data samples and 𝑀𝑀 is the 
number of features.  

The LR model is trained to converge and predict with 120 
iterations. Total number of computations for each iteration in 
logistic regression model is calculated by Equation (13). 

T_C = O(M)+O(N*M)+O(N)+O(N*M)+O(M)     (13) 

Where, 𝑂𝑂(𝑀𝑀) is the computational complexity for initializing 
and updating weights and bias; 𝑂𝑂(𝑁𝑁 ∗𝑀𝑀) represents the 
computational complexity for forward pass and 
backpropagation; and 𝑂𝑂(𝑁𝑁) is the computational complexity 
for the loss function. 

The KNN model is configured and trained with a 20 leaf size 
that controls the node. The number of neighbors for this model 
is set to 9. The total computation for KNN is calculated by the 
formula shown in Equation (14) for each leaf [41]. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂(𝑁𝑁 ∗ 𝑀𝑀 ∗ 𝐾𝐾)          (14) 

Where, 𝑁𝑁 and 𝑀𝑀 are as above, and 𝐾𝐾 represents the number 
of neighbors. 
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The GNB model is trained using the GaussianNB() function 
for both datasets. The Pred() function is used to predict on the 
test data. The total computation for GNB is also calculated by 
the formula in Equation (14). 

For SVM, the radial basis function kernel is used, and random 
state is set to 42. The computational complexity of SVM is 
represented by Equation (15) [42]. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂(𝑁𝑁2 ∗ 𝑀𝑀)           (15) 

Similarly, the DNN model is trained with one input layer, two 
hidden layers, and one output layer. Each hidden layer consists 
of 20 neurons, where the number of input neurons is equal to 
the number of input features. The output layer consists of only 
one neuron. Activation function is ReLU. The total number of 
computations for one input layer, one hidden layer, and one 
output layer can be calculated by using Equation (16) [43]. 

𝑇𝑇_𝐶𝐶 = 𝑂𝑂((2 ∗ 𝑀𝑀 ∗ 𝑝𝑝) + (2 ∗ 𝑝𝑝 ∗ 𝑞𝑞) + (2 ∗ 𝑀𝑀 ∗ 𝑝𝑝))    (16) 

Where, 𝑝𝑝 represents the number of neurons in hidden layer 
and 𝑞𝑞 represents the number of neurons in output layer. Each 
neuron does one multiplication and one addition. Therefore, 
(2 ∗ 𝑀𝑀 ∗ 𝑝𝑝) computations are performed at each hidden layer 
and backpropagation, and (2 ∗ 𝑝𝑝 ∗ 𝑝𝑝) computations are 
performed at the output layer.  

D. Data Used for Water Quality Testing Cost Analysis 
To conduct a cost analysis of and understand the financial 

aspects associated with water quality testing, various types of 
data must be collected and analyzed. In our work, we use 
publicly available data from popular websites [44-49] that show 
costs associate with drinking water testing. For example, 
Community Science Institute [44] provides price for each water 
substance test. AMTEST Lab [45] provides cost per drinking 
water analyte. Costs for quality analyses for household water, 
livestock water, irrigation water, etc. are  taken from Oklahoma 
State University Laboratories Services and Price List [49].  

IV. RESULTS AND DISCUSSION 
In this section, we present experimental results using two 

Kaggle datasets for water quality testing. First, we discuss how 
the input features are optimized based on the importance of the 
features by using RFECV, PI, and RF methods. Then, we 
examine the effectiveness of the dimensionality reduction 
method by employing seven different popular ML models. 
Finally, we discuss the computation and cost saving due to the 
proposed method. 

A. Optimizing Input Features 
The original Dataset 1 for water quality prediction has nine 

features (chloramines, conductivity, hardness, pH value, 
organic carbon, sulfate, TDS, trihalomethanes, and turbidity). 
RFECV with 10-fold stratified cross validation suggests that 
only five features (sulfate, pH values, chloramines, TDS, and 
hardness) are impactful for predicting water quality. PI and RF 
separately rank all nine original features. Both PI and RF 
provide similar results; the top five features are the same for 
RFECV, PI, and RF; although in a different order. The 

aggregated importance factor for Dataset 1 is shown in Table II. 
Here the optimized number of features is five and there is no tie 
in the ranking. Hence, the optimized dataset consists of sulfate, 
pH values, chloramines, TDS, and hardness.  

TABLE II 
Dataset 1 Substances and Ranking 

Substances RFECV PI RF Total Ranking 

Chloramines 0.194 0.047 0.121 0.362 3 

Conductivity NA 0.013 0.092 0.105 7 

Hardness 0.189 0.038 0.114 0.341 5 

pH Value 0.217 0.120 0.141 0.478 2 

Organic Carbon NA 0.011 0.095 0.106 6 
Sulfate 0.218 0.120 0.142 0.480 1 
TDS 0.181 0.061 0.113 0.355 4 
Trihalomethanes NA 0.007 0.091 0.098 8 

Turbidity NA 0.004 0.091 0.095 9 

The original Dataset 2 for water quality prediction has 20 
features (aluminum, ammonia, arsenic, bacteria, barium, 
cadmium, chloramine, chromium, copper, fluoride, lead, 
mercury, nitrates, nitrites, perchlorate, radium, selenium, silver, 
uranium, and viruses). RFECV selects 16 features (aluminum, 
ammonia, arsenic, barium, cadmium, chloramine, chromium, 
bacteria, viruses, lead, nitrates, nitrites, perchlorate, radium, 
silver, and uranium) as the optimized number of features. 
Similarly, using PI and RF, we obtain the importance factor of 
each substance (i.e., feature)---copper, fluoride, selenium, and 
mercury become the least important features. There is one tie 
for Rank 8 (between nitrates and uranium). The tie is broken by 
ranking those features randomly (new rank of uranium is 9). 
Table III shows the aggregated importance factor of the 
optimized dataset: aluminum, ammonia, arsenic, bacteria, 
barium, cadmium, chloramine, chromium, lead, nitrates, 
nitrites, perchlorate, radium, silver, uranium, and viruses. 

TABLE III 
Dataset 2 Substances and Ranking 

Substances RFECV PI RF Total Ranking 

Aluminum 0.211 0.075 0.203 0.489 1 

Ammonia 0.054 0.012 0.047 0.113 6 

Arsenic 0.066 0.014 0.065 0.145 4 

Bacteria 0.031 0.011 0.028 0.070 14 

Barium 0.031 0.002 0.029 0.062 15 

Cadmium 0.119 0.058 0.115 0.292 2 

Chloramine 0.051 0.006 0.047 0.104 7 

Chromium 0.037 0.001 0.033 0.071 13 

Copper NA 0.007 0.024 0.031 17 

Fluoride NA 0.001 0.023 0.024 18 

Lead 0.029 0.003 0.025 0.057 16 

Mercury NA 0.001 0.016 0.017 20 

Nitrates 0.043 0.008 0.037 0.088 8 
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Substances RFECV PI RF Total Ranking 

Nitrites 0.037 0.012 0.033 0.082 10 

Perchlorate 0.121 0.042 0.108 0.271 3 

Radium 0.038 0.004 0.033 0.075 12 

Selenium NA 0.000 0.018 0.018 19 

Silver 0.059 0.016 0.051 0.126 5 

Uranium 0.039 0.015 0.034 0.088 8 / 9 

Viruses 0.035 0.009 0.033 0.077 11 

B. Effectiveness of the Dimensionality Reduction 
Using RFECV, PI and RF, we select the optimized list of 

input features for Datasets 1 and 2. To evaluate the effectiveness 
of the optimized features, we obtain  the accuracy due to seven 
different ML models (RF, DT, LR, KNN, GNB, SVM, and 
DNN) for four different situations: with all original features, 
one more than the optimized number of features, optimized 
features, one less than the optimized number of features. Figure 
2 shows the accuracy for Dataset 1. Where, RF shows the 
highest accuracy of 95% with the optimized dataset. Figure 3 
shows the ML accuracy due to Dataset 2. Where, the accuracy 
increases about 1% due to the dimensionality reduction. 

 
Figure 2. ML accuracy for Dataset 1. 

Figures 2 and 3 suggest that the reduction of input features 
using the proposed method is effective. For both datasets, most 

ML models (except RF for Dataset 1) offer the highest accuracy 
for the optimized input features. 
 

 
Figure 3. ML accuracy for Dataset 2. 

 
Next, we present the precision and recall values obtained 

from seven different ML models. Table IV shows the precision 
and recall values due to Dataset 1. SVM provides the highest 
precision of more than 75.2% with the optimized dataset. All 
models (except RF and LR) show the best or similar precision 
value for the optimized features. DT shows the highest recall 
with the optimized dataset. Table V shows the precision and 
recall values for Dataset 2. RF provides the highest precision 
and recall with the optimized dataset. All models give their best 
or similar precision and recall with the optimized dataset. 

C. Computation and Cost Saving 
In this subsection, first we analyze the impact of input 

feature reduction on computation. As shown in Tables VI and 
VII, the total number of computations decreases for all ML 
models with the reduction of features for both Datasets 1 and 2. 
By reducing the input features from nine to five for Dataset 1 
(see Table VI), DT shows the maximum (up to 59.3%) 
reduction in the number of computations. Similarly, by 
reducing the input features from 20 to 16 for Dataset 2, on 
average, the reduction in the number of computations is about 
20% for all ML models as shown in Table VII.  

 
TABLE IV 

Precision and Recall for Dataset 1 

Model 

Precision Recall 

Dataset with 
original nine 
features 

Dataset 
with seven 
features 

Dataset with 
optimized 
five features 

Dataset 
with four 
features 

Dataset with 
original nine 
features 

Dataset 
with seven 
features 

Dataset with 
optimized 
five features 

Dataset 
with four 
features 

RF 0.709 0.674 0.654 0.597 0.358 0.452 0.442 0.430 
LR 0.545 0.714 0.667 0.667 0.045 0.018 0.015 0.015 
DT 0.502 0.504 0.505 0.505 0.580 0.584 0.585 0.562 
KNN  0.566 0.621 0.631 0.605 0.355 0.501 0.464 0.502 
GNB 0.533 0.596 0.583 0.551 0.242 0.256 0.253 0.226 
SVM 0.679 0.723 0.752 0.721 0.400 0.433 0.434 0.438 
DNN 0.619 0.633 0.672 0.661 0.369 0.405 0.410 0.411 

0.50

0.60

0.70

0.80

0.90

1.00

RF DT LR KNN GNB SVM DNN

Accuracy due to Dataset 1

Original features (all nine) Dataset with six features
Optimized features (best five) Dataset with four features

0.50

0.60

0.70

0.80

0.90

1.00

RF LR DT KNN GNB SVM DNN

Accuracy due to Dataset 2

Original features (all 20) Dataset with 17 features
Optimized features (best 16) Dataset with 15 features



 
 

8 

TABLE V 
Precision and Recall for Dataset 2 

Model 

Precision Recall 
Dataset with 
original 20 
features 

Dataset 
with 17 
features 

Dataset with 
optimized 16 
features 

Dataset 
with 15 
features 

Dataset with 
original 20 
features 

Dataset 
with 17 
features 

Dataset with 
optimized 16 
features 

Dataset 
with 15 
features 

RF 0.945 0.943 0.947 0.936 0.663 0.678 0.678 0.646 
LR 0.738 0.740 0.745 0.745 0.324 0.327 0.319 0.319 
DT 0.841 0.841 0.841 0.841 0.673 0.672 0.673 0.673 
KNN  0.828 0.777 0.827 0.861 0.313 0.371 0.381 0.419 
GNB 0.437 0.431 0.436 0.437 0.592 0.589 0.584 0.584 
SVM 0.909 0.937 0.928 0.944 0.502 0.522 0.528 0.543 
DNN 0.857 0.912 0.947 0.943 0.562 0.576 0.576 0.575 

 
TABLE VI 

Reduction in Computations for Dataset 1 

Model 
Computations for 
the Original Nine 
Data Fields 

Optimized Five Data Fields 

Computations Reduction (%) 

RF 7473556 4151976 44.5 
LR 4587240 2655720 42.1 
DT 259062 105422 59.3 
KNN 3257820 1809900 44.4 
GNB 60444 33580 44.4 
SVM 16335657 9075365 44.4 
DNN 2252320 1287040 42.8 

 
TABLE VII 

Reduction in Computations for Dataset 2 

Model 
Computations for 
the Original 20 
Data Fields 

Optimized 16 Data Fields 

Computations Reduction (%) 

RF 78050956 62440765 19.9 
LR 39359880 31679880 19.5 
DT 9366114 7492891 20.0 
KNN 28796400 23037120 20.0 
GNB 534120 427296 20.0 
SVM 574001760 459214080 19.9 
DNN 19517560 15678040 19.7 

 
Next, we analyze the impact of input data field reduction on 

the cost for testing substances that influence water quality. 
Water quality testing companies and labs charge different 
amount for testing different water substances [22-27]. The 
minimum and maximum costs required for testing the 
substances (i.e., input features for the ML models) associated 
with Dataset 1 are shown in Table VIII. The cost for testing each 
item can be as low as $11 (for pH level) and can be as high as 
$195 (for Trihalomethane). It should be noted that some service 
providers charge an additional $25 extra as a service charge. For 
every substance, the testing cost varies. For example, testing 
sulfate level costs as low as $15 and as high as $48. Similarly, 
testing pH level costs the least amount, at a minimum $11 and 

a maximum of $35. The highest cost is for testing 
Trihalomethane, reaching a minimum of $100 and a maximum 
of up to $195. Here, it should be noted that testing conductivity, 
organic carbon, trihalomethanes, and turbidity are not very 
important and can be excluded because of their ranking based 
on importance factor. The total cost to test all nine substances 
is $352.00. 

TABLE VIII 
Cost to Test for Substances in Dataset 1 

Substance to Test 
(listed per rank) 

Minimum 
Cost ($) 

Maximum 
Cost ($) 

Average 
Cost ($) 

1) Sulfate 15.00 48.00 25.00 
2) pH Value 11.00 35.00 23.00 
3) Chloramines 15.00 35.00 25.00 
4) TDS 15.00 35.00 25.00 
5) Hardness 15.00 45.00 25.00 
6) Conductivity 15.00 35.00 25.00 
7) Organic Carbon 35.00 64.00 37.00 
8) Trihalomethanes 100.00 195.00 147.50 
9) Turbidity 14.00 35.00 19.50 

Total Cost to Test All Nine Substances 352.00 

Table IX shows the minimum and maximum costs required 
for testing the substances associated with Dataset 2. The cost 
for testing each item can be as low as $10 and can be as high as 
$278. The testing of barium, cadmium, chromium, copper, and 
silver costs the least amount, ranging between $10-$32. The 
highest cost is for testing Radium, reaching a minimum of $110 
and a maximum of up to $278. The total cost to test all 20 
substances is $863.50. 

 
TABLE IX 

Cost to Test for Substances in Dataset 2 
Substance to Test 
(listed per rank) 

Minimum 
Cost ($) 

Maximum 
Cost ($) 

Calculated 
Avg. Cost ($) 

1) Aluminum 10.00 35.00 22.50 
2) Cadmium 10.00 32.00 21.00 
3) Perchlorate 15.00 35.00 25.00 
4) Arsenic 15.00 49.00 32.00 
5) Silver 10.00 32.00 21.00 
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Substance to Test 
(listed per rank) 

Minimum 
Cost ($) 

Maximum 
Cost ($) 

Calculated 
Avg. Cost ($) 

6) Ammonia 31.00 40.00 35.50 
7) Chloramine 15.00 35.00 25.00 
8) Nitrates 15.00 37.00 26.00 
9) Uranium 100.00 245.00 172.50 
10) Nitrites 15.00 37.00 26.00 
11) Viruses 15.00 35.00 25.00 
12) Radium 110.00 278.00 194.00 
13) Chromium 10.00 32.00 21.00 
14) Bacteria 20.00 75.00 47.50 
15) Barium 10.00 32.00 21.00 
16) Lead 15.00 35.00 25.00 
17) Copper 10.00 32.00 21.00 
18) Fluoride 15.00 35.00 25.00 
19) Mercury 35.00 56.00 45.50 
20) Selenium 15.00 49.00 32.00 

Total Cost to Test All 20 Substances 863.50 

According to Table II, out of the nine substances in Dataset 
1, trihalomethanes is ranked 8; however, according to Table 
VIII, the trihalomethanes test is most expensive. Similarly, out 
of the 20 substances in Dataset 2, uranium is ranked 9th and 
radium is ranked 12th (see Table III); however, those tests are 
most expensive (see Table IX). Therefore, it can be presumed 
that the feature reduction may help save water testing cost. 

Next, we summarize the accuracy of ML models and the 
total cost to test the water quality in Tables X and XI. For 
Dataset 1, the accuracy improves (0.634 to 0.677 for KNN) or 
remains about the same for all ML models when input features 
are reduced from nine to five. This is probably because the less 
impactful features are excluded. However, as shown in Table 
X, this reduction in input features drops the test cost from $352 
to $229, resulting in a more than 65% saving.  

 
TABLE X 

ML Accuracy and Test Cost for Dataset 1 

Model 

Original Dataset with 
Nine Features 

Optimized Dataset with 
Five Features 

ML 
Accuracy 

Total 
Cost ($) 

ML 
Accuracy 

Total 
Cost ($) 

RF 0.685 

352.00 

0.683 

123.00 

LR 0.600 0.604 
DT 0.602 0.605 
KNN 0.634 0.677 
GNB 0.613 0.629 
SVM 0.685 0.717 
DNN 0.695 0.715 

As shown in Table XI, for Dataset 2, the accuracy slightly 
improves or remains about the same for all ML models when 
input features are reduced from 20 to 16. Again, this is probably 
because the less impactful features are excluded. However, this 

reduction in input features drops the test cost from $863.50 to 
$740.00 (more than 14% saving). 

 
TABLE XI 

ML Accuracy and Test Cost for Dataset 2 

Model 

Original Dataset with 
20 Features 

Optimized Dataset with 
16 Features 

ML 
Accuracy 

Total 
Cost ($) 

ML 
Accuracy 

Total 
Cost ($) 

RF 0.952 

863.50 

0.954 

740.00 

LR 0.898 0.898 
DT 0.941 0.942 
KNN 0.903 0.910 
GNB 0.850 0.850 
SVM 0.930 0.934 
DNN 0.935 0.957 

 

V. CONCLUSIONS 
Applications such as water quality testing involves many 

factors to consider. Determining factors that are very expensive 
and time consuming to collect and test, but may not have any 
importance is challenging. This study introduces an effective 
machine learning based methodology for dimensionality 
reduction to facilitate cost-effective data collection and 
analysis. According to the proposed methodology, the RFECV, 
PI, and RF methods are used to identify the most informative 
features and discard less significant ones. Seven different 
machine learning models (RF, DT, LR, KNN, GNB, SVM, and 
DNN) are employed to evaluate the effectiveness of the 
proposed methodology. Through experimentation on two 
different datasets from Kaggle used for water quality 
prediction, the results demonstrate the ability of the proposed 
methodology in achieving substantial reduction in input 
features without compromising the performance of the machine 
learning models. According to experimental results, the 
proposed methodology helps reduce the computations by up to 
59% and the water quality test cost by up to 65%, while keeping 
the accuracy up to 95%. This research not only provides an 
impactful solution to the prevalent issue of dimensionality but 
also contributes to the broader conversation on optimizing 
machine learning workflows. Future work may explore further 
refinements of the methodology, ensuring its applicability 
across a spectrum of domains and datasets. 
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