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Abstract

This paper introduces the application of a reduced-order modeling technique for accurate temperature monitoring in Power

Electronics modules. The methodology involves coupling the Finite Element Method with the radiosity equation to obtain

high-fidelity models. These models account also for surface-to-surface radiation, an aspect that can have a high impact when

the operating temperatures increase, and the components are close to each other. The Discrete Empirical Interpolation Method

is employed to reduce the computation time with a limited effect on the accuracy of the prediction. Numerical and experimental

results demonstrate the approach’s effectiveness, showcasing high accuracy with minimal computation time and memory cost.
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Reduced Order Modeling for Thermal Simulations
of Electric Components with Surface-to-Surface

Radiation
Matteo Zorzetto, Riccardo Torchio, Francesco Lucchini, Stefano Massei, Leonardo Robol, Fabrizio Dughiero

Abstract—This paper introduces the application of a reduced-
order modeling technique for accurate temperature monitoring
in Power Electronics modules. The methodology involves coupling
the Finite Element Method with the radiosity equation to obtain
high-fidelity models. These models account also for surface-to-
surface radiation, an aspect that can have a high impact when the
operating temperatures increase, and the components are close
to each other. The Discrete Empirical Interpolation Method is
employed to reduce the computation time with a limited effect
on the accuracy of the prediction. Numerical and experimental
results demonstrate the approach’s effectiveness, showcasing high
accuracy with minimal computation time and memory cost.

Index Terms—Radiative heat transfer, model order reduction
(MOR), Finite Element Method (FEM), discrete empirical inter-
polation method (DEIM).

I. INTRODUCTION

THE increase in power density, along with the desire
to have small-sized components, has led to increased

compactness of Power Electronics (PE) modules. This means
that several devices, some among them emitting heat, are near
each other, typically within an enclosure. In PE converters,
compactness is often achieved by increasing the switching
frequency, thus reducing the dimensions of the passive com-
ponents [1], and by packing them in close proximity [2].
Small-sized modules, with high power density (like the one
seen in Fig. 1), require a high power heat dissipation, which
may lead to dangerous hot spots [3], [4]. High operating
temperatures and switching frequencies are typical of power
modules made with wide-band-gap semiconductors like silicon
carbide (SiC) [5], [6]. Developing thermal models for these
high-power converters is crucial, given their application across
various renewable technologies. These include serving as
battery chargers for electric vehicles and trains, as well as
inverters for photovoltaic (PV) systems [7].
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Indeed, having an accurate thermal model is important
during the design and optimization of such components, where
several time-consuming simulations must be done to check the
reliability of the analyzed design, as the temperature is one of
the main causes of failure in electronics [8].

Furthermore, accurate thermal models for PE components
are crucial when implementing advanced control strategies,
such as those rooted in Model Predictive Control (MPC)
techniques [9]. These models can serve as soft sensors, pro-
viding virtual measurements of quantities that are challenging
to probe [10], [11]. In this scenario, a computationally light
model is desired, since real-time (or faster than real-time)
simulations of the model are required [12].

When developing these models, the impact of thermal
radiation is frequently disregarded due to its introduction of
non-linearity, which consequently renders the problem more
complex and challenging to resolve. This omission is justified
when operating temperatures remain low since the portion
of heat dissipated through radiation is insignificant compared
to conduction and convection [13]. However, this is not
the case for, e.g., high power density and compact module
applications, where the operating temperature is high. For
example, in an enclosure, heat dissipates from the component
primarily through conduction and thermal radiation [14]. This
is particularly true when airflow is restricted, hindering natural
convection and thus making it ineffective for efficient device
cooling [15]. In [14], Dallago and Venchi performed thermal
simulations of a notebook that employed a fully passive ther-
mal solution. When simulating the model without accounting
for thermal radiation, the temperature of some components
increased up to 56% [14].

It is noteworthy that, when radiation is considered, two
phenomena exist: surface-to-ambient (s2a) radiation, where
the components exchange heat by radiation toward the sur-
rounding ambient with a presumed constant temperature, and
surface-to-surface (s2s) radiation, where different parts of the
components at different temperatures mutually exchange heat
[16]. This latter phenomenon contributes to the heating of
passive components placed in proximity to heat-dissipating
ones.

Usually, because of their simplicity, thermal networks are
adopted to model PE components. However, in general,
thermal networks only allow for low-resolution temperature
monitoring [3], [17]. More accurate thermal networks can be
synthesized from models created using the Finite Element
Method (FEM). These networks increase the accuracy but
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Fig. 1: High-Current Dual Active Bridge Converter for an
Automotive Application [28].

also the computation time, and thus may require Model Order
Reduction (MOR) techniques to reduce their complexity [18]–
[21].

Coupling the FEM with thermal radiation provides an
accurate but computationally expensive representation of the
phenomena. In particular, including s2a thermal radiation
makes the problem non-linear, and including s2s radiation
requires generating, storing, and operating with dense matrices
representing the non-local heat exchange between different
parts of the component, thus significantly increasing the com-
putational burden of the model [22], [23].

Some techniques have already been proposed to reduce
the computational cost and memory requirements associated
with incorporating s2s radiation in FEM models [23]–[25].
These methods work by refining the mesh or by partitioning
the dense matrix needed for computations into blocks. This
operation may be incompatible with real-time computations
on inexpensive hardware due to the memory and complexity
needed to operate with blocks.

In this paper, to tackle this problem, we employ the Proper
Orthogonal Decomposition (POD) coupled with the Discrete
Empirical Interpolation Method (DEIM) [26] to construct
accurate and computationally light Reduced Order Models
(ROMs) of PE components, including all radiation effects.
A tailored version of the DEIM approach is employed with
the interpolation node selection based on the column pivoted
QR factorization [27]. The method is used to reduce the
dimensions of the nonlinear system of equations, by combining
projection and interpolation, employing snapshots (i.e., tem-
perature maps of the model), to build a basis that is used to
project, and thus reduce, the original model.

The remainder of the paper is structured as follows. First,
a summary of surface-to-surface radiation, and its estimation
using the radiosity method is presented in Section II. Section
III discusses the approach used to reduce the order of the
model. After that, in Section IV, the method is employed on
a simple DC-DC converter (reported in Fig. 4) to show that
even for a simple device, radiation may be relevant, and to
prove the effectiveness of the reduction strategy. Finally, the
main conclusion of this paper is drawn in Section V.

Fig. 2: Reflected, transmitted, and absorbed components of
radiation.

II. FORMULATION OF THE PROBLEM

A. Properties of radiative surfaces

When thermal radiation hits a surface, as shown in Fig. 2
it can either be absorbed, reflected, or transmitted. From [29],
it follows that:

ρ+ α+ τ = 1, (1)

where ρ, α, τ are the reflectivity, absorptivity, and transmis-
sivity coefficients, respectively. These coefficients are related
to the reflected, absorbed, and transmitted fractions of the
incoming radiation, and their values are generally dependent
on the direction of the incoming radiation and the wavelength.
Additionally, the temperature of the surfaces plays a role,
influencing the emitted blackbody radiation, which varies
with both wavelength and temperature [29]. This variation
is characterized by the Planck distribution, expressed by the
equation:

Eλ,b(λ, T ) =
C1

λ5
[
exp

(
C2

λT

)
− 1

] , (2)

where:

Eλ,b(λ, T ) is the spectral emissive power
λ is the wavelength,
T is the absolute temperature of the black body,

C1, C2 are constants [29].

This behavior can be generally approximated by consid-
ering the total hemispherical approximation of the emissiv-
ity, reflectivity, and absorptivity, obtained by averaging the
properties over wavelength and direction [29]. The surfaces
are considered diffuse rather than specular, so they reflect
light uniformly, which is a good approximation for rough
surfaces [29]. For PE applications, we can restrict the problem
to the case of opaque surfaces only, where τ = 0, so we can
derive the reflectivity ρ as:

ρ = 1− α. (3)

The specific power emitted from a blackbody is related
to the Stefan-Boltzmann constant and the temperature of the
surface via e = ϵσT 4

s , where ϵ is the emissivity of the surface,
equal to 1 in the case of a blackbody and less than 1 for
a graybody. Kirchhoff’s law states that for each wavelength
ϵ(λ) = α(λ) [30]. In this work, we considered the total
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Fig. 3: Surface-to-surface radiation in an enclosure.

hemispherical approximations so we can write ϵ = α and
this lets us express the reflectivity as [29]:

ρ = 1− ϵ. (4)

The openings of the enclosure are treated as surfaces at
ambient temperature that do not reflect incoming radiation,
resulting in an equivalent reflectivity equal to zero.

B. Continuous formulation of the radiosity equation

Under the assumption that each surface is a Lambertian
diffuse reflector, the radiosity equation in an enclosure Γ is
given by [31]:

u(r)− ρ(r)

∫
Γ

u(ξ)G(r, ξ)V (r, ξ)dξ = e(r), r, ξ ∈ Γ.

(5)
In (5), u(r) represents the radiosity, i.e., the energy exiting

from point r. The second term of the equation is related to the
energy coming from all other points ξ in Γ, reflected from r.
This reflected energy depends on:

• the visibility factor V (r, ξ), equal to 0 or 1, that deter-
mines if the two points see each other,

• the radiosity of point ξ, i.e., u(ξ),
• the reflection coefficient ρ(r),
• the geometric relationship between points r and ξ G(r, ξ)

given by:

G(r, ξ) = (ξ − r) · nr(ξ − r) · nξ

π||r− ξ||4

=
cos θr cos θξ
π||r − ξ||2

.

(6)

A graphical representation of geometrical quantities of (6)
is given in Fig. 3. The right hand side of (5) represents the
energy emitted from point r, i.e., e(r) = σϵ(r)T 4

r [32].

C. Discrete formulation of the radiosity equation

To numerically solve (5), the boundary of the components
must be discretized into boundary elements, such as trian-
gles. In this paper, to provide a tool that can be seamlessly
integrated with FEM software, we decided to use the same
FEM mesh of the heat conduction problem. The discrete form

factors are obtained by doing the integral average of (6) across
each couple of surface patches i, j [31], obtaining:

Fij =
1

Ai

∫
Ai

∫
Aj

cos θr cos θξ
π||r − ξ||2

V (r, ξ)dAidAj . (7)

Fij represents the fraction of the radiation leaving the
element i that reaches element j, and represents quantitatively
how much two surface elements see each other. The form
factor matrix F = {Fij} was calculated by numerically
integrating (7) for all i < j. The elements in the diagonal are
zero, since the surface was discretized with flat triangles, and
the other form factors were obtained through the reciprocity
relation:

AiFij = AjFji, (8)

where Ai represents the area of triangle i [29].
For large models, the form factor computation could be a

bottleneck, and the hemicube algorithm [33] might provide a
more efficient approximation. The visibility factors V (r, ξ),
needed in (7) are instead obtained with an implementation
of the Ray-Triangle intersection algorithm [34]. The quantity
of interest is the net power flowing out of each surface
triangle. We now proceed to discretize the radiosity equation
(5), obtaining the vector u representing the outwards power
of each triangle [25]:

(I− (1− ϵ)F )u = σϵT 4, (9)

where ϵ represents the vector of the emissivity values of each
triangle, which was used to replace the reflectivity in (5) thanks
to (4). It should be noted that T 4 in this case represents
the element-wise fourth power of vector T , containing the
temperature of each surface element. We can then obtain
the net power flowing out of each surface triangle qnet. For
triangle i, this is the power flowing out from i, minus the
sum of the power that flows out of each triangle j which
is intercepted by i, and can be represented by the following
matrix equation [25]:

qnet = (I− F ) [I− (1− ϵ)F ]
−1

σϵT 4 = DT 4. (10)

D. Coupling radiosity with the heat conduction problem

To construct a model of the device under study, we used
the FEM approach applied the heat conduction equation:

In Ω : ρc
∂T

∂t
= ∇ · (k∇T ) +Q, (11)

and coupled with the heat convection equation:

On ∂Ω : −k
∂T

∂n
= h(T − T∞). (12)

If thermal radiation is not considered, the FEM model is
given by:

Mẋ+ (S +H)x = q + qconv. (13)

where M ,S ∈ Rn×n are the mass and stiffness matrix, and
x ∈ Rn contains the temperature of each node of the mesh.

In (13), H and qconv derive from the discretization of the
convection boundary condition (12). Furthermore, q represents
the internal heat generation of components subject to joule
losses.
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We now want to couple (13) with (10). The former is a
relationship between nodal temperatures x and nodal heat
fluxes q + qconv. Instead, equation (10) takes as an input
a vector containing the surface elements temperatures T ,
and returns qnet, i.e., the net heat flux due to radiation on
each surface element. To couple surface-to-surface radiation
with (13), we need to express it as a function of the nodal
temperature, and the net heat flux should be mapped into
nodes instead of surface elements. Matrix N is defined as the
operator performing the average of the nodal temperatures,
yielding the temperature of each triangle. The net radiation
on each element is mapped on the nodes through matrix
B = {Bli} =

∫
Γi

ϕldΓi, where ϕl is the basis function of
node l [32]. We can now express the radiation contribution in
each mesh node using:

qrad = BDT 4 = GT 4. (14)

Combining the radiation boundary condition (14) with the
original system of equations (13) returns the following system
of nonlinear equations:

Mẋ+ (S +H)x = q + qconv +G (Nx)
4
. (15)

E. Solving the time-dependent problem

The FEM is described by local relationships between quan-
tities, in particular, the temperature in a node of the mesh
depends on the temperature of nearby ones. This provides
a large, but sparse system of equations that describes the
problem. Instead, the surface-to-surface radiation boundary
condition defines a non-local coupling between all surface
nodes. This makes matrix G dense, thus significantly in-
creasing the computational burden. Dense matrix operations,
combined with the fact that (15) is nonlinear in x make
the problem expensive to solve, especially for time domain
simulations.

One possibility is to solve for x the nonlinear problem
(15) at each time step of the problem, but to reduce the
computation time, we chose an approximate approach. Without
considering the effect of thermal radiation, we discretized the
resulting system using the Backward Euler Algorithm [35],
approximating the solution at each step via:

xk+1 ≈ xk +∆tf(xk+1, tk+1), (16)

where ∆t is the time-step and f is obtained from (15) by
algebraic manipulations.

The volumetric heat generation q and the convection bound-
ary condition qconv, have been replaced with the product of an
input matrix P times the input u. Both the state vector and
the input are functions of time.

Performing these operations, returned the following rela-
tionship:

Edxk+1 = Adxk +Bduk+1, (17)

where:

Ed = M +∆t(S +H) (18)
Ad = M (19)
Bd = ∆tP . (20)

Discretizing (15) using the Backward Euler method would
require moving the nonlinear G(Nx)4 term to the left-hand
side of (17), requiring the use of a nonlinear solver at each
time step. For this reason, considering the slow evolution
of the temperature w.r.t. the chosen time step, we opted for
an approximated solution. The nonlinear term was calculated
using the temperature distribution from the previous time step,
obtaining the following equation:

Edxk+1 = Adxk +Bduk+1 +G(Nxk)
4. (21)

This approach was compared with the more accurate one
(i.e., by actually solving the non-linear problem at each time
step) on smaller problems but with similar dynamics. With
the chosen time step, the two methods are comparable (i.e.,
discrepancies below 0.1 % were obtained).

III. MODEL ORDER REDUCTION

To reduce the cost of simulating (21) which is a high
dimensional model, we look for a surrogate model with a
much lower state dimension r ≪ n. This is obtained using
the POD, combined with the DEIM [26], [36] to handle the
nonlinearity of the system. More precisely, we perform the
following steps:

1) We run the Full Order Model (FOM) for s different com-
binations of inputs u and initial states. We collect the
snapshot matrix Ṽ ∈ Rn×nT s containing the solution
of the FOM for all inputs and for each nT timesteps.
Analogously, we store the matrix W̃ ∈ RnE×nT s con-
taining the quantities (Nxk)

4 where nE is the number
of elements in the finite element mesh.

2) We extract matrices V ,W with r and rDEIM orthogonal
columns spanning low-dimensional subspaces approxi-
mating the ranges of Ṽ , W̃ , respectively. This can be
either done with a truncated SVD for moderate n, or
with a randomized rangefinder for larger problems [37];
the latter only requires matrix-vector multiplications of
Ṽ and W̃ with O(r + rDEIM) random vectors.

To obtain the reduced model, we approximate x(t) ≈
V x(r)(t) and impose a Galerkin condition, which yields the
r× r nonlinear system; we discretize it by Backward Euler as
we did for the FOM, obtaining:

Erx
(r)
k+1 = Arx

(r)
k +Bruk+1 + V TG(NV x

(r)
k )4, (22)

where:

Er = V TEdV , Ar = V TAdV , Br = V TBd.

Evaluating the nonlinear term V TG(NV x
(r)
k )4 would re-

quire assembling the full order solution. Hence, we further
approximate it with a DEIM approach as:

(NV x
(r)
k )4 ≈ Wyk, yk := (ΠTW )−1

[
ΠT (NV x

(r)
k )4

]
,

where Π is a nE × rDEIM is a row-selection matrix (i.e, it
contains rDEIM columns of the nE × nE identity matrix).
These columns can be chosen with well-established techniques
that guarantee the invertibility of ΠTW ; we use the one based
on the pivoted QR decomposition proposed in [38]. Note that
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Fig. 4: Picture of the DC-DC converter with marked regions
of interest.

TABLE I: Operating conditions of the power converter.

.
Vin Iin Vout Iout

38.97V 2.97A 14.75V 7.21A

in view of the component-wise nature of the nonlinearity,
we have ΠT (NV x

(r)
k )4 = (ΠTNV x

(r)
k )4. Substituting this

approximation in (22) yields:

Erx
(r)
k+1 = Arx

(r)
k +Bruk+1 +Gr(Nrx

(r)
k )4,

where the matrices:

Gr := V TGW (ΠTW )−1 ∈ Rr×rDEIM ,

Nr := ΠTNV ∈ RrDEIM×r

can be computed once and for all in the offline phase. The
reduced model is integrated with the same Backward Euler
scheme with explicit nonlinearity used for the FOM. In this
framework, computing each step of the ROM costs O(r(r +
rDEIM)) flops, assuming that a Cholesky factorization of Er

is precomputed in the offline phase.

IV. NUMERICAL EXPERIMENTS

A. Preliminary analysis

To provide a realistic benchmark of the proposed approach,
a DC-DC converter has been modeled using the Finite Element
Analysis (FEA) software COMSOL Multiphysics®. The step-
down converter used (see Fig. 4) can operate with an input
voltage between 6− 40V and an output voltage of 1.5− 30V,
the device is covered with a plastic lid to resemble an
enclosure. The input was connected to a DC power supply
and the output to a variable resistor. The setup used for the
experiments can be seen in Fig. 5. Thermal pictures were taken
with a Flir T420 thermal camera, and capacitors and heat sinks
were covered with black electrical tape to provide the same
value of surface emissivity. Fig. 6a was taken with the module
in steady-state operating at the conditions seen in Table I. The
unknown parameters of the numerical model were fit using
temperature measurements taken with the thermal camera and
the results were compared to the original as seen in Fig. 6b.

The FEA model is a simplification of the real device,
considering heat generation in the components subject to

Fig. 5: Experimental setup.

TABLE II: Comparison between steady-state measurements
and simulation of capacitors and MOSFETs surface tempera-
tures ◦C.

Mleft Cleft Cright Mright
measurement 98.7 84.5 78.7 68.6

s2s+s2a 100.8 84.6 75.2 68.4
without radiation 112.6 98.7 85.2 73.5

only s2a 92.8 70.5 62.3 62.4

losses, and heat conduction with radiation and convection
boundary conditions. By disabling the surface-to-surface and
surface-to-ambient boundary conditions, we can see in Fig. 6c
that the temperature readings differ substantially from the ones
obtained with the more accurate model. It should be noted
that the thermal maps are presented all with the same scale
of Fig. 6c for ease of comparison. This simple demonstration
still shows that the effect of surface-to-surface radiation is
significant even for this simple component. This can be
verified quantitatively in Table II, where the measurements
from the thermal camera are compared with the surface
averaged temperatures in locations of interest, i.e., capaci-
tors and MOSFETs shown in Fig. 4. Table II shows the
impact of modeling surface-to-surface radiation on the average
temperature of passive components. The temperature of the
capacitors is greatly affected by the proximity of the coil and
the MOSFETs, consequently, they change significantly if the
s2s boundary condition is removed.

B. Model order reduction

The FEM model of the converter described in Section
IV-A, was then constructed by using proprietary numerical
tools developed in the MATLAB® environment. The resulting
system has one input corresponding to the total dissipated
power, which is then distributed in the heat-generating regions
of the device. The outputs represent the average temperatures
in volumes of interest of the device. The matrices needed
for radiosity were built as explained in previous sections. In
Fig. 7, the average temperature of the left capacitor (region
2 in Fig. 4) subject to the input power shown in Fig. 8
is depicted. The model is first simulated without radiation,
then with both s2s and s2a, and finally by applying only
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(a) Thermal image of the device under load. (b) FEA simulation considering thermal radia-
tion.

(c) FEA simulation ignoring thermal radiation.

Fig. 6: Comparison between measurements and FEA simulations. Color bar in ◦C.

Fig. 7: Temperature estimate in the left capacitor with and
without the contribution of thermal radiation.

Fig. 8: Input power during snapshots collection and ROM
validation.

the s2a boundary condition, considering the total visibility
of the ambient for each radiating surface. Fig. 7 emphasizes
the different trajectories taken by the temperature, further
validating the impact of considering s2s radiation for this
device.

To perform the MOR, snapshots must be computed, so the
FOM was run using the series of steps of input powers shown
in Fig. 8 with a time step of 1 second. Once the snapshots
are collected, choosing the number of singular vectors for the

Fig. 9: Left capacitor temperature during validation.

TABLE III: Computation time and memory requirements
comparison between full and reduced order model.

n sG Memory ct
FOM 23619 23619× 29515 5332 MB 1h 52min
ROM 7 7× 6 3.23 kB 0.61s

POD and DEIM becomes a trade-off between model size and
accuracy. To choose this value, the FOM and ROM were tested
on new input data shown in Fig. 8.

The final ROM was built using 7 POD modes and 6 DEIM
modes, the performance improvements reported here are also
summarized in Table III. The number of states n was reduced
from 23619 to 7. The size sG of the radiation matrix G in (14)
was reduced from 23619× 29515 to 7× 6. The computation
time needed to run the simulation was reduced from 1 hr 52
min to less than 1 second, and the memory used to store the
matrices was reduced from 5332 MB to less than 4 kB. The
results obtained by the ROM were compared with the ones
obtained by the FOM to test for loss of accuracy. The average
temperature of the right capacitor is the quantity that showed
the greatest maximum deviation from the FOM during the
simulation. The quality is considered acceptable as this value
is below 0.16◦C.

V. CONCLUSION

A Proper Orthogonal Decomposition (POD) coupled with
the Discrete Empirical Interpolation Method (DEIM) approach
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has been applied to reduce the computational complexity
of the heat conduction problem coupled with the surface-
to-ambient and surface-to-surface radiation boundary condi-
tions [25], [27]. The same mesh used for the heat conduction
discretization is adopted to build the matrices needed for
surface-to-ambient and surface-to-surface radiation, and the
resulting model is then reduced. Thanks to the POD-DEIM
method, high-fidelity physics-based models, can be seamlessly
transformed into accurate Reduced Order Models (ROMs). By
using this technique, both the computation time and memory
needed to store the model of the device are greatly reduced,
while the prediction error of the reduced order model is
negligible. Finally, further improvements can be also achieved
by employing faster strategies to build the radiosity matrix,
in particular the calculation of the visibility factor, the main
bottleneck of the proposed method. More efficient techniques
can also take advantage of programmable graphics hardware
to accelerate computations [33]. Starting from the proposed
tool, future works will consider the applications of such ROMs
for real-time control strategies and monitoring of electric
components.
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