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Abstract—During fast charging of Lithium-Ion batteries (LIB),
cell overheating and overvoltage increase safety risks and lead
to faster battery deterioration. Moreover, in conventional Bat-
tery Management Systems (BMS), the cell balancing, charging
strategy and thermal regulation are treated separately at the
expense of faster cell deterioration. Hence, this paper proposes
an optimized fast charging and balancing strategy with electro-
thermal regulation of LIB packs. Thereby, the power dissipation
constraints of the passive balancing are introduced in the
proposed integrated optimal framework and cell balancing is
achieved by bypassing the extra charging current. The electro-
thermal model of the cells, along with a battery pack formed
by a string of cells, is implemented. Extensive experiments are
carried out to identify the coefficients for the Lithium-Ion cell
model, i.e. Samsung-INR18650-20R, and the charging current
trajectory as well as the balancing signals are generated with
Model Predictive Control (MPC). The pack level simulations
and experiments show that the proposed algorithm maintains
the electro-thermal boundaries throughout the charging process,
increasing the safe charge acceptance of the battery pack.

Index Terms—Fast charging, battery pack, electro-thermal
battery model, nonlinear Model Predictive Control.

I. INTRODUCTION

THE Battery Management System (BMS) plays a critical
role in Battery Energy Storage Systems (BESS) by pro-

viding cell monitoring, thermal management, cell balancing,
charge control, battery safety and protection, state-of-health
(SOH) and state-of-charge (SOC) estimation [1]. However,
reports of explosions and fires on Electric Vehicles (EV)
advocate for a better BMS design with improved battery state
monitoring and regulation for extended lifetime [2]. This is
particularly important for Lithium-Ion batteries (LIB), whose
expansion has been hampered due to safety concerns, in
which thermal runaway (TR) is the main factor [3]. On the
application side on charging strategies, fast charging operates
near the electro-thermal boundaries of LIB, making individual
battery control a requirement. However, most evaluations of
optimal charging strategies with electro-thermal boundaries
in literature barely include more than one cell [4]–[6]. Yet,
the single-cell optimal charging strategies do not include the
discrepancies between cells caused by different aging and
operating conditions, as well as manufacturing tolerances.
Besides, the optimal current profile of a battery pack should
incorporate the safe operation area (SOA) [7] and internal
states of each cell.

Regarding to LIB charging, standard procedures such
as constant-current (CC), constant-current constant-voltage
(CCCV) or even multi-stage CCCV [8] are relatively simple
to implement. In these methods, voltage/current limits can be
ensured, but thermal regulation and balancing are assessed sep-

arately or not assessed at all. More complex and more effective
charging strategies in closed-loop operation use the battery
states as feedback and provide current, voltage, power, charge
and thermal regulation [4], [9], [10]. To implement these
strategies, modelling the battery dynamics and optimization
algorithms are essential. Battery models could be classified
into physical-based electrochemical models, electric equivalent
circuit models and data-driven models [11]. Formulations
based on equivalent circuit models (ECM) and lumped thermal
models (LTM) combine low computational requirements, high
accuracy, robustness and have also been widely evaluated in
research. Once the model is selected, the charging profile
should be optimized based on both the battery model and
knowledge of the internal battery states.

With regards to the charging optimization algorithm, dif-
ferent approaches have been developed and are summarized
by [4], [5]. In most methods, the optimal charging strategy
is applied to a single cell, and very few exceptions con-
sider a battery pack. Some of these exceptions include the
works summarized on Table I. In particular, Pozzi et al.
[14], [18] proposes the use of nonlinear Model Predictive
Control (NMPC) to address aging, balancing and thermal
regulation of the entire battery pack. This resulted in a faster
charging time and safer thermal operation than the CCCV
approach. However, either additional switches are required
[14] or the discharge/dissipation constraints at a cell level are
not considered [18]. Additional switches per cell increases the
costs considerably, specially when the charging currents are
relatively high, and the current dissipated by the shunt resistor
is constrained by its power dissipation capabilities and the
battery voltage. Moreover, an experimental evaluation of these
MPC-based strategies is still pending and necessary due to the
new challenges that simulations do not reveal.

The aforementioned limitations motivate the development
and experimental evaluation of an integrated charging and
balancing strategy that satisfies the thermal constraints at cell
level. Consequently, we developed a NMPC-based formulation
for an optimal charging of a battery pack with a string con-
figuration without additional switches, considering the SOA,
balancing, and energy dissipation limitations at a cell level. To
achieve a faster charging time, the balancing is forced during
the charging process, and the energy dissipated via the shunt
resistor does not flow from the cell but from the charger.
A simulation setup is developed based on 2 Ah Samsung
INR18650-20R cylindrical cells. To evaluate the method, a
cell model (ECM + ETM) is generated through extensive
experimentation, and simulations compare the NMPC charg-
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TABLE I
SUMMERY OF OPTIMAL CHARGING STRATEGIES FOR BATTERY PACKS

Authors Battery
Model

n
Cells

Thermal
Dynamics

Thermal
Regulation Evaluation Est/Obs Ageing Control

Time Algorithm

Ouyang et al., 2018 [12] ECM 3 no no Sim & Exp no no L1=600s, L2=60s, VTs=0.5s 2-L Opt
Ouyang et al., 2020 [13] ECM 10 no no Sim & Exp yes, LO no L1=300s, L2=1s 2-L Opt
Pozzi et al., 2020 [14] ELM 6 yes yes Sim yes, EKF yes 10s NMPC

Ouyang et al., 2022 [15] ECM 4 no no Sim & Exp no no 600s 2-L Opt
Chen et al., 2022 [16] ECM 4 no no Sim & Exp no no 1s QP
Yan et al., 2024 [17] ECM 4 no no Sim & Exp no no 1s DRL

ing strategy and the standard CCCV with passive balacing
(CCCV+PB) in a battery pack. Moreover, a 4-cell battery pack
is built and tested in the laboratory to corroborate the results
in hardware by integrating the NMPC strategy and Unscented
Kalman Filter-based (UKF) battery states estimation. The pro-
posed charging strategy includes power dissipation constraints,
electro-thermal regulation, fast-charging, charge balance and
the corresponding evaluation in hardware and simulation.

The main contributions of this paper are the following:
• Development of an efficient charging approach for the

battery pack that ensures electro-thermal regulation at
the individual cell level, while also addressing current
limitations and considering parameter variations between
different cells.

• Simultaneous cell charge balancing and fast charging.
• Ready-to-implement charging strategy that could be ap-

plied to existent BESS to balance the charge and control
the core temperature of the cells.

• Evaluation of the optimal charging strategy through sim-
ulation and in an experimental setup considering the
integration of the NMPC and the battery states estimator.

Consequently, this research contributes in the development
of more reliable and more efficient BMS for EV and BESS
applications.

II. ELECTRO-THERMAL MODEL OF BATTERY STRING

A. Battery Model

The simplified model of the cell using an equivalent electric
circuit is presented in Fig 2 (a). The battery polarization
voltage is modeled with 1-RC circuit (Rp, Cp) and the battery
internal resistance (Ro). The open-circuit voltage (OCV) is
represented with a variable voltage source (vocv), and the SOC
(χ) is retrieved via Coulomb counting, i.e.:

v̇c = − vc
RpCp

+
i

Cp
(1)

χ̇ =
ηi

Cbat
(2)

v = iRo + vc + vocv (3)
The battery parameters are temperature dependent and/or

SOC dependent. The dependencies of the parameters are
mostly represented by polynomial functions, assuming a ther-
mal decoupling during the parametrization:

vocv(χ, T ) =

8∑
l=0

alχ
l(b0 + b1T + b2T

2) (4)

Ro(χ, T ) =

1∑
l=0

clχ
l(d0 + d1T + d2T

2) (5)

Rp(T ) = e0 + e1T + e2T
2 (6)

Cp(T ) = f0 + f1T + f2T
2 (7)

Cbat(T ) = g0 + g1T (8)

The thermal model for a cylindrical cell is shown in
Fig. 2 (b). The core temperature, surface temperature and
coolant/ambient temperature are Tc, Ts and Tf , respectively.
The thermal resistance and heat capacity are Rc and Cc

between the core and the surface, and Ru and Cs between
the surface and the coolant/exterior.

Cc
dTc

dt
= Q+

Ts − Tc

Rc
(9)

Cs
dTs

dt
=

Tf − Ts

Ru
− Ts − Tc

Rc
(10)

The heat generation in the battery can be decomposed in
two parts: reversible (Qrrev) and irreversible (Qirrev) heat.
When the charging current is high, the reversible heat could
be neglected [5], and the total heat is:

Q ∼ Qirrev ∼ i(v − vocv) ∼ i2Ro + ivc (11)

B. Battery String Model

The battery pack has a string configuration with a single
driving current iopt and a shunt resistor (Rd) attached to each
cell (see Fig. 1). In this scenario, the total string voltage is
given by the summation of the individual cell voltages (vj):

vstring =

n∑
j=1

vj (12)

To counteract the cell discrepancies, a passive balancing
circuit is implemented. There are mainly two balancing ap-
proaches: active and passive [20]. Passive balancing (PB)
uses a resistor to dissipate the battery unbalance energy at
the expense of heat and safety issues [21]. Conventionally, a
simple current bypass approach could also be implemented via
a shunt resistor/transistor attached to the cell(s). On the other
hand, active balancing (AB) strategies use power electronics
to transfer energy between cells achieving higher efficiency

Fig. 1. Battery pack with cells in series and single driving current iopt.
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Fig. 2. Battery Model: (a) Equivalent circuit model (ECM) and (b) Lumped thermal model (LTM). The power losses, Q, generated in ECM is fed into LTM
and the calculated core temperature (top-view of cylindrical cell), Tc is the feedback to change the temperature-dependant parameters. Thereby, a complete
electro-thermal model for the cell is achieved.

than PB at the expense of more components, higher costs,
and complexity [21]. The superior efficiency of AB is more
prominent in presence of different cell aging, yet it is relatively
low on new cells [22]. If homogeneous ageing is achieved,
the advantages of AB over PB are reduced. Therefore, it
can be beneficial to counteract the effects of heterogeneous
aging on battery packs with PB. To accomplish this, the core
temperature of the cells need to be regulated, since unregulated
temperature increase impacts negatively the SOH during cycle
aging [23]. Hence, PB with homogeneous cell ageing could
reduce implementation costs without compromising efficiency.

On the other hand, the thermal model is based on [24] (see
Fig. 3). Note that the ECM of each cell does not change;
however, the thermal coupling (Qcc,j) is now introduced on
the thermal model. The coldest cell is the first cell on the
coolant path and also the first cell of the string, while the last
one is the warmest one. The thermal model of each cell j of
the string is given below:

Cc,j
dTc,j

dt
= Qj +

1

Rc,j
(Ts,j − Tc,j) (13)

Cs
dTs,j

dt
=

1

Ru,j
(Tf,j−Ts,j)−

1

Rc,j
(Ts,j−Tc,j)+Qcc,j (14)

Qcc,j =


1

Rcc
(Ts,2 − Ts,1) if j = 1

1
Rcc

(Ts,j−1 − Ts,j+1 − 2Ts,j) if j = 2, ..., n− 1
1

Rcc
(Ts,n−1 − Ts,n) if j = n

(15)
Moreover, the coolant temperature on each cell is given by:

Tf,j =

{
Tf,in if j = 1

Tf,j−1 +
1

Ru,jCf
(Ts,j−1 − Tf,j−1) if j = 2, ..., n

(16)
Two coefficients are introduced: the conduction resistance

between cells Rcc and the coolant flow capacity Cf . In
addition, it is assumed that all the cells have the same thermal

Fig. 3. Thermal model of the battery pack (top-view of cylindrical cells) [19].

parameters. The thermal model of the string is presented in
Fig. 3.

III. OPTIMAL PROBLEM FORMULATION

The voltage, current, temperature and power dissipation
limits of each cell and shunt resistor (Rd) should be maintained
at all times. This poses a challenge in the generation of the
optimal charging current due to the heterogeneous states of the
cells. In addition, careful consideration should be given to Rd

before bypassing a portion of the string current while charging.
The requirements for the charging current and bypassing
current are threefold:

1) The shunt resistor and switching device have limited
power capabilities, and are dimensioned below the
charge acceptance of the battery. Therefore, the dis-
charging current should comply with the dissipation
power limits.

2) The current through Rd depends on the battery termi-
nal voltage. Therefore, a dynamic current assignation
to each cell is limited by the string current and the
maximum current that can be dissipated by the resistor
given the terminal voltage during charging mode.

3) To reduce the balancing and charging time, the cells
should not be discharged. Consequently, the string cur-
rent should have a lower limit so that the cells are always
charging even when the bypass resistor is activated.

The three aforementioned requirements can be fulfilled by
means of the following procedure, starting by determining the
minimum charging current. By using Kirchhoff’s law for cell
j, we have:

iopt = ij + id,j = ij +
vj
Rd

for j = 1, ..., n (17)

If the string current is smaller than the current through Rd,
then the cell will discharge. Hence, the value of the minimum
charging current should be defined, so that the cell remains
in charging mode/positive polarization (i.e. ij ≥ 0). From Eq.
(17) and (3) we have:

iopt = ij +
1

Rd
(ijRo + vc,j + vocv) (18)

1
(Rd+Ro)

(ioptRd − (vc,j + vocv)) = ij ≥ 0
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ioptRd − (vc,j + vocv) ≥ 0

ioptRd ≥ vmax ≥ vc,j − vocv

iopt ≥
vmax

Rd
= imin (19)

Here, Eq. (19) establishes a lower boundary for the min-
imum string current. Now, we are looking for the minimum
current that will pass through the cell j when the shunt resistor
is activated:

ijmin = iopt −
1

(Rd)
(ijminRo + vc,j + vocv) (20)

solving for ijmin leads to:

ijmin =
1

(Rd +Ro)
(ioptRd − (vc,j + vocv)) (21)

With Eq. (21) and iopt, the current range for ij is:
1

(Rd +Ro)
(ioptRd − (vc,j + vocv)) ≤ ij ≤ iopt (22)

There is, however, one more boundary for the shunt resistor,
which is given by the maximum dissipation power Pd:

(iopt − ij)(vc,j + vocv + ijRo) ≤ Pd (23)

In essence, Eq. (19), (22), and (23) gather the conditions to
use the shunt resistor to bypass the current during charging and
satisfy the requirements 1) to 3). If the resistor is dimensioned
to dissipate more power than the power generated at the
maximum battery voltage (i.e. RdPd > v2max ), then Eq. (23)
can be omitted. In practice, the desired current ij is realized
by pulse width modulation (PWM), with the duty cycle (D) as
the ratio of the desired current and the maximum current that
should be drained by the shunt resistor. This is determined as
follows:

D =
id,j

iopt − ijmin
=

iopt − ij
iopt − ijmin

(24)

Here, ij ≤ iopt are both generated by the control law, while
ijmin is given by Eq. (21).

The charging current for the string and each cell of the
battery pack is retrieved iteratively by the solving a finite-
horizon optimization problem. The cost function on the NMPC
framework with an horizon H is presented below:

JH = m(x[H]) +

H−1∑
k=0

l(x[k], i[k]) + r(i[k]) (25)

The states vector at the time step k is the following:

x[k] = (χ1[k], vc,1[k], Tc,1[k], Ts,1[k], . . . ,

χj [k], vc,j [k], Tc,j [k], Ts,j [k], . . . ,

χn[k], vc,n[k], Tc,n[k], Ts,n[k])
T

(26)

Here, n is the total number of cells. The input vector i at the
time step k has n+ 1 elements, including iopt:

i[k] =
(
i1[k] . . . ij [k] . . . in[k], iopt[k]

)T
(27)

The aim is to minimize JH satisfying the system dynamics
and electro-thermal constraints for each time step k and each
cell j:

min
i

JH (28a)

s.t. : ∀ k ∈ {0, ...,H − 1}

xk+1 = f(x[k], i[k]) (28b)

imin ≤ iopt[k] ≤ imax (28c)

vmin ≤ vj [k] ≤ vmax (28d)

χmin ≤ χj [k] ≤ χe (28e)

(iopt[k]− ij [k])(vc,j [k] + vocv + ij [k]Ro) ≤ Pd (28f)

max(0, ijmin[k]) ≤ ij [k] ≤ iopt[k] (28g)

for j = 1, ..., n

It is important to mention that the boundaries of the inequality
constraints (28f) and (28g) are dynamic (the other inequalities
have fixed boundaries given by the manufacturer). This is due
the increase in a degree of freedom resulting from iopt[k].
Moreover, the model parameters and their dependencies on
the core temperature and/or SOC should also be included.
On the other hand, the terminal cost m(x[H]), the running
cost l(x[k], i[k]), and the penalty r(i[k]) for the control input
change are detailed below:

l(x[k], i[k]) = ασl(x[k]) (29)

m(x[H]) = βσm(x[H]]) (30)

r(i[k]) = (i[k]− i[k − 1])TR(i[k]− i[k − 1]) (31)

There are two functions (σl, σm), and each one of them
has a fixed weight (α, β), respectively. In addition, there is a
penalty (R) to prevent an abrupt change in the input current.

The function σl penalizes the SOC unbalances between
cells:

σl(x[k]) =
1

n
(|χ1[k]−χn[k]|2+

n−1∑
j=1

|χj [k]−χj+1[k]|2) (32)

The function σm penalizes the difference between the esti-
mated core temperature and the target core temperature:

σm(x[k]) =
1

n

n∑
j=1

(Tc,j [k]− Tc−max)
2 (33)

This simple formulation facilitates the generation of a fast
charging current that is bounded by desired maximum core
temperature Tc−max. For this, the ambient temperature should
always be kept below the desired Tc−max, which is true for
most applications. As a result, the current is regulated and the
SOC of the cells are homogenized simultaneously.
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Fig. 4. Testbench for battery parametrization.

IV. EXPERIMENTAL SETUP AND MODEL
PARAMETRIZATION

The test cell is the Samsung INR18650-20R. The details of
the cell are shown on Table II. The model presented here is not
unique, and can be adjusted for different battery chemistries.
The general procedure to obtain the coefficients of different
ECM is similar between different models [25]. This paper
uses a procedure akin to [26], and includes the temperature
dependencies as in [27], assuming only 1-RC branch and no
parameter variation between charging/discharging.

TABLE II
PARAMETERS OF THE CELL: SAMSUNG INR18650-20R

Chemistry Cbat vmin vmax imax ↑ imax ↓ Trec

NCA 2Ah 2.5V 4.2V 4A 22A 45oC

Two new cells (A and B) were used for the model
parametrization. Cell A was used to obtain the coefficients
of the ECM at different temperatures: 5 oC, 25 oC and 45 oC,
respectively. Cell B was used to obtain the coefficients of the
thermal model. The test bench is shown in Fig 4. The battery
cycler is a BaSyTec CTS 32 Standard and the model of the
thermal chamber is Binder MK-240. The pulse test at different
SOC (χ) was used for obtaining the battery internal resistance
(Ro), open-circuit voltage (vocv) and the RC coefficients dur-
ing the transient response. The following procedure is repeated
on cell A at the aforementioned temperatures, considering that
the cell is initially fully charged:

1) CC discharge at 1C until v ≤ vmin.
2) CCCV charge at 1C until icharging ≤0.02C.
3) 2:00h pause.
4) Discharging pulse test with 1C for 6min + 2:00h pause.
5) Charging pulse test with 1C for 6min + 2:00h pause.
An example of this procedure at 5oC is shown in Fig. 5.

The experiment on cell D was performed at 20oC inside the
climate chamber. The current, voltage and surface temperature
are shown in Fig. 6, and the procedure is presented below:

1) CCCV charge at 1C until icharging ≤0.02C.
2) 2:00h pause.
3) CC discharge at 2C until v ≤ vmin.
4) 3:30h pause.
5) CCCV charge at 2C until icharging ≤0.02C.
6) 3:30h pause.
The electro-thermal model for this battery is the same for

both the simulation and the NMPC formulation, except for
one parameter: vocv . Given that the cells will operate with
χ ≥ 0.1, and that there are no significant differences on the

Fig. 5. Sample of pulse test at 5 oC and different SOC.

Fig. 6. (a) Measured surface temperature (Ts) and (b) the charging and
discharging pulses with 2C-rate.

Fig. 7. Model parameters: (a) Internal battery resistance (Ro) and (b) open-
circuit voltage (vocv) as a function of the state of charge and temperature.

Fig. 8. RC parameters and battery capacity as a function of the state of
temperature.

vocv above the aforementioned SOC at different temperatures,
the thermal influence over vocv is neglected only on the NMPC
formulation. The resulting Ro and vocv are shown in Fig. 7
(a) and (b), respectively; while the temperature dependency of
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TABLE III
COEFFICIENTS FOR THE ECM AND LTM

Coef Value Coef Value Coef Value Coef Value Coef Value Coef Value
a0 3.390789 a5 -296.6923 c1 -0.002149 e1 -1.62E-3 g0 1.77666 Cs 44
a1 0.437158 a6 190.4799 d0 2.240193 e2 1.709E-5 g1 0.008 Rcc 0.2
a2 12.39648 a7 -45.21235 d1 -0.046317 f0 176.5399 Rc 6.5 Cf 2.6
a3 -83.03621 a8 -1.925143 d2 4.1684E-4 f1 49.55106 Cc 25
a4 224.3434 c0 0.018601 e0 0.0575671 f2 -0.563887 Ru 4.5

Fig. 9. Schematic of the prototype for evaluation of the charging strategy in
hardware.

Rp, Cp and Cbat is shown in Fig. 8.
Moreover, the thermal coefficients are adjusted so that the

difference between the measured surface temperature (T ∗
S )

and the model-given surface temperature (Ts) is minimal,
following a similar procedure presented in [24], and using
i(v − vocv) instead of i2Ro. During this experiment, the
ambient temperature Tf is kept constant inside the climate
chamber.

The coefficients for both the ECM and LTM are presented in
Table III. Note that Cf and Rcc dependent on the battery pack
configuration and geometry. However, for simulation purposes,
these two values were taken from [19].

A. Battery Management System (BMS)

A BMS has been built to validate the simulation results
in hardware. For this task, the microntroller (PIC18F27Q84
from Microchip Technology) is programmed to consume low
energy and provide the required peripherals such as the CAN
bus interface, 12-bit ADC channels, and stand alone PWM.
A setup containing four cells and a BMS for each cell was
developed. The schematic of the setup is presented in Fig.
9. The BMS provides information about the internal battery
states, namely the state of charge (χ), the polarization voltage
(vc), the increase in the battery resistance (δR), the battery
core temperature (Tc) and surface temperature (Ts). Moreover,
the terminal voltage and surface temperature of each cell are
measured by each BMS. The estimation algorithm used hereof
is the Unscented Kalman Filter (UKF), and it requires two ad-
ditional inputs, namely the ambient/coolant temperature (Tf )
and the cell current. These two inputs are measured separately,
and transmitted via the CAN bus. Moreover, a bypass circuit
(resistor + switch) in each BMS regulates the average bypass
current via a PWM signal. Hence, the input current of each
cell is equal to difference between the branch current and the
bypass average current. As shown in Fig. 9, the control signal
that sets the reference in the current source comes from the

control algorithm. Similarly, the PWM control signal for each
BMS is also commanded by the control algorithm. Once the
internal battery states are computed, the data is transmitted
via the CAN bus to the control algorithm. As a result, the
close-loop operation of the control strategy and estimation is
achieved. Aditionaly, it is worth mentioning that even though
we use one BMS per cell, a bigger BMS could have been built
to connect and balance many cells simultaneously. Therefore,
the proposed approach can be applied to already operational
BEES with PB and a string configuration.

V. RESULTS

The charging strategy is evaluated on simulation and on a
real setup. The closed-loop control was implemented in Python
3.10 using a Model Predictive Control Toolbox (do-mpc, [28]),
as well a symbolic framework for nonlinear optimization and
algorithmic differentiation (CasADi, [29]) and an optimization
package for large scale nonlinear continuous systems (IPOPT,
[30]). As previously mentioned, the real setup uses the Un-
scented Kalman Filter for estimating the internal states of the
cells.

A. Simulation results

A 10-cell battery pack is used for the simulation. Two
scenarios are considered: (a) standard CCCV+PB balancing
and (b) NMPC with bypass resistors. In both scenarios, the
same initial conditions and boundaries were assumed and are
summarized on Table IV. Note that the initial state-of-charge
(χo) is randomly generated between 18% and 22%, and a
random bias has also been added to the battery capacity to
simulate a non-homogeneous capacity-defined SOH (Cbat±
0.05Ah). The charging stops when the target χe is reached.
Here, Tctr is the controller time. The NMPC uses an horizon of
H = 3, and the values of the weights are: α = 106, β = 102,
R = 2. The solver implements hard constraints and the second
order collocation method.

In the first scenario with CCCV+PB balancing (see Fig.
10), the current is fixed during the CC region, and it starts to
decrease during the CV region. Here, no thermal regulation
occurs. Note that we have balanced the SOC instead of the
terminal voltages because of its higher accuracy to provide
a better comparison. Balancing while charging with standard

TABLE IV
SIMULATION PARAMETERS

Parameter Value Parameter Value Parameter Value
imin 0.158A H 3 Tc−max 40oC
vmax 4.10V χo 20±2% Rd 10Ω
Tctr 10s χe 90% Pd 0.65W
Ttot 3500s Cbat 2.0±0.05Ah n 10
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Fig. 10. Charging from 18%-22% to 90% with CCCV+PB. The (a) core
temperature, (b) terminal voltage, (c) current, and (d) SOC of each cell.

Fig. 11. Charging from 18%-22% to 90% with NMPC. The (a) core
temperature, (b) terminal voltage, (c) current, and (d) SOC of each cell.

circuits (e.g. voltage balancing) requires careful consideration,
specially when the variability of the internal resistance leads to
greater voltage differences between the cells. Hence, voltage
balancing usually occurs when low C-rates are applied, or
when the terminal voltage reaches certain upper threshold. In
contrast, SOC balancing requires an estimator.

On the other hand, the proposed strategy (see Fig. 11)
protects the cells from overheating, reducing its impact on
capacity loss (and therefore accelerated ageing) due to un-
regulated temperature [23]. This occurs due to the current

Fig. 12. Charging from 18%-22% to 90% with NMPC (noisy environment
& poor cooling). The (a) core temperature, (b) terminal voltage, (c) current,
and (d) SOC of each cell.

regulation provided by the NMPC and the constant temper-
ature (CT) region. Note that it decides what switches to turn
on/off to satisfy the charging and balancing goals, as well as
the thermal constraints. Moreover, the desired maximum core
temperature is now a design parameter, providing a framework
for extending battery life time and efficiency when operating
at the temperature at which the internal resistance is minimal.

The charge balancing is observed during the entire charging
procedure, where the SOC is being homogenized in all the
cells without stopping the current flow from the charger. In
addition, the source of the power dissipation is not the cell
but the charger, reducing the stress on the cells. This is
accomplished by maintaining the string current above the min-
imum charging current to avoid negative battery polarization.
However, it is also necessary to evaluate the controller in
a noisy environment and including poor cooling conditions
(greater thermal resistance and smaller thermal capacitance).
Hence, random noise is added to the internal battery states. The
additive noise is randomly generated within ±0.001, ±0.001V,
±0.3oC, and ±0.2oC for χ, vc, Tc, and Ts, respectively.

Thus, the simulation results are shown in Fig. 12. The
duty cycle of the bypass resistors of the latter experiment
are presented in Fig. 13. Note that the duty cycle does not
exceed 0.55. This is the result of constraining the maximum
power dissipation capability of each cell. The core temperature
slightly exceeded the 40 oC by a maximum of 0.30 oC. This
is expected due to the aforementioned mismatch between the
thermal coefficients between the model and the environment
with poor cooling.

To achieve reduced balancing times, more power (higher
value of Pd) should be allowed to be dissipated by the bypass
resistor Rd, but the Joule effect in the resistor may require
additional dissipation, such as active cooling. Hence, sizing
the resistor is always a trade-off between balancing speed
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Fig. 13. Bypass current to duty cycle (D) mapping for each bypass resistor
Rd (noisy environment & poor cooling).

and dissipation capabilities. By bypassing the charging current
via Rd, the cells do not dissipate energy, and the overall
energy needed to achieve the target SOC is also minimized.
This occurs because the NMPC does not require to discharge
the cell with the highest SOC down to the level of the cell
with the lowest SOC. On the contrary, during charging, the
cells with the lowest SOC receive more current than the cells
with highest SOC, since the latter bypass part of the current,
avoiding the need to discharge and recharge.

B. Hardware test results

The evaluation of the charging strategy on hardware is
two-fold, considering the same charging goals presented in
the previous section on Table IV , with the exception of the
maximum allowed core temperature (Tc−max) and the number
of cells (N = 4). The surface and core temperature, as well as
the initial SOC are different on each case. For a more realistic
validation, the battery model embedded in the BMS does not
contain a priori information about the battery capacity and
previous battery use, and no fine-tuning was used to match
the battery model coefficients to each cell. The maximum
core temperature was set to 40oC and 35oC in the first and
second test, respectively. The second test has been done to
demonstrate the controller action in a demanding scenario in
which the charging process starts almost right after a discharge
occurred and a lower core temperature is desired. In this
test, 35oC is close the temperature at which the internal
resistance is minimal. The ambient temperature was kept at
22oC throughout the experiments.

The initial states for each scenario are presented below:
• Experiment A: Ts ∼ (28.0oC−28.7oC), Tc ∼(31.3oC−

32.5oC), χ ∼ (16.1%− 19.4%)
• Experiment B: Ts ∼ (25.9oC−26.4oC), Tc ∼(28.6oC−

29.2oC), χ ∼ (15.5%− 18.0%)
The experiments are shown in Fig. 14 (Test A) and Fig. 15
(Test B), respectively. Note that in real-life applications the
battery pack is usually charged soon after a previous use (e.g.
the discharge of the BEES or EV), resulting in higher initial
battery temperatures. Hence, the authors consider important to
show these two cases for validation purposes. The algorithm
stops when the χ > 0.90 has been reached by all the cells.
The electro-thermal regulation and charge balancing is present
in both scenarios.

C. Algorithm Tuning Considerations

The tuning of the coefficients for solving the optimization
problem (i.e. Eq. (25)) was achieved through manual search,

Fig. 14. Experiment A: charging with NMPC with Tc−max = 40oC. The
(a) temperature, (b) terminal voltage, (c) current, and (d) SOC of each cell.

Fig. 15. Experiment B: Charging with NMPC with Tc−max = 35oC. The
(a) temperature, (b) terminal voltage, (c) current, and (d) SOC of each cell.

however other hyper-parameter tuning strategies such as ge-
netic algorithms could be used instead. In this context, high
values were employed as they led to a quicker convergence
time of the solver. To analyze the scalability of the charging
strategy, additional simulation tests were carried out consider-
ing 100 cells and the same aforementioned initial conditions
and charging goals. The software was executed on a laptop
with a Core i5-1135G7 2.40GHz processor, 16 GB of RAM
and Windows 11. In the worst case, the solver found a charging
strategy in less than 2s. The mean solver time was 1.07 s.
These values are conservative and have been repeatedly found
throughout most simulations. Since the control time was 10 s,
this approach is suitable for larger battery systems.
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VI. CONCLUSIONS

This paper presented an integrated charging and balancing
strategy for LIBS packs with a string configuration. This
framework considered the charging, balancing, and the system
limitations in the generation of an optimal current profile
for each cell and the battery pack employing NMPC. In the
standard CCCV approach overheating may occur, accelerating
the cell aging and increasing safety risks. Moreover, due to cell
discrepancy, a balancing strategy is required and this increases
the charging time when it is not considered during charging.
In contrast, the proposed approach generates a charging and
balancing current simultaneously and provides thermal regu-
lation, maintaining the battery in the safe operational area. In
addition, the inclusion of the desired core temperature during
charging enhances safety, extends battery life time, and can
increase efficiency by operating at the temperature with lowest
internal resistance. The methodology was evaluated on a 10-
cell battery pack in simulation and on a 4-cell battery pack
in a real setup. For this, a coupled electro-thermal model of
a commercial 2Ah battery was developed and tested. The
study case shows the successful SOC homogenization and
the desired core temperature tracking on all cells. Further
works may consider thermal-gradient reduction as part of
the optimization function, and re-configurable cells for faster
balancing time.
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