
P
os
te
d
on

17
A
p
r
20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
33
23
9
2.
20
03
62
72
/v

1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Implementation of linear differential equations using pulse-coupled

oscillators with an ultra-low power neuromoprhic realization

Jafar Shamsi1 and Wilten Nicola1

1Affiliation not available

April 17, 2024

Abstract

Pulse-coupled oscillators (PCOs) are used as models for oscillatory systems in diverse fields such as biology, physics, and

engineering. When correctly coupled, PCOs can display sophisticated emergent dynamics for large numbers of oscillators.

Here, we propose an algorithm and hardware implementation of PCOs to emulate arbitrary systems of linear differential

equations (DEs) with inputs, which are similar to the equations used in feedback control laws or linearizations of nonlinear

systems. We show that m populations of oscillators can solve a set of m-dimensional linear DEs with simple coupling schemes,

and crucially, without the matrix multiplications required in Euler integration. The emergence of linear dynamical systems

in networks of PCOs occurs when the number of oscillators within a population becomes large through an analytically exact

mean-field derivation. In addition, a hardware architecture of PCOs for digital implementation is proposed and realized on

an ultralow power FPGA as a proof of concept. These results show that there are simple coupling schemes for networks of

pulse-coupled oscillators that collectively compute complex dynamical systems. These PCO networks also have an immediate

implementation as low power neuromorphic edge devices.

1

1

Implementation of linear differential equations
using pulse-coupled oscillators with an ultra-low

power neuromoprhic realization
Jafar Shamsi, Wilten Nicola

Abstract—Pulse-coupled oscillators (PCOs) are used as models
for oscillatory systems in diverse fields such as biology, physics,
and engineering. When correctly coupled, PCOs can display
sophisticated emergent dynamics for large numbers of oscillators.
Here, we propose an algorithm and hardware implementation
of PCOs to emulate arbitrary systems of linear differential
equations (DEs) with inputs, which are similar to the equations
used in feedback control laws or linearizations of nonlinear
systems. We show that m populations of oscillators can solve
a set of m-dimensional linear DEs with simple coupling schemes,
and crucially, without the matrix multiplications required in
Euler integration. The emergence of linear dynamical systems in
networks of PCOs occurs when the number of oscillators within
a population becomes large through an analytically exact mean-
field derivation. In addition, a hardware architecture of PCOs
for digital implementation is proposed and realized on an ultra-
low power FPGA as a proof of concept. These results show that
there are simple coupling schemes for networks of pulse-coupled
oscillators that collectively compute complex dynamical systems.
These PCO networks also have an immediate implementation as
low power neuromorphic edge devices.

Index Terms—Pulse coupled oscillators, linear differential
equations, Fokker-Planck approximation, Neuromorphic, FPGA.

I. INTRODUCTION

D IFFERENTIAL equations (DEs) act as models for phys-
ical, chemical, and biological systems at different scales.

From the population of microbes in a petri dish, to the
evolution of galactic superclusters, DEs model and simulate
systems large and small. DEs are also the backbone of control
theory, as simple linear dynamical systems can stabilize com-
plex nonlinear dynamics through feedback control [1]. DEs
can also sometimes offer exact solutions through closed-form
approaches or real-time solutions using numerical integration
methods [2]. However, as the scale of a system increases, the
time or space complexity in simulating a system of differential
equations often grows super-linearly. For example, in simulat-
ing an n-body Newtonian system, n2 non-linear interactions
must be computed at every time step in Euler integration.
One method of reducing the simulation time is to configure
specialized hardware to solve specific kinds of differential
equations by efficiently computing the terms required for
simulating a DE.

One type of hardware acceleration is based on the collec-
tive behavior of simple distributed elements, pulse-coupled

Jafar Shamsi and Wilten Nicola are part of the Hotchkiss Brain Institute,
University of Calgary, Canada, and the of Department of Cell Biology and
Anatomy, University of Calgary, Calgary, Alberta, Canada.

oscillators (PCOs), to approximate the solutions of more
complex systems through their interactions with each other.
These pulse-coupled oscillators mimic the phenomenological
function of neurons [3], or other oscillatory computing units.
There are some potential advantages of using PCOs for
solving DEs, including parallelism and distributed computing
for efficient utilization of computing resources and faster
solution times for large-scale problems. On the hardware front,
compact and power-efficient oscillators can be implemented
using Vanadium Dioxide (V O2) devices [4], which enable
the realization of energy-efficient coupled oscillators [5]–[8].
While emerging devices such as V O2 are not broadly and
commercially available yet, the realization of PCOs based
on standard CMOS technologies is a practical solution [9].
Digital implementation of PCOs with a parallel architecture
is an alternative paradigm that allows realization of PCOs on
off-the-shelf FPGAs [10].

Despite the hardware implementation paradigm, determin-
ing the exact coupling between PCOs to collectively simulate
an arbitrary dynamical system is a hurdle in an efficient
hardware-based simulator. Here, we show that for an m-
dimensional linear system of DEs, m populations of PCOs can
be used to approximate the solution of the original system.
This result is formally derived through the Fokker-Planck
equations and mean-field approximation in the limit that the
number of oscillators per population becomes large. In this
regime, the coupling dynamics between these m populations
follow a linear system of DEs. This analytical derivation was
verified with simulations, and as a proof of concept, the digital
implementation of PCOs that solve linear DEs is considered
in this paper. Critically, the PCO implementation does not
require matrix multiplication to approximate the solution of a
system of linear DEs, thereby allowing for efficient hardware
implementation. The linear systems considered here can be
used as either ultra low power controllers in wearable devices,
or as filters for bio-signals. To verify this result, we developed
a digital hardware architecture of PCOs with a pipeline design
and resource-sharing method to minimize hardware resource
usage while increasing the throughput of the system. Finally,
an ultra-low power FPGA board was fabricated, and the
design was synthesized and implemented on it. The power
consumption of the fabricated device was as little as 6.6
mW in its operational phase, showcasing the applicability of
using PCO networks for wearable and neuromorphic edge
computing devices.

The remaining sections of the paper are organized as

2

θ

∿
∿

∿
∿

∿

∿
∿

Pulse
(Spike)

Phase oscillator

It generates
a pulse

when θ = π

A population of phase oscillators
Linear dynamical system

The relation between
 x(t) and g(t)

Fig. 1: (Left) A phase oscillator with phase θ. This oscillator
is assumed to have a constant phase velocity that induces a
counterclockwise oscillation around the ring. The oscillator
generates a “spike” when θ = π. This spike is typically
convolved to create a pulse. (Right) A population of PCOs
interacting with each other in a recurrently coupled network.
The PCOs can implement dynamical systems collectively
through the generation of spikes, and the transmission of
pulses (filtered spikes) to each other.

follows: Section II provides the background information about
PCOs. The technique for implementing linear DEs is presented
in Section III. Results from the simulation and hardware
implementation are presented in Section IV, which is followed
by a conclusion.

II. BACKGROUND

Pulse-Coupled Oscillators (PCOs) PCOs are a class of dy-
namical systems that replicate the phenomenological behavior
of oscillatory biological and physical systems such as neurons
[11] and fireflies [3] or simple pendulums and other physical
systems [12]–[15]. Interactions between the oscillators are
based on pulses at discrete time intervals, enabling them to
synchronize or transmit information.

Pulse-coupled oscillators (PCOs) are simplified limit cycle
oscillators that are connected through weighted connections
and communicate using pulses (spikes in the case of neurons).
The dynamics of each oscillator are described by

dθi
dt

= ωi (1)

where θi and ωi are the phase and frequency (or phase
velocity) of the ith oscillator, respectively. As shown in Fig. 1,
the oscillator generates a spike when the phase of the oscillator
crosses π, although the crossing point that denotes a spike
being fired is arbitrary. For this work, we will consider a
“spike” as being fired when θ crosses 2π.

A population of pulse-coupled oscillators is formed by
connecting phase oscillators through neuronal-like synaptic
connections, where every oscillator generates a pulse when
a spike is fired (Fig. 1). A single, self-coupled population of
PCOs is described by

dθi
dt

= ωi + gi(t), (2)

dgi(t)

dt
= −gi(t) +

1

N

N∑
j=1

wij

∑
tjl<t

δ(t− tjl) (3)

where gi(t) is the synaptic dynamics that translates input
pulses from other oscillators (δ) into a temporal frequency
change of oscillator i. The function δ(t − tjl) is the delta
function which increments gi by wij when oscillator j crosses
2π. This occurs at the time point tjl which corresponds to the
lth spike fired by the jth neuron. The parameter wij is the
synaptic weight from oscillator j to oscillator i and effectively
weights the pulse size. If wij > 0, then the connection between
oscillator j and i is excitatory. If wij < 0, then this connection
is inhibitory. The parameter N acts as the number of PCOs in
the population.

When we consider (3), an important insight emerges: we
never have to multiply the weight matrix wij by any quan-
tity. The variable gi(t) is instead incremented (increased or
decreased) by the weight wij when oscillator j crosses a
threshold or fires a “spike”. We will exploit this fact to
approximate solutions to linear differential equation

dx

dt
= Ax+Bc(t) (4)

without taking the matrix multiplication Ax in every time
step. This multiplication is required by Euler integration for
example as

x(t+∆) ≈ x(t) + ∆(Ax(t) +Bc(t)) (5)

and is also required by higher-order integration schemes. For
large systems, these matrix multiplications can be very costly
as if x is an m × 1 variable, the matrix multiplication Ax
requires somewhere between O(m2) and O(m3) operations at
each time step, depending on the specific numerical algorithm
used for a general A, although this can be reduced if the
matrix A is sparse. We also remark here that the system
in equation (4) can also be used as a linear controller for
nonlinear systems, when A and B are chosen appropriately
[1], [16].

III. METHODS

In the limit that N → ∞ for system (3), one can show
that the dynamics of PCOs are those of a linear system of
ordinary differential equations, under reasonable assumptions
on the weights, wij . This will be the basis of our construction
of networks of PCOs that solve linear differential equations.

A. A One-Dimensional Linear DE Emerges from a Population
of PCOs

Suppose that there is one population of N pulse-coupled
oscillators described by (3) where the frequency and synaptic
weights of the oscillators are identical to ω and W , respec-
tively. That is, all the oscillators are coupled with the same
weight, Wij = W , ∀i, j and all the oscillators have the same
intrinsic frequency, ωi = ω, ∀i. This results in

dθi
dt

= ω + g(t) (6)

dg(t)

dt
= −g(t) +

W

N

N∑
j=1

∑
tjl<t

δ(t− tjl) (7)

3

where neuron j emits spikes at tjl. In the limit that this
system is large, we no longer need to consider the phase
θi(t) of any particular oscillator, and can instead consider
the density function of phases ρ(θ, t), and the Fokker-Planck
system that describes the systems evolution [17]–[20] and has
been extensively applied to PCOs in the form of Integrate-
and-fire neurons [21]–[24] (see Appendix 1):

∂ρ

∂t
= −(ω + g(t))

∂ρ(θ, t)

∂θ
(8)

= −∂J(θ, t)

∂θ
(9)

dg

dt
= −g +WJ(2π, t) (10)

where J(θ, t) = (ω + g(t))ρ(θ, t) is typically referred to as
the flux [20]–[24]. Due to the oscillatory nature of the PCOs,
the Fokker-Planck system also has the following boundary
conditions:

J(2π, t) = J(0, t). (11)

This boundary condition is applied when the oscillators are
in the explicitly oscillatory regime ω + g(t) > 0, ∀t > 0.
Fortunately, for the PCOs considered here, this system has an
exact solution in the form of

ρ(θ, t) = ρ0

(
mod

[
θ − ωt−

∫ t

0

g(t′) dt′, 2π

])
(12)

where ρ0(θ) = ρ(θ, 0) is the initial oscillator density when
ω + g(t) > 0, ∀t.

The dynamics of g(t) are determined both by the initial
density function ρ0(θ) and the coupling parameter W :

dg(t)

dt
= −g(t) +WJ(2π, t)

= −g(t) +

W (ω + g(t))ρ0

(
mod

[
2π − ωt−

∫ t

0

g(t′) dt′, 2π

]) (13)

where mod is the modulus function. Considering (13), if we
initialize the system with the uniform distribution of phases
ρ0(θ) =

1
2π , we have the following, analytically exact mean-

field system:

dg(t)

dt
= −g(t) +W

(
ω + g(t)

2π

)
(14)

=

(
W

2π
− 1

)
g(t) +

Wω

2π
. (15)

The ω
2π term is also easily eliminated with the substitution

x = g− g0, which results in the final linear dynamical system
equation as follows:

dx

dt
= Ax (16)

where

A = 2π (W + 1) (17)

g0 = −
(
W

2π
− 1

)−1
Wω

2π
. (18)

To summarize, for a simple network of PCOs, the initial
distribution ρ0(θ) for a population is critical in influencing the

dynamics in perpetuity. By using a uniform initial distribution
of phases, the resulting large-system dynamics of g(t) are
linear and pre-configurable by choosing the correct weights
and driving frequencies. The parameter A can be configured
with

W =
A

2π
− 1 (19)

The equations are easily extended when there are m popula-
tions of oscillators and they receive an input c(t):

dθki
dt

= ω +

m∑
k′=1

gkk
′
(t) +

d∑
q=1

W̃kqcq(t) (20)

= ω + g̃k(t) +

d∑
q=1

W̃qc(t) (21)

dgkk
′
(t)

dt
= −gkk

′
(t) +

N∑
j=1

∑
tjl<t

Wkk′

N
δ(t− tk

′

jl) (22)

where gkk
′
(t) describes the history of pulses generated by

population k′, weighed and transmitted to population k by
Wkk′ . The term g̃k(t) =

∑m
k′=1 g

kk′
(t). Note that in equation

(22), as the delta function is used, there is no multiplication
of the weight matrix Wkk′ with gkk

′
. Instead, gkk

′
(t) is

incremented by Wkk′ every time an oscillator in population k′

fires a “spike”. In the mean-field limit, we have the following
equation for g̃k(t)

dg̃k(t)

dt
= −g̃k +

m∑
k′=1

Wkk′Jk′(2π, t)

= −g̃k+

1

2π

m∑
k′=1

Wkk′(ω + g̃k
′
+

d∑
q=1

W̃k′qcq(t))

(23)

which yields

dg̃

dt
=

(
W

2π
− Im

)
g̃(t) +W

ω

2π
+WW̃c(t) (24)

which can be rewritten into an m-dimensional LDEs:
dx

dt
= Ax+Bc(t) (25)

with the following:

A =
W

2π
− Im → W = 2π(A+ Im), (26)

B = WW̃ → W̃ = W−1B. (27)

Note that as before, the ω/2π term is removable with the
substitution

x = g̃ − g0 (28)

where

g0 = −A−1W
ω

2π
(29)

where ω is now a m × 1 vector consisting of ωk = ω,
k = 1, 2, . . .m. While computing g0 does require matrix
multiplication (and inversion), this operation only needs to be

4

performed once with g0 being stored after. This is in contrast
to the Ax(t) multiplication required at every time step for
approximating (25) with Euler integration.

Collectively, these analytical results demonstrate that in the
large PCO limit, there exist configurations of networks of
these PCOs that exactly implement linear differential equa-
tions. Importantly, when implemented as a finite oscillator
set, these systems do not require matrix multiplication to
implement (aside from the single instance for g0) and only
require increasing or decreasing the mean-field variables g by
the weights in the network. Next, we consider the hardware
implementation of these systems.

B. Hardware Architecture

Pulse-coupled oscillators can be implemented using both
analog [9] or digital circuits [10]. In this section, a digital
hardware architecture of PCOs is introduced which can be
used to implement the coupling scheme in the preceding
section.

First, we used the Euler method to discretize the PCO
differential equations:

θki [n+ 1] = θki [n] + ∆

(
ω + g̃k[n] +

d∑
q=1

W̃kqcq[n]

)
(30)

gkk
′
[n+ 1] = gkk

′
[n]−∆gkk

′
[n]+

Wkk′

N

N∑
j=1

∑
njl<n

δ[n− nk′

jl])
(31)

where n and ∆ are the time and time-step duration. The term
g̃k[n] =

∑m
k′=1 g

kk′
[n].

Fig. 2 shows a hardware architecture of PCOs with m
populations. As a typical digital system, it includes a control
unit, a data-path unit, a memory unit, and interface signals. The
memory unit stores the weights and the control unit controls
the flow of the computation of the data-path unit.

1) Memory unit: A memory is used to store the input
weights (W̃kq) and the coupling weights (Wkk′) within a
population (k = k′) and between the populations (k ̸= k′).
All weights are organized in one memory address and they are
always available without addressing. Therefore, the weights
can be used in computations in parallel causing an increase of
the processing speed. The memory is divided into m sections
each belonging to a population. For instance, the weights for
the first population are stored from the first bit to bit m.lw,
where m and lw are the number of populations and the bit
precision for weights, respectively (the first lw bits are used
for W1,1, the second lw bits are used for W1,2, and so on).

The input weights are stored at the end of each section.
For instance, if the input is a one dimensional signal, the last
lw bits of each section are used to store the corresponding
weight. In total the memory capacity is (m2 + d).lw bits,
where m and d are the number of populations and the input
dimension, respectively. Therefore, the space complexity of
the memory with respect to the dimension of DEs is O(n2).
Since the weights are organized in one memory address, the

time complexity of the reading the weights is O(1). In this
architecture, one-dimensional input is considered (q = 1)
requiring a memory with the capacity of (m2 + 1).lw bits.

2) Data-path unit: The data-path unit implements the com-
putations of the PCOs. For each population, several computa-
tional blocks are used including m multiplexers, an adder tree,
an accumulator, a coupling block, and an oscillator block.

There are m multiplexers corresponding to m weights per
population where their selector are connected to the output of
the oscillator blocks. The multiplexers pass either a weight
value or a zero value to the adder tree depending on the
spikes generated by oscillators. If a spike is generated the
value of the selector becomes 1 and the multiplexer passes
the corresponding weight to the adder tree. Otherwise, it
sends value 0 to the adder tree. The output of the multiplexer
computes Wkk′/Nδ[n−nk′

jl] in (31). The total multiplexers of
this architecture is m2 and the space complexity of the multi-
plexers with respect to the dimension of DEs is O(n2). As a
combinational circuit, the time complexity of the calculations
by the multiplexers is O(1).

An adder tree is a parallel computing architecture that effi-
ciently computes the sum of multiple numbers by recursively
adding pairs of numbers until a final sum is obtained. For each
population, there is one adder tree with a pipeline design and
an accumulator to calculate

∑N
j=1

∑
njl<n Wkk′/Nδ[n−nk′

jl]
in (31). Given m inputs, the number of stages and the
total number of adders are [log2(m)] and ([log2(m)] + 1),
respectively. Therefore, the space complexity of adders with
respect to the dimension of DEs is O(log(n)). Although the
number of pipeline stages in the adders increases by increasing
the dimension of DEs, the time complexity is O(1) due to the
pipeline design.

The coupling block and oscillator block implement the
rest part of (31) and (30), respectively. Fig. 2 (Right) shows
the implementation of the coupling dynamics and oscillators.
Since a large number of oscillators are required to approximate
DEs, it is crucial to use techniques to reduce the hardware
resource usage. In this regards, resource sharing was used in
which one coupling block and oscillator block were used per
population [25], [26]. The cost of resource sharing is reducing
the throughput by the order of N - the number of oscillators
in a population.

To compensate for the throughput, a 3-stage and a 6-stage
pipeline design were used to implement the coupling dynamics
and oscillators, respectively (Fig. 2 (Right)). The pipeline
architecture breaks the combination circuits into smaller parts
to increase the throughput of the system at the cost of a small
increase of the total circuit latency and consumption of a few
registers [26], [27]. At each clock cycle the calculations of one
coupling dynamic per population is computed and is fed into
the oscillator block, as well as stored in the Random Access
Memory (RAM) to be used in the next time step. It is worth
noting that considering (30), at each time step the same value
of the coupling dynamic (g̃k[n]) is used for all oscillators in a
population, thus only one memory location is required to store
the state variable of coupling dynamic for the next time step.
However, a RAM with N memory locations is used for the
sake of the generality of the design for the future applications,

5

Oscillator
block

Accum
ulator

g1[n]

g2[n]

…

gm[n]

Accum
ulator

Accum
ulato

r

0

Coupling
block

Memory
Unit

0

0

0

0

0

0

0

0

θi
1[n]

θi
2[n]

…

θi
m[n]

Input
signal

R-
ad

d
W

e
W

-a
dd

R-
ad

d
W

e
W

-a
dd

Cl
r

Cl
r

Cl
r

c[n]

Enable
signal Control Unit

Ac
c_

Cl
r

C-
R-

ad
d

C-
W

E
C-

W
-a

dd

P-
R-

ad
d

P-
W

E
P-

W
-a

dd

Enable

∼

∼

∼

Adder tree
Pipeline

Adder tree
Pipeline

Adder tree
Pipeline

DataPath
Unit

Interfaces
signals

Hardware
Architecture

of PCOs

1 2 3 … N

Registers

Registers

- +
>>

>>

Coupling dynamic’s pipeline

WE
W-add

1 2 3 … N

Registers

>>

>>
Oscillator’s pipeline

WE
W-add

+

+

>>

ω

c[n]
+

=

M
ux

2π

0

R-add

R-add

SpikeRegisters

Registers

Registers

Registers
W11

W12
…

W1m

W1

W21

W21
…

W2m

W2
…

Wm1

Wm2
…

Wmm

Wm

∼

∼

∼

Fig. 2: (Left) Hardware architecture of a PCO network with m populations. The populations are implemented in parallel.
(Right) The dynamics of the coupling dynamics and oscillators in each population are calculated sequentially using a pipeline
design with a resource-sharing method. Each block includes a computational block and memory. The coupling and population
blocks perform the computations and the results are stored in RAMs for the next time step.

where each oscillator has its own coupling dynamic. Moreover,
it allows for the design of a modular control unit which is
discussed in section III-B3.

By using the pipeline design and resource sharing method,
the space complexity and time complexity of the coupling and
oscillator blocks with respect to the dimension of DEs are
O(n) and O(1), respectively.

3) Control unit: The control unit is used to control the flow
of the computations in the data-path unit, specifically, control-
ling the read/write operation of the RAMs and clearing the
accumulator output. One possible control unit implementation
is shown in Fig. 3. The control unit is based on a modular
block, counter module (CM), comprising a counter and two
comparators. The counter is enabled through a pulse with the
duration of at least one clock cycle at the ON pin and stays
enabled until it receives a pulse at the OFF pin in which it
is disabled and the counter value resets to zero. In this block,
the counter is always disabled when the counter value becomes
N − 1. The EN pin is 1 when the counter is enabled.

The read/write operation of the RAMs in the coupling
and oscillator blocks is performed sequentially. Therefore, the
output of one CM block (CM1) is used to generate the read
address (C-R-add) of the RAM in the coupling block and it
is also used as a reference block to trigger the other CM
blocks. Theoretically, the write operation of the RAM in the

coupling block should be concurrent with the read operation of
the oscillator block, since they have the same input; Thus the
corresponding blocks (CM2 and CM3) should use the same
value (A=B) as the comparison value. However, depending
on the read/write operation of the RAM block these values
can be different; Specifically, in FPGAs, it usually takes two
clock cycles after providing the address for the RAM memory
to make the content of the memory available, thus the read
operation of the RAM in the oscillator block should start two
clock cycles before the write operation in the coupling block.
The next step is the write operation of the RAM in the oscilla-
tor block, followed by the clear operation of the accumulator.
The clear operation of the accumulator is necessary to start
computing a new value for the next time step. Values A, B,
C, and D are related to the number of pipeline stages in the
coupling block (Cstage), oscillator block (Pstage), and adder
tree Block (Astage): A = Cstage − 1, B = Cstage + 1, C =
Cstage + Pstage + 1, D = Cstage + Pstage +Astage + 1.

The total number of clock that are required for the calcu-
lations in one time step depends on the control unit. In this
architecture, the number of clocks per time step is determined
by

Nclk = N + Cstage + Pstage +Astage, (32)

which is independent of the dimension (m) of the differential

6

C-R-add

Control Unit
Ac
c_
Cl
r

C-
R-
ad
d

C-
W
E

C-
W
-a
dd

P-
R-
ad
d

P-
W
E

P-
W
-a
dd

Enable

CM1
Value1

 Value2

En

Counter

Clear

Counter
Counter

O
N

Co
m

p N-1
Value1

Value2

EN

Com
p

O
FF

M
uxX

0

Enable

CM2
Value1

 Value2

En

Counter
A

C-W-add
CM3

Value1

 Value2

En

Counter
B

CM5
Value1

 Value2

En

Counter

Acc_Clr
D

P_W_add
CM4

Value1

 Value2

En

CounterC

P-WE

Counter module (CM)

C-WE

P-R-add

Fig. 3: Modular architecture of the control unit based on a
counter module (CM). The counter module comprises two
comparator and a counter.

equations showing that the time complexity is O(1).
The time and space complexity of the proposed architecture

is summarized in Table I. Considering the hardware architec-
ture, the maximum space complexity belongs to the weight
memory, which is O(n2), while the time complexity of the
architecture is O(1).

IV. RESULTS

Here, we compare the results of the analytical derivations,
the simulated PCO system and the results of the hardware
implementation on the FPGA.

A. Simulation results

An m-dimensional linear differential equation can be imple-
mented using m populations of PCOs. Here one-, two- and 20-
dimensional DEs are simulated and the results are compared
with the simulated PCOs. To implement a one-dimensional
linear differential equation, consider one population of PCOs
with an input c(t)

dθi
dt

= ω + g(t) + W̃ c(t) (33)

dg

dt
= −g +

W

N

∑
tjk<t

δ(t− tjk). (34)

The term W̃ can be interpreted as an input weight for the input
c(t) while W is an all-to-all coupling strength. Then, we have
the following linear mean-field system:

dg

dt
= −g

(
1− W

2π

)
+

Wω

2π
+

WW̃c(t)

2π
. (35)

Suppose we want this system to mimic:

dx

dt
= −Ax+ c(t) (36)

Then, we require the following:

W = 2π(1−A), W̃ =
2π

W
(37)

As this yields

dg

dt
= −Ag + c(t) +

Wω

2π
(38)

The substitution x(t) = g(t)− Wω
2πA yields:

dx

dt
=

dg

dt
= −Ag(t) + c(t) +

Wω

2π
(39)

= −A

(
x(t) +

Wω

2πA

)
+ c(t) +

Wω

2π
(40)

= −Ax(t) + c(t) (41)

Note that the substitution x(t) = (g(t)− Wω
2πA) implies that

x(0) = g(0)− ω
2πA . Thus, with an all-to-all coupling strength

of W = 2π(1 − A) and an input coupling strength of B =
2π/W , the network collectively implements the dynamics of
x′ = −Ax+Bc(t). An example with N = 512 oscillators with
a random input c(t) (Fig. 4a), and ω = 250, with A = 1.06
and B = 0.72 is shown in Fig. 4b, with the simulated PCO
network correctly tracking the target dynamics. Random input
c(t) was generated by

c(t) =
1

a

(
r(t)− µr(t)

)
/σr(t) (42)

where a is an integer value and

r(t) =

a∑
k=1

cos(αkπt). (43)

The values µr(t) and σr(t) are the mean value and the standard
deviation of the signal r(t). In the simulations, a = 5 and αk

was generated randomly with a normal distribution.
To implement a two-dimensional linear DE, two populations

of PCOs are used. Consider the following pair of pulse-
coupled oscillators with an input c(t)

dθ1i
dt

= ω +

2∑
k′=1

g1k
′
(t) + W̃ c(t) (44)

dθ2i
dt

= ω +

2∑
k′=1

g2k
′
(t) (45)

dgkk
′

dt
= −gkk

′
+

N∑
j=1

∑
tjk<t

Wkk′

N
δ(t− tjl) (46)

All the oscillators in each population have the same ω. The
term W̃ can be interpreted as an input weight for the input c(t)
while W is an all-to-all coupling strength between oscillators
in each population. The mean-field dynamics for this network
are:

dg̃

dt
= −g̃ +

W

2π

(
g̃ +

(
W̃
0

)
c(t) +

(
ω
ω

))
(47)

Suppose we want this system to mimic the two-dimensional
system

dx

dt
= Ax+

(
W̃
0

)
c(t) (48)

7

TABLE I: The space and time complexity of the proposed hardware architecture.

Weight Memory Multiplexers Adder-Tree Copuling block Population block Overall
Space complexity O(n2) O(n2) O(log(n)) O(n) O(n) O(n2)
Time complexity O(1) O(1) O(1) O(1) O(1) O(1)

Fig. 4: Simulated PCO networks mimic linear dynamical
systems. (a) A random input signal is applied to a single PCO
network in (b), a two coupled PCO networks in (c), and a 20
coupled PCO networks in (d). The linear dynamics of the PCO
coupled networks in (b)-(d) (green) are analytically determined
(red, mean-field), and match the Euler integration solution for
the corresponding system ẋ = Ax+Bc(t)

Then, we require the following:

W = 2π(A+ I2) (49)
W̃ = 2π (50)

along with the substitution x(t) = g(t)− g0 where

g0 = −A−1W

(
ω
2π
ω
2π

)
(51)

Note that the substitution x(t) = g(t)− g0 implies that

x(0) = g(0) +A−1W

(
ω
2π
ω
2π

)
(52)

An example with N = 512 oscillators (in each popula-
tion) with a random input c(t), and ω = 250, with A =(
−1.06 −0.08
−0.11 −1.1

)
is shown in Fig. 4c.

To show the scalability of the method, we also considered
a 20-dimensional system of linear differential equations (Fig.
4d) when ω = 250 and matrix A was generated randomly by

A = Im + α×Rm,m (53)

where Im and Rm,m are the identity and the random matrices,
respectively. The elements of Rm,m were randomly drawn
from a normal distribution. Parameter α is 0.1 in this sim-
ulation. This system also receives an input Bc(t), where c(t)
is the input signal and B is randomly generated with a normal
distribution.

B. Hardware implementation results

The proposed hardware architecture with three populations
was implemented by VHDL (VHSIC Hardware Description
Language) and synthesized for an ultra low-power FPGA
(iCE40UP5K) from Lattice Semiconductor. In the following
subsections, the details of the implementations are provided.

1) FPGA emulation results: The implemented architecture
on the FPGA was capable of emulating up to three popula-
tions of PCOs with 512 oscillators in each population. The
frequency of oscillators was ω = 15. The emulation results
of a one-, two- and three-dimensional differential equations
are shown in Fig. 5a-b, Fig. 5c, and Fig. 5d, respectively. The
input signal is a random signal generated by (42) and matrix A
in the DEs was generated randomly using (53) where α = 0.5.

2) Resource usage: The resource usage of the synthesized
hardware for the FPGA (iCE40UP5K) is provided in Table
II. The usage number of 4-input Look-Up-Tables (4-LUTs)
and 4 kbit Block-RAMs (BRAMs) were 1221 (23 %) and 26
(93 %), respectively. Eight BRAMs were used to store the
weights with 10-bit precision in a fixed-point format. Nine
BRAMs for the coupling and oscillator blocks were used to
store the oscillators’ and couplings’ state variables with the
24-bit precision. All other variables and values are stored in
24-bit registers in a fixed-point format. In [10], a PCO of

8

Fig. 5: The hardware emulation results of linear differential equations using a PCO network with m = 1 (a-b),m = 2 (c),m = 3
(d), for N = 512 and ω = 15 in each PCO network. A random input signal is applied to the PCOs. (a) The simulated PCO
network (red) versus the results of the FPGA emulation (black). (b) The oscillators’ phases for i = 100, 200, 300, 400 and
i = 500. (c) The simulated PCO networks (red/blue) versus the emulated FPGA networks. (d) The simulated PCO networks
(red/blue/green) versus the emulated FPGA networks (greys/black for clarity).

TABLE II: Synthesis resource usage of iCE40UP5K for three
populations of PCOs.

LUT4 Registers DSP multiplier BRAMs
MAC operation 129 256 3 0
Coupling block 51 270 0 9
Population block 96 469 0 9
Memory 0 120 0 8
Control unit 79 82 0 0
Total 355 1197 3 26

TABLE III: Resource usage comparison

Oscillators LUT Registers FPGA
Mesh topology [10] 100 2283 1695 XC6VLX240T
This work 1500 355 1197 iCE40UP5K

with mesh architecture N × N has been implemented for
reservoir computing (RC). For each oscillator, a dedicated
hardware block was used leading to a linear growth in the
space complexity. A resource usage comparison is provided
in Table III showing the efficiency of our implementation due
to the resource sharing method. Specifically, while the number
of oscillators in our design is 15 times more, the number of
registers and LUTs are 30% and 85% less then the design in
[10].

3) Power Consumption: To measure the power consump-
tion, we designed and fabricated a compact board, including
the iCE40UP5K FPGA and power supply components (Fig.
6a). The iCE40UP5K FPGA requires three input voltages
which were provided using two switching voltage regulators
(1.2 v and 3.3 v), one diode for generating 2.5 v from 3.3 v. To
minimize the power consumption, the external flash memory
was not used, but the FPGA was directly configured. It is worth

mentioning that this FPGA can store the configuration in the
One Time Programmable on-chip Non-Volatile Configuration
Memory (NVCM) without requiring an extra flash memory.

Since the power consumption of a digital system is pro-
portional to the frequency (P ∝ C.f), the power consump-
tion was measured for different frequencies. The total power
consumption of the board was 6.6 mW, 12.6 mW, and 24.6
mW corresponding to frequencies 16 Mhz, 24 Mhz, and 48
Mhz, respectively (Fig. 6b). We note that due to the ultra-low-
power consumption of the FPGA board, our implementation
here allows it to be used in wearable neuromorphic devices or
neuromorphic edge computing.

4) Processing time: The processing time which is required
to solve the differential equation can be calculated by

Tproc = Nclk ×Nts × 1/Frq, (54)

where Nclk, Nts, and Frq are the number of the clocks per
time step, the number of time steps, and the frequency of the
FPGA, respectively.

In this implementation, 523 clocks were required for calcu-
lations per time step (see (32), Nclk = 512 + 3 + 6 + 2). The
input signal with the duration of 50 time unit was sampled with
the period of ∆ = 0.0078, thus there were 6410 samples, as
well as time steps (50/0.0078 = 6410). The processing time
of the FPGA with Frq = 24Mhz was 139.2 ms for solving
one-, two- and three-dimensional DEs.

V. CONCLUSION

PCOs provide a convenient alternative to approximating
solutions of linear differential equations with inputs. They

9

FPGA
iCE40UP5K

Switching
Regulator

1.2 V

Switching
Regulator

3.3 V

Power supply
(3v)

1.2v 3.3v

2.5v

3vCurrent
Measurement

(a)

(b)

Fig. 6: The FPGA power consumption. (a) The fabri-
cated board including the voltage regulators and the FPGA
(iCE40UP5K). (b) The measurement of the current and power
consumption of the FPGA board during its fully operational
phase.

can be implemented in simple configurations that are math-
ematically guaranteed to converge to a specified linear dy-
namical system as the number of oscillators becomes large.
These systems are efficient as they drastically reduce the
number of matrix multiplications required to implement an
approximation to a linear dynamical system. Furthermore, we
have introduced a hardware architecture designed specifically
for the implementation of PCOs. This work, encompassing
analytical derivations, simulation results, and the hardware
implementation of m-dimensional linear differential equations,
substantiates the viability and effectiveness of our proposed
methodology, and the potential application to edge devices as
linear feedback controllers, or linear filters for wearable, edge
computing devices.

APPENDIX A
FOKKER-PLANCK APPROXIMATION

The Fokker-Planck equation is a partial differential equa-
tion that describes the evolution of probability densities in
stochastic processes. We used the Fokker-Planck equation for
a population of uncoupled oscillators where each oscillator
receives an identical input g(t) and the number of oscillators
approaches infinity N → ∞:

dθi
dt

= ωi + g(t), i = 1, 2, . . . N. (55)

We assumed that the function g(t) is integrable all t > 0, and
that it possesses the anti-derivative G(t):

G(t) =

∫ t

0

g(t′) dt′. (56)

Further, we assume that the oscillators are otherwise homo-
geneous (ωi = ω). In the limit of large numbers of oscillators
(N → ∞), the system converts into a Fokker-Planck equation:

∂ρ(θ, t)

∂t
= −∂J(θ, t)

∂θ
= −∂(ω + g(t))ρ(θ, t)

∂θ
, (57)

which has the following boundary conditions and initial value
problem.

J(2π, t) = J(0, t),

∫ 2π

0

ρ(θ, t) dθ = 1, ρ(θ, 0) = ρ0(θ). (58)

The Fokker-Planck equation in (57) has a convenient analytical
solution in the form

ρ(θ, t) = ρ0(mod [θ −G(t)− ωt, 2π]) (59)

where the modulo function enforces the flux boundary condi-
tions.

REFERENCES

[1] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control
theory. Courier Corporation, 2013.

[2] K. Atkinson, W. Han, and D. E. Stewart, Numerical solution of ordinary
differential equations. John Wiley & Sons, 2011.

[3] J. Buck, “Synchronous rhythmic flashing of fireflies. ii.” The Quarterly
Review of Biology, vol. 63, pp. 265–289, 9 1988.

[4] A. Velichko, M. Belyaev, V. Putrolaynen, A. Pergament, and
V. Perminov, “Switching dynamics of single and coupled vo 2 -based
oscillators as elements of neural networks,” International Journal of
Modern Physics B, vol. 31, p. 1650261, 1 2017. [Online]. Available:
https://www.worldscientific.com/doi/abs/10.1142/S0217979216502611

[5] A. Parihar, N. Shukla, S. Datta, and A. Raychowdhury, “Synchronization
of pairwise-coupled, identical, relaxation oscillators based on metal-
insulator phase transition devices: A model study,” Journal of
Applied Physics, vol. 117, p. 054902, 2 2015. [Online]. Available:
http://aip.scitation.org/doi/10.1063/1.4906783

[6] E. Corti, B. Gotsmann, K. Moselund, A. M. Ionescu, J. Robertson, and
S. Karg, “Scaled resistively-coupled vo2 oscillators for neuromorphic
computing,” Solid-State Electronics, vol. 168, p. 107729, 6
2020. [Online]. Available: https://doi.org/10.1016/j.sse.2019.107729
https://linkinghub.elsevier.com/retrieve/pii/S0038110119307324

[7] J. Shamsi, M. J. Avedillo, B. Linares-Barranco, and T. Serrano-
Gotarredona, “Hardware implementation of differential oscillatory neu-
ral networks using vo 2-based oscillators and memristor-bridge circuits,”
Frontiers in Neuroscience, vol. 15, pp. 1–14, 7 2021. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2021.674567/full

[8] ——, “Effect of device mismatches in differential oscillatory neural
networks,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 70, no. 2, pp. 872–883, 2023.

[9] K. Matsuzaka, T. Tohara, K. Nakada, and T. Morie, “Analog cmos
circuit implementation of a pulse-coupled phase oscillator system and
observation of synchronization phenomena,” Nonlinear Theory and Its
Applications, IEICE, vol. 3, no. 2, pp. 180–190, 2012.

[10] D. Pramanta and H. Tamukoh, “Design and implementation of pulse-
coupled phase oscillators on a field-programmable gate array for reser-
voir computing,” in Neural Information Processing, H. Yang, K. Pasupa,
A. C.-S. Leung, J. T. Kwok, J. H. Chan, and I. King, Eds. Cham:
Springer International Publishing, 2020, pp. 333–341.

[11] T. Tateno and H. P. Robinson, “Phase resetting curves and oscillatory
stability in interneurons of rat somatosensory cortex,” Biophysical Jour-
nal, vol. 92, pp. 683–695, 1 2007.

[12] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock synchro-
nization for wireless sensor networks: a survey,” Ad Hoc Networks,
vol. 3, pp. 281–323, 5 2005.

10

[13] J. S. Alshudukhi, Z. G. Al-Mekhlafi, M. T. Alshammari, and B. A. Mo-
hammed, “Desynchronization traveling wave pulse-coupled-oscillator
algorithm using a self-organizing scheme for energy-efficient wireless
sensor networks,” IEEE Access, vol. 8, pp. 196 223–196 234, 2020.

[14] T. Anglea and Y. Wang, “Decentralized heading control with rate con-
straints using pulse-coupled oscillators,” IEEE Transactions on Control
of Network Systems, vol. 7, pp. 1090–1102, 9 2020.

[15] H. Gao and Y. Wang, “A pulse-based integrated communication and
control design for decentralized collective motion coordination,” IEEE
Transactions on Automatic Control, vol. 63, pp. 1858–1864, 6 2018.

[16] A. Isidori, Nonlinear control systems: an introduction. Springer, 1985.
[17] H. Risken and H. Risken, Fokker-planck equation. Springer, 1996.
[18] R. Jordan, D. Kinderlehrer, and F. Otto, “The variational formulation of

the fokker–planck equation,” SIAM journal on mathematical analysis,
vol. 29, no. 1, pp. 1–17, 1998.

[19] N. G. Van Kampen, Stochastic processes in physics and chemistry.
Elsevier, 1992, vol. 1.

[20] S. Vellmer and B. Lindner, “Fokker–planck approach to neural networks
and to decision problems,” The European Physical Journal Special
Topics, vol. 230, no. 14, pp. 2929–2949, 2021.

[21] D. Q. Nykamp and D. Tranchina, “A population density approach that
facilitates large-scale modeling of neural networks: Analysis and an ap-
plication to orientation tuning,” Journal of computational neuroscience,
vol. 8, pp. 19–50, 2000.

[22] L. F. Abbott and C. Van Vreeswijk, “Asynchronous states in networks
of pulse-coupled oscillators,” Physical Review E, vol. 48, no. 2, p. 1483,
1993.

[23] N. Brunel, “Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons,” Journal of computational neuroscience,
vol. 8, pp. 183–208, 2000.

[24] W. Nicola and S. A. Campbell, “Bifurcations of large networks of
two-dimensional integrate and fire neurons,” Journal of computational
neuroscience, vol. 35, pp. 87–108, 2013.

[25] H. Soleimani, A. Ahmadi, and M. Bavandpour, “Biologically inspired
spiking neurons: Piecewise linear models and digital implementation,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59,
no. 12, pp. 2991–3004, 2012.

[26] E. Jokar, H. Abolfathi, A. Ahmadi, and M. Ahmadi, “An efficient
uniform-segmented neuron model for large-scale neuromorphic circuit
design: Simulation and fpga synthesis results,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 66, no. 6, pp. 2336–2349,
2019.

[27] W. Guo, H. E. Yantır, M. E. Fouda, A. M. Eltawil, and K. N.
Salama, “Toward the optimal design and fpga implementation of spiking
neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 8, pp. 3988–4002, 2021.

