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Abstract

This paper proposes an explicit mathematical model to describe the nonlinear behavior of the permanent magnet synchronous

reluctance machine. Although different models for the synchronous reluctance machines are available, extending them to the

case of the permanent magnet machine is not trivial due to the effect of the permanent magnets on the rib saturation. This

work uses a simplified equivalent magnetic circuit to derive the structure of the proposed model. A nonlinear reluctance is

introduced to model the rib saturation. It can be added to the existing model for the synchronous reluctance machine to take

into account the effect of the permanent magnets. A simple fitting procedure based on the steepest descent method is proposed

to estimate the parameters of the model.
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Abstract—This paper proposes an explicit mathematical model
to describe the nonlinear behavior of the permanent magnet
synchronous reluctance machine. Although different models for
the synchronous reluctance machines are available, extending
them to the case of the permanent magnet machine is not trivial
due to the effect of the permanent magnets on the rib saturation.
This work uses a simplified equivalent magnetic circuit to derive
the structure of the proposed model. A nonlinear reluctance is
introduced to model the rib saturation. It can be added to the
existing model for the synchronous reluctance machine to take
into account the effect of the permanent magnets. A simple fitting
procedure based on the steepest descent method is proposed to
estimate the parameters of the model.

Index Terms—Equivalent magnetic circuit, magnetic saturation
model, nonlinear fitting, permanent magnet synchronous reluc-
tance machine, steepest descent method.

I. INTRODUCTION

The high efficiency and large constant-power speed range
capability of permanent magnet synchronous reluctance
(PMSyR) machines have earned them attention in the in-
dustrial and electric traction fields [1]. Moreover, rare-earth
materials are not necessary to build these machines, which
makes them a good trade-off between torque density and costs
[2]. On the other side, the PMSyR machine shows a complex
magnetic model due to the elaborate rotor structure [3] which
consequently complicates the control algorithm [4], [5].

An exact model describing the magnetic saturation does not
exist but different papers aim to describe this phenomenon for
the synchronous reluctance (SyR) machines. The models are
composed by one or more self-saturation terms and an additive
term that takes into account the cross-saturation phenomenon.
If this additive term is defined as it is introduced in [6], the
reciprocity condition holds. Good attempts to describe the
fluxes-to-currents and currents-to-fluxes relations can be found
in [7]–[11]. Regarding the PMSyR machines, their behavior
has been analyzed in [12] where a generic formulation is
given adapting the analysis in [6]. Because of the permanent
magnet (PM) flux linkage, the cross-saturation along the
axis with higher reluctance loses the symmetry with respect
to the zero current point and a function defined per cases

is necessary to model the cross-saturation contribution for
positive and negative current along such axis. However, an
explicit mathematical model able to describe the nonlinearities
of this machine is not presented in [12].

The PM can be taken into account through a constant current
[13] or flux linkage [14] source, according to which of the two
quantities is considered as independent variable. At no load,
the PM produced flux flows in the ribs and it does not link
with the armature windings. On the contrary, when the ribs are
saturated by the stator flux, the PM flux concatenating with
the windings increases. This phenomenon strongly complicates
the magnetic behaviour and the models in the literature are not
enough to correctly describe it.

An interesting way to model the magnetic behavior of
machines with the PM is presented in [3] for an interior
permanent magnet (IPM) machine. The authors use a lumped-
parameter model to build an equivalent magnetic circuit in
which the rotor geometry is characterized by constant and
varying reluctances modeling the flux barriers and the iron
core saturation, respectively, and constant flux sources to
reproduce the PM flux and the rib saturation. The equivalent
circuit approach is based on the geometry of the machine and
the flux paths inside it, which makes it particularly appealing
to model the rib saturation. In the case of IPM machine, the
flux produced by the magnets is strong enough to saturate the
ribs for all the operating current points; the same is not true
for a PMSyR machine which presents a lower amount of the
PM. Relaxing the assumption of the ribs always saturated, a
model similar to the one in [3] can be suitable to describe the
magnetic saturation for a PMSyR machine.

Another important aspect that must be taken into considera-
tion when dealing with a nonlinear model is the identification
procedure. Once the model equation has been defined it is
necessary to estimate its parameters. This can be easily done
for the parameters appearing linearly through the linear least
square (LLS) method but it can be very challenging in case of
parameters appearing nonlinearly. Nonlinear optimal problems
may converge to a solution that is only locally optimum which
strongly depends on the initial conditions.
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Fig. 1: Rotor pole geometry of a PMSyR machine.

In this work, an equivalent circuit for a PMSyR machine
with a simple rotor geometry is drawn and solved to shape
the current equations as functions of the fluxes in the dq
synchronous reference frame:{

id = id (ψd, ψq)

iq = iq (ψd, ψq)
(1)

where ψd, ψq , id, and iq are the flux linkages and currents
along the d and q-axis respectively.

Subsequently, an algorithm based on the LLS method and
on the steepest descent method is proposed to estimate the
model parameters. One pole of a PMSyR machine is drawn
in Fig. 1. The reference axes are chosen with the d-axis along
the PM flux direction and the q-axis 90 degrees ahead as it is
usual for the PM synchronous machines.

II. SATURATION MODEL

A. Equivalent Circuit

The approach of the equivalent circuit in [3] is used in
this section to derive a structure for the proposed model.
Fig. 2 shows the single pole equivalent circuit where the
stator teeth have been neglected, only one pair of PM barriers
is considered for the sake of simplicity. Moreover, single
turn windings are considered so that magnetic and electrical
quantities coincide.

The red and blue circuits model the d and q-axis magnetic
paths, respectively. The air-gap reluctances are modeled as
constant terms agd and agq while the magnetic behavior of
the iron is taken into account by the nonlinear reluctances
acd and acq . The magnets are modeled using the Norton
equivalent circuit as a constant flux source ψf and a parallel
linear reluctance am which models the reluctance of the PM.
In parallel to it is added a nonlinear reluctance abd that models
the ribs saturation.

At no load condition, the reluctance abd allows some part
of the flux ψf to bypass the air-gap as shown in Fig. 3(a).
When a positive current id is applied, the flux produced by
this current goes through abd desaturating the ribs. As the
amplitude of id increases, the flux through abd decreases until
it changes direction [Fig. 3(b)] and the ribs become saturated
again for high value of id [Fig. 3(c)]. In case of a negative
id current, the produced flux strengthens the ribs saturation as

agd
abd

acd idiq

acq

agq

-

+

am

+
-

�d

�q

�f

Fig. 2: Simplified equivalent magnetic circuit in the case of a single pole
single PM barrier.

illustrated in Fig. 3(d) where id = −in is supplied, being in
the nominal current.

Solving the circuits, the current equations are

id (ψd, ψq) = [agd + acd (ψd, ψq)]ψd

+
amabd (ψb, ψq)

am + abd (ψb, ψq)
(ψd − ψf )

iq (ψd, ψq) = [agq + acq (ψd, ψq)]ψq

+
amabq (ψb, ψq)

am + abq (ψb, ψq)
ψq

(2)

where ψb = ψd − ψf is the flux going through the ribs.
The third term in the id (ψd, ψq) takes into account the

magnets and the rib effects. It is worth noticing that this term
must contribute to both d-axis self and cross-saturations and,
assuming am, abd positive, when ψd = 0, id is negative and it
represents the amplitude of the PM flux equivalent magneto-
motive force generating current. Furthermore, notice that the
third term in the q-axis model has been added to be able to
meet the reciprocity condition. This term can be thought of
as the cross-saturation effect the rib nonlinearities have on
the q-axis current; if the q-axis flux is null this contribution
disappears.

B. Rib Model

The SyR model from [8] is used to describe the main effects
of self and cross-saturation of the machine described by the
terms agd, agq, acd, and acq in (2)

ĩd =

(
agd + add |ψd|X +

adq
W + 2

|ψd|U |ψq|W+2

)
ψd

ĩq =

(
agq + aqq |ψq|Y +

adq
U + 2

|ψd|U+2 |ψq|W
)
ψq

(3)

The last terms in (2), modeling the rib saturation and PM
effects, can be written as

amabd (ψb, ψq)

am + abd (ψb, ψq)
ψb = g (f (ψb, ψq))

∂f (ψb, ψq)

∂ψd

amabq (ψb, ψq)

am + abq (ψb, ψq)
ψq = g (f (ψb, ψq))

∂f (ψb, ψq)

∂ψq

(4)

Notice that the reciprocity condition holds for any function
g and f used. It can be proved by comparing the partial
derivatives of (4).
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Fig. 3: Rib saturation for iq = 0 A and: (a) id = 0 A; (b) id = 0.25in; (c) id = in; (d) id = −in.

If the function g (f (ψb, ψq)) is used to describe the rational
structure, the partial derivatives of f are ∂f/∂ψd = ψb and
∂f/∂ψq = ψq . This imposes that the function f is fixed to
the form

f (ψb, ψq) = kdψ
2
b + kqψ

2
q (5)

By taking the square root of this term, the result is a weighted
module of the flux vector. According to this, and remembering
that g (f (ψb, ψq)) has the rational structure in (4), the function
g is chosen as

g (f (ψb, ψq)) =
ab

√
ψ2
b + kqψ2

q

T

1 + ab

√
ψ2
b + kqψ2

q

T
(6)

where the coefficient kd is set to 1 to avoid parameters
redundancy. The constant term am is collected to common
factor and ab = ab/am. These choices reduce the number
of parameters to tune during the fitting procedure. The entire
equations become

id = ĩd +
abψ

T

b

1 + abψ
T

b

ψb

iq = ĩq + kq
abψ

T

b

1 + abψ
T

b

ψq

(7)

where ψb =
√
ψ2
b + kqψ2

q .
As mentioned in Section II-A, the rib term in id definition

affects both self and cross-saturation, while the last term in iq
affects only the cross-saturation.

It is worth pointing out that (7) are able to describe all the
synchronous machines. For an IPM machine, it is expected ψf

to be high enough to always ensure that the ribs are saturated
by the PM flux. In the case of a SyR machine the rib term
can be neglected or ψf can be set to zero, modeling the rib
saturation without the effect of the PM.

The parameters appearing linearly in (7) and (3) can be
rewritten collecting agd and agq . The equations rearranged in
this way are written in (8), where the parameters are defined
as: Ld0 = a−1

gd , Lq0 = a−1
gq , bXd =

agd

ad
, bYq =

agq

aq
, bU+W+2

dd =
adq

agd
, bU+W+2

qq =
adq

agq
, bTbd =

agd

ab
, bTbq =

agq

ab
and b

T

b =
agd

ab
.

With this manipulation, the values Ld0 and Lq0 are the
unsaturated inductances while the b coefficients are fluxes. All
the remaining parameters are pure numbers.

III. FITTING PROCEDURE

The parameter identification procedure has a key role in the
definition of a new model. The more the parameters the heavier
the estimation is from a computational point of view and
the presence of parameters appearing nonlinearly remarkably
complicates the problem. For ease of reading, in this section it
is referred to parameters that appear linearly and nonlinearly
in the model as linear and nonlinear parameters respectively.

A. Problem Statement

Consider αl and αnl the set of linear and nonlinear
parameters respectively and let ind

(
ψn
d , ψ

n
q

)
, inq

(
ψn
d , ψ

n
q

)
be the nth currents measurements for given fluxes with
înd
(
ψn
d , ψ

n
q , α

l, αnl
)
, înq
(
ψn
d , ψ

n
q , α

l, αnl
)

their estimate. The
goal of the fitting is to find the set of linear and nonlinear
parameters that minimizes the rms of residuals

erms(α
l, αnl) =

√√√√ 1

N

N∑
n=1

e2n(α
l, αnl) (9)

where en(α
l, αnl) = in − în(αl, αnl) is the residual of the

nth sample and N is the number of samples. The dependency
of the residuals and their rms value from the current ad flux
measurements have been dropped for the sake of simplicity.

B. Proposed Fitting Method

To solve the parameter identification, the fitting problem has
been split into two smaller problems that are iteratively solved.
At each iteration, the algorithm searches for a better guess of
the nonlinear parameters αnl with a procedure inspired by the
steepest descent method. Subsequently, fixed αnl, the linear
parameters αl are estimated using the LLS method.

The descent methods are a family of algorithms to iteratively
find a local minimum for the cost function (in this work erms)
enforcing the descending condition

erms(α
l
k+1, α

nl
k+1) < erms(α

l
k, α

nl
k ) (10)



id =
ψd

Ld0

[
1 +

(
|ψd|
bd

)X

+
1

W + 2

|ψd|U |ψq|W+2

bU+W+2
dd

]
+ 2

ψb

Ld0

(∣∣ψb

∣∣
bbq

)T
1 +(∣∣ψb

∣∣
bb

)T
−1

iq =
ψq

Lq0

[
1 +

(
|ψq|
bq

)Y

+
1

U + 2

|ψd|U+2 |ψq|W

bU+W+2
qq

]
+ 2

kqψq

Lq0

(∣∣ψb

∣∣
bbq

)T
1 +(∣∣ψb

∣∣
bb

)T
−1

(8)

where k is the current iteration. Each iteration consists of two
steps:

1) find the descent direction vector h;
2) find the step length δ to move along h.

The steepest descent method involves the definition of h as the
direction that provides the best improvement in the cost func-
tion and it is computed as h = −derms(α

l, αnl)/d(αl, αnl).
However, since erms is a complicated function, computing its
derivative can be tedious, so the step length δ is chosen a
priori, and the vector h is chosen according to the discrete
derivative of erms.

The entire algorithm is summarized as follows, where P is
the number of nonlinear parameters to estimate:

1) Set the initial guess for the nonlinear parameters α̂nl =[
α̂nl
1 , ..., α̂

nl
P

]
= [kb0, ab0, X0, Y0, U0,W0, T0, ψf0] and

the respective discrete variations δαnl =
[
δαnl

1 , ..., δα
nl
P

]
.

2) Use the LLS method to compute the optimal linear
parameters α̂l according to the fixed nonlinear parameters
α̂nl and evaluate erms

(
α̂l, α̂nl

)
as in (9).

3) Increase and decrease the mth component of the vector
α̂nl by δαnl

m :

α̂nl+ = α̂nl + 1δαnl
m

α̂nl− = α̂nl − 1δαnl
m

(11)

where 1 is a vector of dimension P of zeros except for the
mth components that is set to 1. For both the increment
and decrement, solve the LLS problem to compute the
optimal linear parameters α̂l, compute the new value of
erms and its forward and backward discrete derivatives
with respect to the component of α̂nl

m :

∂+erms

∂+αnl
m

=
erms

(
αl, α̂nl+

)
− erms

(
αl, α̂nl

)
δαnl

m

(12)

∂−erms

∂−αnl
m

=
erms

(
αl, α̂nl−)− erms

(
αl, α̂nl

)
δαnl

m

(13)

4) Among the parameters that have at least one of the
derivatives negative, choose the one with the highest
absolute value of ∂±erms

∂±αnl .
5) Modify the selected nonlinear parameter as:{

α̂nl = α̂nl + 1δαnl if ∂+ < 0

α̂nl = α̂nl − 1δαnl if ∂− < 0
(14)

and compute the relative linear parameters using the LLS
method.

TABLE I: Nonlinear parameters initial guess.

X Y U W T kq ψf ab

4 5 4 4 2 1 0.066 1

TABLE II: Nonlinear parameters discrete increment definition.

δX δY δU δW δT δkq δψf δab

1 1 1 1 1 0.01 0.001 1

6) Repeat from step 3) until there are no parameters with
a negative derivative. If step 4) fails to find a parameter
with a negative derivative, the local optimal solution is
the one found in the previous iteration.

This algorithm gives a systematic way to compute the non-
linear parameters of the regression problem. Selecting the
component of αnl to modify according to the negative deriva-
tive of erms assures the descending condition in (10) and the
convergence of the solution to a minimum.

Since only one parameter at a time is modified, at any
iteration it is necessary to solve 2P LLS problems. If any
direction h is admitted once δ is fixed, the number of LLS
problems that should be solved would be 3P − 1. Notice also
that in step 3), it is necessary to compute both the forward
and backward derivatives since they can be different due to
the discrete nature of the algorithm.

IV. SIMULATIONS

In this section, the analysis is validated through simulations
on the machine (Fig. 1) from the SyR-e open-source project
[15]. In the test dataset the d and q-axis current are limited
within plus and minus twice the nominal current in = 22 A.

A. State of the Art Model

To highlight the model improvement due to the rib satura-
tion, the model in (7) is compared with

id = ĩd − if

iq = ĩq
(15)

from [13], where the PMs are modeled by a constant current
source if and the rib saturation is not modeled.

The parameters of the model (15) are estimated with the
procedure introduced in Section III. Fig. 4(a) and (b) show
the currents id and iq estimated when the fluxes along q and
d-axis respectively are kept constant. Looking at Fig. 4(b) it
can be seen that the model can describe the saturation along
the q-axis since it is not strongly affected by the rib saturation.
On the other hand, looking at Fig. 4(a) it is evident that



TABLE III: Model (7) parameters estimated using the proposed algorithm.

X Y U W T kq ψf bb Ld0 Lq0 bd bq bdd bqq bbd bbq

4 6 2 3 2 0.20 0.162 0.7071 0.0286 0.0422 0.1457 0.1986 0.1336 0.1264 0.0857 0.0706

(a)

(b)

Fig. 4: Fluxes to currents maps (a) id (ψd, ψq); (b) iq (ψd, ψq). With markers
the dataset points from simulations, with solid lines the currents estimated with
the model in (15).

the nonlinearity along d-axis is not well described and the
predicted curves are very close to straight lines.

B. Proposed Model

The initial guess for the parameters appearing nonlinearly is
given in Table I and the discrete increments δαnl in Table II.
The exponents have been restricted to integer numbers, hence
their increment is set to 1. The parameter kq is initialized
to 1 so that the vector magnitude definition results as base
for the exponential terms. The flux ψf is chosen as the no-
load PM flux linkage and ab = 1. The model is fitted using
the algorithm described in Section III-B and the estimated
parameters are given in Table III.

Fig. 5: The rms and maximum residual evolution during the fitting process
of model (7).

Fig. 5 shows the evolution of the rms and maximum of
the residual evolutions over the iteration process. The erms is
always decreasing because of the descent condition in (10),
while the maximum residual can increase because it is not
taken into account in the fitting algorithm. However, reducing
the average error among the surfaces also implies a remarkable
reduction of the maximum error with respect to the initial
guess if the number of iterations performed is sufficiently high.

The erms of the fitted model is 3.73% with respect to the
nominal current, while the maximum error emax is 22.17%.
Fig. 6(a) and (b) show the match between the dataset points
and the estimated surfaces for id (ψd, ψq) and iq (ψd, ψq)
respectively. Moreover, the larger error is obtained in the id
map in Fig. 6(a) for the positive values of id which are not part
of the maximum torque per ampere region of the machine. To
better show the goodness of the proposed model, Fig. 7 reports
some curves for the estimated id and iq when the flux along the
opposite axis is kept constant. Comparing these curves with
those estimated with the model (15) in Fig. 4, it is evident
the improvement achieved because of the rib saturation model
concerning the d-axis saturation.

V. CONCLUSIONS

An explicit mathematical model has been proposed to model
the rib saturation in synchronous machines using an equiva-
lent circuit approach. It has been provided a more general
formulation for the cross-saturation term that extends the one
in the literature. The rib term can be added to the existing
SyR machine models to extend them to the case of PMSyR
machines.

The fitting procedure for the estimation of the parameters
has been investigated due to its importance in the identification
of the coefficients appearing nonlinearly. An algorithm based
on the steepest descent method was proposed which achieved
good performance.



(a)

(b)

Fig. 6: Fluxes to currents maps (a) id (ψd, ψq); (b) iq (ψd, ψq). With markers
the dataset points from simulations, with surfaces the currents estimated with
the model (7).
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