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Abstract—This paper presents the BLSML method, which 

combines Brown’s Least Square Error (LSE) and Maximum 

Likelihood (ML) techniques for accurate target position 

estimation. The proposed method, named BLSML, offers a 

passive approach that leverages the strengths of both LSE and 

ML to improve the estimation accuracy. In the first stage, 

BLSML provides an initial estimated position using LSE, which 

takes advantage of the robustness and efficiency of the LSE 

algorithm. Then, in the second stage, BLSML performs 

optimization based on ML principles, refining the estimated 

position to enhance accuracy. We have utilized the Cramer-Rao 

Lower Bound (CRLB) on the estimator's covariance to develop 

an efficient estimator for position estimation. To assess the 

performance of the proposed BLSML method, comprehensive 

Monte Carlo simulations were conducted. Realistic noise and 

error models were incorporated to mimic real-world conditions 

and evaluate the method’s robustness. The evaluation metrics 

included Root Mean Square Error (RMSE) for position 

estimation accuracy and Circular Error Probable (CEP) for 

error region analysis. The results demonstrated that BLSML 

achieved remarkable accuracy, with an RMSE below 0.43%, an 

average estimation error of 1.907% and the radius of the 90% 

CEP region of approximately 925 m for target position 

estimation within a 200-kilometer range. 

Index Terms— Maximum likelihood estimation, Transmitting 

or emitting target position estimation, LSE-Brown, BLSML, 

Optimization, AoA. 

 

I. INTRODUCTION 

Determining the location of emitting targets is a critical task 

performed by communication electronic warfare (EW) systems. The 

knowledge of target locations serves multiple purposes. Firstly, it 

provides valuable insights into the positioning and distribution of 

forces, enabling a better understanding of the overall military 

situation. Secondly, precise target location information facilitates the 

effective utilization of advanced weaponry, such as GPS-enabled 

fire-and-forget munitions, which can accurately engage and 

neutralize the identified targets. Lastly, when different types of 

emitters are clustered in a specific region, it can provide indications 

about the presence and nature of particular entities at that location. 

There are several methods to estimate the azimuth angle of arrival 

(AoA) of signals impinging on the antenna array at an intercept site. 

such as time difference of arrival (TDoA), time of arrival (ToA), 
range differences (RD), differential Doppler (DD) [1]. 

All of these techniques generate quadratic curves, called lines of 

bearing (LoB), upon which the emitter lies, subject to measurement 

errors and noise perturbations. The intersection of these LoBs is used 

to estimate the position fix (PF) of a target. If the target is moving, 

errors can occur in the PF calculations. These errors can be mitigated 
if the motion is detected [1]. 

 

The AoA of a signal, or its LoB, is a frequently used parameter for 

PF computation. Two or more LoBs, assumed to be measured on the 

same target at more or less the same time, may intersect [2-7]. Such 
a technique for PF determination is referred to as triangulation. 

In Fig. 1., the components related to the BLSML target estimation 

method are depicted. In this scenario, the drone follows a pre-

determined path, the mounted receiver on the drone, along with the 

radar transmitter, forms a system. The target’s LoBs, which exists in 

two types: line of sight (LoS) and non-line of sight (NLoS), is 

received by the receiver. After relevant processing, the position of 

the transmitting or emitting target is determined using the BLSML 

method, which involves statistical, trigonometric, and optimization 
computations. 

 

 

Fig. 1. The components of the BLSML method for target position estimation. 

 

A. Previous Literature 

The recursive form of LSE estimation is assumed such that 

measurements are made sequentially at different times. LSE 

estimation can be applied to any appropriate set of data points. The 

linear estimation model is an expression consisting of the observation 
matrix and unknown parameters [7]. 

When noise is present in observation matrix, the estimation isn’t 

optimal. It exhibits bias and increased covariance. To determine the 

optimal LSE estimate in this case, the method of Total Least-Squares 
Estimation (TLSE) was developed [8]. 

In general, the LSE estimation process produces biased estimates. 

The term biased estimator for the parameter 𝜃 means that 

𝐸[𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟] ≠  𝜃. The symbol 𝐸[⋅] indicates the expectation 
operation [9]. 

However, specific cases of LSE estimation, can produce unbiased 

results. An algorithm developed by Brown [10] based on an earlier 

algorithm by Legendre [11] presented for calculating the PF, which 



is based on minimizing the square of the miss distance of the PF from 
the measured LoBs. This algorithm was presented in [3] also. 

A different LSE estimation that called Hemispheric for PF 

estimation is presented in [12, 13]. The measured bearing from a 

sensor, 𝜑𝑖 projected onto the surface of the Earth in the northern 

hemisphere. A problem with this LSE approach to PF is that an initial 

estimate of the target is required and it is only valid for small bearing 

errors. Also, convergence is not guaranteed and slow convergence 
may occur even when convergence occurs. 

In [14-21], the position estimation of an emitter has been 
performed using the ML method. 

In [14], a method for estimating various target parameters, 

including range, is investigated using an active approach. The 

method used is called joint estimation of velocity, AoA, and range 

(JEVAR), which takes into account multipath in the environment and 

employs ML estimation in the receiver part. Their proposed method 

has shown better performance compared to other methods and 
achieved range estimation with centimeter-level accuracy. 

In [15], an ML estimator is used to estimate the position of an 

emitter or a radio wave source using UAVs in NLoS environments. 

Each receiver sensor measures the direction of arrival (DoA). In their 

method, after estimating the source's position, it is determined which 

measurements are LoS or NLoS, and then the position estimation is 

corrected accordingly. Multiple UAVs are used for measurements to 

improve accuracy and coverage. We have also measured only the 
AoA in order to reduce complexity. 

In [16], they have used ML receivers to determine the position of 

an emitter for radar  pulse trains. In the method they developed, they 

have eliminated the need for a complex antenna array and 

synchronization. They have utilized a sensor for measuring ToA. In 

the first stage, they model the localization problem as a nonlinear 

least square (NLS) problem from the perspective of ML estimation. 

Finally, they propose an iterative estimation algorithm for accurate 

emitter position estimation. Similar to this work, we have utilized a 
two-stage method where the second stage is iterative. 

In [17], a method for target localization using wireless sensor 

networks (WSNs) in terrestrial and underwater environments is 

proposed. Their proposed method consists of several components: 

ML receiver sensors, a data transmission component for collecting 

data from the sensors, and a position estimation algorithm operator. 

The collected data from the sensors in this work can be selected by 

the user to be any of AoA, ToA, TDoA, and received signal strength 

(RSS), based on the desired accuracy of position estimation and 

computational complexity. Additionally, they have developed 

algorithms for position estimation using triangulation, trilateration, 

and multilateration methods. 

In [18], similar to the approach in [14], they have used an active 

method for moving target localization. The developed method by 

them is comparable to other methods in terms of the time required to 

achieve accurate position estimation. They have achieved this by 

reducing computational complexity. Indeed, their estimation error is 

high at low Signal-to-Noise Ratio (SNR) levels, and they also face 

challenges in reaching the CRLB even at high SNR. In this work, 

achieving sufficient accuracy within a reasonable time was one of 
their concerns, which is also a concern we have encountered.  

Based on the conducted investigations, we have concluded that we 

can utilize a passive approach for our work. 

In [19, 20, 22], they have utilized the combination of different 

received data for target estimation. In [19], ML receivers 
simultaneously measured RSS and ToA. 

In [20], a proposed position estimation method is introduced, 

specifically designed for crowded urban environments, aiming to 

reduce the reliance on LoS paths. In their proposed method, they 

have utilized a combination of different received data, including ToA 

and AoA. Additionally, they have defined a motion path for the 

platform. In our proposed method, we have the flexibility to have 

multiple measurements by employing multiple UAVs or, similar to 

the approach in [20], defining a specific path for a single UAV to 
traverse. In our case, we have chosen to utilize the second approach. 

In [21], a cost function has been proposed to handle noisy 
measurements and solution of unknown parameter. 

In [22], a heterogeneous dataset comprising TDoA, RSS and AoA 

measurements is collected using a multi-sensor system. Then, a set 

of regression-based methods is employed to estimate the position of 

an emitter. 

There are several sources of error that can enter into the PF 

estimation by triangulation: noise and measurement errors. In [23], 

an analysis of sensor position error effects on the estimation of three-
dimensional target has been conducted. 

B. Motivation and Contribution 

Based on our conducted investigations, we have concluded that we 

can utilize a passive approach. In order to reduce computational 

complexity, we consider the AoA and sensor position as data in each 

measurement, which is one of the strengths of our proposed method. 

Furthermore, it was concluded that defining a specific path for the 

drone and having it traverse that path while simultaneously 

performing measurements and target position estimation using 
BLSML method. 

A summary comparison of the methods introduced here is 
provided in Table I.  

 

TABLE I  

COMPARISON OF THE DISCUSSED POSITION ESTIMATION METHODS. 

Iterative Biased Method 
No No LSE-Brown 

Yes No LSE-Hemispheric 

Yes No ML 

 

The contributions of this work include the following: 

1) The development of the BLSML method that consists of 

two distinct stages: initial position estimation and 

optimization of the estimated position. In the first stage, we 

employ the Brown-LSE method to estimate the initial 

position. The LSE-Brown method is known for its 

robustness and efficiency in providing reliable initial 

position estimates. Unlike some other methods that require 

iterative procedures, the LSE-Brown method offers a 

powerful and non-iterative approach for determining the 

initial position. This initial estimation serves as a starting 

point for further optimization. The second stage of the 

BLSML method involves optimization of the estimated 

position using the ML approach. By employing ML 

optimization, we refine the initially estimated position to 

enhance accuracy and precision. Compared to the LSE-

Hemispheric method, the ML approach demonstrates 

faster convergence and increased stability during the 

optimization process. 



2) In the simulation, various measurement errors and noises 

have been considered. The defined noises and errors are 

assumed AWGN with a mean of zero except for the NLoS 

measurements, which we have considered to follow a 

Rayleigh distribution. The standard deviations of these 

noises and errors are different. The error in determining the 

drone's position using GPS is assumed to have a standard 

deviation of 5 meters. The standard deviation of LoB 

measurement is considered to be 1 degree. The error due 

to the drone's motion is assumed to have a standard 

deviation of 0.5 degrees. The NLoS measurements has a 

standard deviation that is 3.5 times the standard deviation 

of the RMS of aforementioned noises. Because up to 3 

times the standard deviation of the defined RMS noise [24] 

is considered as acceptable noise levels. It also includes 

5% of the measurements. 

3) In order to execute the BLSML method for target position 

estimation, it is necessary to determine the initial LoB for 

position estimation. This is because the estimation error is 

significantly high for positions estimated at the beginning 

of the drone's motion. This is primarily due to the 

requirement of a sufficient number of measurements for 

the ML algorithm to provide accurate position estimation 

[25]. To determine the initial LoB, we have used RMSE. 

In the Monte Carlo simulations, the drone has followed the 

predefined path for 1000 iterations, and the RMSE value 

has been calculated. And we have determined the initial 

LoB for the RMSE of 10%, 5% and 1%. The first view by 

the drone has been considered between -5 degrees and -45 

degrees. After the iterative process, where the first LoB 

consisted of several angles between -5 degrees and -45 

degrees, an interpolation has been performed. The 

interpolation process aims to determine the LoBs that 

achieve an RMSE value below 10% error. Also, the 

interpolation has been performed with an accuracy of 0.1 

degrees. Based on the first view by the drone, the position 

estimation process is initiated by determining the LoB 

according to the described curve. The curve has also been 

obtained for RMSE values of 5% and 1%. 

4) Measurement errors and noises include the following 

cases: LoB measurement error, drone positioning 

measurement error, drone movement error along the 

specified path, non-line of sight (NLoS) measurements, 

and noise related to changes in drone velocity such as 

environmental factors like weather, which are considered 

during the time intervals between measurements. 

5) Simulation of removing NLoS measurements by utilizing 

the difference between the estimated target LoB and the 

current LoB. 

6) Monte Carlo simulation of the BLSML method and its 

evaluation using RMSE, Cumulative Distribution 
Function (CDF) [26] and CEP. 

The rest of the paper is organized as follows. The system model 

for this work, which involves the position estimation method using 

the BLSML method, is introduced in Sec. II, the derivatives of the 

CRLB are explained in Sec. III, Sec. IV presents the simulation 

results, and finally the paper is concluded in Sec. V. 

 

II. SYSTEM MODEL 

Fig. 2. illustrates an example of system model for target position 

estimation using BLSML method. The block diagram shown consists 

of three parts: the radar transmitter, depicted in Fig. 2. (a), which 

radiates the signal into space. The radar receiver, shown in a lighter 

shade in Fig. 2. (b), which is a type of superheterodyne receiver in 

this case, receives the 𝑠𝑖𝑔𝑛𝑎𝑙 +  𝑛𝑜𝑖𝑠𝑒 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒. 

Furthermore, these are received by the receiver mounted on the 
identification drone, shown in Fig. 2. (c).  

The receiver mounted on the identification drone in Fig. 2. (c) 

comprises various components. A low-noise RF amplifier performs 

the amplification and filtering operations. The next block is related 

to signal identification and interference rejection. This block can be 

implemented using various methods, including deep learning, to 

retain only the signal and eliminate interference generated by other 

systems present in the environment. The direction finding block 

focuses on determining the AoA with a specific accuracy using 

different methods, such as DoA. After determining the AoA, the 

BLSML block applies the proposed method to estimate the radar 
position. 

 

 

Fig. 2. (a) The radar transmitter, which is the transmitting target in this case. (b) Radar 

receiver which is a type of superheterodyne receiver. (c) The receiver mounted on the 

identification drone where the BLSML method is applied. 

 

A. Initial Estimate 

As mentioned, in this research, we have used the LSE-Brown 
method to determine the initial estimate of the target. 

 

Fig. 3. LSE-Brown method. 



This approach relies on minimizing the squared difference 

between the estimated position of the PF and the measured LoBs 

[10]. With reference to Fig. 3., to minimize the sum of the squares of 

the total miss distance, formulate 

(1) 𝐷 =  ∑ 𝑑𝑖
2𝑁

𝑖=1 =  ∑ 𝑎𝑖
2𝑥𝑇

2 + ∑ 2𝑎𝑖𝑏𝑖𝑥𝑇𝑦𝑇 − ∑ 2𝑎𝑖𝑐𝑖𝑥𝑇 +𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1

∑ 𝑏𝑖
2𝑦𝑇

2 − ∑ 2𝑏𝑖𝑐𝑖𝑦𝑇 + ∑ 𝑐𝑖
2𝑁

𝑖=1
𝑁
𝑖=1

𝑁
𝑖=1 

where  

𝑎𝑖 = sin 𝜑𝑖  

𝑏𝑖 = − cos 𝜑𝑖 

𝑐𝑖 = 𝑥𝑖 sin 𝜑𝑖 − 𝑦𝑖 cos 𝜑𝑖 

𝑁 is the number of LoBs. 

By equating the first partial derivatives of 𝐷 with respect to 𝑥𝑇 and 

𝑦𝑇 to zero, the values of 𝑥𝑇 and 𝑦𝑇 can be determined at which the 

total squared distance is minimized. 

(2) 
𝜕𝐷

𝜕𝑥𝑇
= 0 = 2𝑥𝑇 ∑ 𝑎𝑖

2𝑁
𝑖=1 + 2𝑦𝑇 ∑ 𝑎𝑖

𝑁
𝑖=1 𝑏𝑖 − 2 ∑ 𝑎𝑖

𝑁
𝑖=1 𝑐𝑖 

(3) 
𝜕𝐷

𝜕𝑦𝑇
= 0 = 2𝑥𝑇 ∑ 𝑎𝑖𝑏𝑖

𝑁
𝑖=1 + 2𝑦𝑇 ∑ 𝑏𝑖

2𝑁
𝑖=1 − 2 ∑ 𝑏𝑖

𝑁
𝑖=1 𝑐𝑖 

which yield 

(4) 𝑥𝑇 =
∑ 𝑏𝑖

2 ∑ 𝑎𝑖𝑐𝑖−∑ 𝑎𝑖𝑏𝑖 ∑ 𝑏𝑖𝑐𝑖
𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1

∑ 𝑎𝑖
2𝑁

𝑖=1 ∑ 𝑏𝑖
2−(∑ 𝑎𝑖𝑏𝑖

𝑁
𝑖=1 )2𝑁

𝑖=1

 

(5) 𝑦𝑇 =
∑ 𝑎𝑖

2 ∑ 𝑏𝑖𝑐𝑖−∑ 𝑎𝑖𝑏𝑖 ∑ 𝑎𝑖𝑐𝑖
𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1

∑ 𝑎𝑖
2𝑁

𝑖=1 ∑ 𝑏𝑖
2−(∑ 𝑎𝑖𝑏𝑖

𝑁
𝑖=1 )

2𝑁
𝑖=1

 

The aforementioned miss distance for sensor 𝑖 can be represented 

as follows. 

(6) 𝑑𝑖 = 𝑎𝑖𝑥𝑇 + 𝑏𝑖𝑦𝑇 − 𝑐𝑖 

If we consider 𝑖 as the index of the 𝑖𝑡ℎ measurement of a LoB, and 

𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are as provided earlier, then the expression for the miss 

distance can be written in matrix form as follows. 

(7) 𝑑 = 𝐻𝑥𝑇⃗⃗⃗⃗⃗ − 𝑐 

In this expression, 

(8) 𝑐 = [

𝑐1

⋮
𝑐𝑁

]   𝑥𝑇⃗⃗⃗⃗⃗ = [
𝑥𝑇

𝑦𝑇
]   𝐻 = [

𝑎1 𝑏1

⋮ ⋮
𝑎𝑁 𝑏𝑁

]  𝑑 = [
𝑑1

⋮
𝑑𝑁

] 

equation (9) provides the formula for calculating the LSE 

estimator of the target location vector 𝑥𝑇⃗⃗⃗⃗⃗ 

(9) 𝑥𝑇⃗⃗⃗⃗⃗ = [𝐻𝑇𝐻]−1𝐻𝑇𝑐 

 

B. Optimization 

As mentioned before, after estimating the target position using 

LSE-Brown, we have used the ML method to optimize the estimated 
position. 

If we assume that the noise follows a Gaussian distribution with a 

mean of zero, the ML estimator for the target location can be 
expressed as follows: 

(10) �̂⃗� = argmin
�⃗�

𝐹(�⃗�. �⃗⃗�)  

where 

(11) 𝐹(�⃗�. �⃗⃗�) =  
1

2
[�⃗�(�⃗�) − �⃗⃗�]𝑇𝐶𝑥𝑥

−1[�⃗�(�⃗�) − �⃗⃗�] 

The cost function, denoted as 𝐹(�⃗�. �⃗⃗�), consists of several 

components 

(12) �⃗�(�⃗�) = [𝑔1(�⃗�) ⋯ 𝑔𝑁(�⃗�)]𝑇 

In two dimensions, 

(13) �⃗� = [𝑥𝑇 𝑦𝑇]𝑇 

and the bearing measurements are given by 

(14) �⃗⃗� = [𝜑1 ⋯ 𝜑𝑁]𝑇 

The components of  �⃗�(�⃗�) are given by 

(15) 𝑔𝑛(�⃗�) =  𝑡𝑎𝑛−1(
∆𝑦𝑛

∆𝑥𝑛

) 

where 

(16) ∆𝑥𝑛
=  𝑥𝑇 − 𝑥𝑛   .   ∆𝑦𝑛

=  𝑦𝑇 − 𝑦𝑛 

In conclusion, the covariance matrix 𝐶𝑥𝑥, which has dimensions 

𝑁 × 𝑁, represents the diagonal matrix 𝑑𝑖𝑎𝑔(𝜎1
2 ⋯ 𝜎𝑁

2) and contains 

the variances of the 𝑁 LoB observations. 

𝑁 represents the total number of observations, and it is possible 

for multiple observations to be obtained from each sensor. However, 

it is assumed that the number of observations remains consistent 

across all sensors. The LoB observations are affected by AWGN 
given by 

(17) 𝛿�⃗⃗� = [𝛿𝜑1 ⋯ 𝛿𝜑𝑁]𝑇 

If we denote the true LoB values as 𝜑0⃗⃗ ⃗⃗ ⃗, the observed LoBs can be 

represented as: 

(18) �⃗⃗� =  𝜑0⃗⃗ ⃗⃗ ⃗ + 𝛿�⃗⃗� 

Expression (11) can be put in the form 

(19) 𝐹(�⃗�. �⃗⃗�) =
1

2
𝑓𝑇𝐶𝑥𝑥

−1𝑓 =
1

2
∑

𝑓𝑛
2

𝜎𝑛
2

𝑁
𝑛=1 

where 

(20) 𝑓 = [𝑓1 ⋯ 𝑓𝑁]𝑇 = �⃗�(�⃗�) − �⃗⃗� 

The numerical solution of (10), which is a nonlinear equation, can 

be obtained using the Newton-Gauss method. This iterative method 

allows us to find a solution by performing successive iterations until 
a desired level of convergence is achieved. 

(21) �̂⃗�𝑚+1 = �̂⃗�𝑚 + [�⃗�𝑥
𝑇𝐶𝑥𝑥

−1�⃗�𝑥]𝑇�⃗�𝑥
𝑇𝐶𝑥𝑥

−1[�⃗⃗� − �⃗�(�̂⃗�𝑚)] 

where �⃗�𝑥 =
𝜕�⃗⃗�

𝜕�⃗�
 evaluated at the true target position, yielding 

(22) �⃗�𝑥 = [

−∆𝑦1

𝑑1
2 ⋯

−∆𝑦𝑁

𝑑𝑁
2

∆𝑥1

𝑑1
2 ⋯

∆𝑥𝑁

𝑑𝑁
2

] 

with 

(23) 𝑑𝑛
2 = ∆𝑥𝑛

2 + ∆𝑦𝑛

2 

 

C. NLoS Suppression 

Also, we have proposed a method for suppression measurement 

errors caused by NLoS, inspired by the approach described in [27]. 



In this method, we calculate the difference between the current LoB 

and the current line to the estimated point. If the difference exceeds 

5 degrees, it is considered as NLoS measurement and not included in 

the target's position estimation. 

 

III. CRLB 

In this section, we will discuss the derivatives of the CRLB as a 
measure of the efficiency of an estimator for the unknown parameter. 

For an unbiased estimator 𝑇(𝑥) for the unknown parameter 𝜃 

based on observations of the random variables 𝑥1. 𝑥2. ⋯ . 𝑥𝑛 and with 

the joint probability density function 𝑓(𝑥; 𝜃) , we have: 

(24) 𝐸[𝑇(𝑥) −  𝜃] =  ∫ (𝑇(𝑥) − 𝜃)𝑓(𝑥; 𝜃)𝑑𝑥 = 0
∞

−∞
 

By simplifying this expression, it can be proven that  

(25) 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑇(𝑥)) ≥ −
1

𝐸[
𝜕2 log 𝑓(𝑥;𝜃)

𝜕𝜃2 ]
 

If the random variables 𝑥1. 𝑥2. ⋯ . 𝑥𝑛 are independent, identically 
distributed (i.i.d), then 

(26) log 𝑓(𝑥; 𝜃) =  ∑ 𝑓(𝑥𝑖; 𝜃𝑖 ) 

And the CR bound is given by 

(27) 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑇(𝑥)) ≥ −
1

𝑛𝐸[
𝜕2 log 𝑓(𝑥𝑖;𝜃)

𝜕2𝜃
]

 

In this case, the unbiased estimator 𝑇(𝑥) with the lowest possible 

variance is said to be an efficient estimator for 𝜃. In general, such an 

estimator may or may not exist and it depends on the situation at hand. 

It can be proven that if an efficient estimator exists, it will be the ML 
estimator. 

In equation (25), the value of fisher information (FI) available in 

the dataset about the parameter 𝜃 is given by the following equation 

[9]. 

(28) 𝐹𝐼 =  −𝐸[
𝜕2 log 𝑓(𝑥;𝜃)

𝜕𝜃2
] 

In this work, we have derived the equations associated with the 
ML estimator through the equations mentioned in this section. 

 

IV. SIMULATION RESULTS 

In this section, we will discuss the results obtained from Monte 
Carlo simulations of the developed method.  

 

Fig. 4. Comparison between the LSE-Brown and BLSML methods in different FoVs. 

Fig. 4. illustrates the RMSE plots for the LSE-Brown and BLSML 
methods across several field of views (FoVs). 

It is evident that the BLSML method reaches an RMSE of 10% 

much faster. It is worth mentioning that the starting point for all the 

plots represents a 10% RMSE. Additionally, the lowest RMSE is 
achieved at the last view. 

The Monte Carlo simulations between BLSML and LSE-Brown 

in terms of the time taken to reach a 10% RMSE is shown in Fig. 5. 

From the results of Fig. 5., it can be concluded that when the first 

view has a larger size, the time taken to reach a 10% RMSE is shorter, 

and vice versa. The reason for this is that in smaller-sized views, the 

sensor and target are almost aligned on a straight line, which leads to 
higher errors [25]. 

 

 

Fig. 5. Comparison of the time taken to reach 10% RMSE in the LSE-Brown and 

BLSML methods. 

 

One of the additional evaluations we performed for the BLSML 

method is the calculation of the CDF based on the RMSE of the 

position estimation. In Fig. 6., we have presented the Monte Carlo 
simulation of the CDF for a target within a range of 200 kilometers. 

 

 

Fig. 6. The CDF of target position estimation using the proposed method for a number 

of FoVs. The simulations were iterated 1000. The best average estimation error was 

obtained in the FoV ranging from -25 degrees to -155 degrees. 

 

The average RMSE values for the BLSML method for different 

FoV are provided in Table II. In Table III, a comparison of the 



average RMSE of the position estimation with other methods is 

presented. Based on Table III our proposed method has shown a 

better average RMSE compared to the other two methods. It should 

be noted that in the two methods we compared, as the distance from 

the target to the origin of the coordinate system was not specified, we 

considered the maximum possible value within their defined region 
to ensure the best results. 

TABLE II 

THE AVERAGE RMSE OF BLSML FOR DIFFERENT FOVS. 

FoV(DEG) Average RMSE(m) 

[-15,-165] 5718.2 

[-25,-155] 3813.91 

[-35,-145] 5672.29 

[-45,-135] 5153.63 

 

TABLE III 

THE PROPOSED METHOD IS COMPARED TO OTHER METHODS IN TERMS OF 

AVERAGE RMSE, CONSIDERING THE CDF. THE CORRESPONDING FOV FOR 

THE PROPOSED METHOD IS [-25(DEG), -155(DEG)]. 

Method Average RMSE(%) 

[15] 2.308 

BLSML 1.907 

[20] 7.955 

 

Fig. 7. illustrates another comparison showing the RMSE value 

based on the number of sensor measurements. This figure presents 
the Monte Carlo simulation of this evaluation. 

 

 

Fig. 7. The evaluation of the proposed method in terms of the number of measurements 

indicates that the BLSML method outperforms in different FoVs, specifically for 

measurement counts of 225 and 400. 

 

In Fig. 7., the RMSE values for our proposed method are provided 

for the number of sensor measurements of 100, 225, and 400, and 

compared with [17] that the RMSE values are provided for two 

different SNR values and two different targets. Our proposed method 

outperforms [17] in terms of performance in the number of sensor 

measurements of 225 and 400. However, in the case of 100 sensor 
measurements, [17] has shown better performance. 

One of the additional evaluations we conducted for the BLSML 

method is the CEP assessment. For CEP evaluation, there are two 

definitions. In the first definition, the 50% error region refers to the 

area where 50% of the estimated points fall within, and the 90% error 

region is the area where 90% of the estimated points lie along the 

drone's traversal path [28]. In the second definition, for each position 

estimation, an error region can be determined based on the 

covariance matrix of the estimator [29]. We have utilized the first 
definition of CEP in this study. 

Fig. 8. and Fig. 9. depict the 50% and 90% error regions when the 

target is at distances of 50 kilometers and 200 kilometers, 
respectively. 

 

 

Fig. 8. The 50% and 90% CEP regions. The target was located at a range of 50 

kilometers. The radius of the 50% and 90% CEP regions is approximately 168 meters 

and 302 meters, respectively. 

 

 

Fig. 9. The target was located at a range of 200 kilometers. The radius of the 50% and 

90% CEP regions is approximately 514 meters and 925 meters, respectively. 

 

V. CONCLUSION 

The BLSML method, a combination of Brown’s LSE and ML 

techniques, presents a promising approach for accurate target 

position estimation. By leveraging the advantages of both methods, 

BLSML offers a robust and efficient solution that can be applied in 



practical scenarios. The integration of optimization techniques with 

the initial estimation process enhances the precision and reliability of 

target localization. The proposed method has the potential to 

contribute to various domains, such as military operations, 

surveillance systems, and navigation applications, where accurate 
target positioning is crucial. 

 

APPENDIX A 

THE CDF OF A GAUSSIAN RANDOM VARIABLE 

In order to calculate the CDF of a Gaussian random variable 

𝑋 ~ 𝑁(𝑚. 𝜎2), we use the Q function: 

(29) 𝐹𝑋(𝑥) = ∫
1

√2𝜋𝜎2
𝑒−

(𝑡−𝑚)2

2𝜎2 𝑑𝑡
𝑥

−∞
= 1 −

 ∫
1

√2𝜋𝜎2
𝑒−

(𝑡−𝑚)2

2𝜎2 𝑑𝑡
∞

𝑥
= 1 − ∫

1

√2𝜋
𝑒−

𝑢2

2 𝑑𝑢
∞

𝑥−𝑚

𝜎

= 1 − 𝑄(
𝑥−𝑚

𝜎
) 

that Q function defined as 

(30) 𝑄(𝑥) = 𝑃{𝑁(0.1) > 𝑥} =
1

√2𝜋
∫ 𝑒−

𝑡2

2 𝑑𝑡
∞

𝑥
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