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Leopoldo Carro-Calvo, Alejandro de la Fuente,
Antonio Melgar, and Eduardo Morgado

Abstract—Massive multiple-input-multiple-output (mMIMO)
enables a significant increase in capacity in fifth-generation
(5G) communications systems, both in beamforming and spa-
tial multiplexing scenarios, demanding highly accurate channel
estimates. We present two models based on convolutional neural
networks (CNNs) for 5G mMIMO channel estimation that differ
in complexity and flexibility. The results achieved with both
models are competitive compared to traditional methods, such
as least squares (LS) which presents a poor estimate in the low
signal-to-noise ratio (SNR) region, or minimum mean square
error (MMSE) which requires prior statistical knowledge of the
channel and noise estimation. Furthermore, the proposed CNN
models outperform estimation structures based on conventional
deep neural networks (DNNs). Our approach achieves results
close to the MMSE estimates, improving them in the low SNR
regime, and enabling them to a wide range of channel conditions,
i.e., variability in time, frequency, and SNR, not requiring any
prior channel statistics information. Furthermore, we present
a deep analysis of the computational and cost complexity,
demonstrating the suitability of the proposed models for real
hardware structure implementation.

Index Terms—5G, massive MIMO, channel estimate, convolu-
tional neural networks, deep neural networks.

I. INTRODUCTION

THE mobile connectivity is growing fast – total fifth-
generation (5G) subscriptions passed the 1.5 billion mark

in 2023, growing by 500 million in just one year. Commercial
5G networks allow the service providers in the top 5G markets
to enjoy growing revenue correlated with growing subscription
penetration. 5G subscriptions are forecast to reach 4.6 billion
globally by the end of 2028, making up more than 50 percent
of all mobile subscriptions, and becoming the dominant mobile
access technology. The most common 5G services launched
by service providers for consumers are based on enhanced
mobile broadband (eMBB), such as gaming, or some aug-
mented/virtual reality-based services [1].
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5G eMBB is considered the continuity of the multimedia-
based service provided by the previous generations, whose
main requirements concern extremely high peak data rates,
large volumes of data traffic, support of high-speed mobility,
and extensive coverage. Telecom operators explore different
radio access network (RAN) features for the support of eMBB
service such as new millimeter waves (mmWaves) band, high-
order modulations, carrier aggregation (CA), and massive
multiple-input-multiple-output (mMIMO) [2].

5G preserves orthogonal frequency division multiplexing
(OFDM), already implemented in Long Term Evolution (LTE).
OFDM consists of transmitting long-time symbols simultane-
ously but allocated in orthogonal subcarriers in the frequency
domain, composing an OFDM symbol and allowing the system
to separate each original long-time symbol at the receiver. The
cyclic prefix (CP) addition, which is larger than the delay
spread (DS) of the channel, allows the system to mitigate
intersymbol interference (ISI) [3]. Through the numerology
concept [4, Sec. 4.2], 5G offers subcarrier spacing and sub-
frame configuration flexibility to adapt the transmission to
the different environments according to the frequency range,
Doppler shift, and DS. The use of multiple narrow sub-
channels converts frequency-selective fading into flat fading.
However, the resulting one-path channel responses modify the
amplitude and phase of the transmitted signal. The channel
response variability between subcarriers and OFDM symbols
depends on the DS and Doppler shift of the environment,
respectively. The phase and amplitude shift produced by the
channel response together with the additive white Gaussian
noise (AWGN) at the receiver could increase the bit error
rate (BER) of the system. Through the equalization procedure,
the receiver reverts the effect of the channel made over the
transmitted signal. The equalization behavior depends on the
assumption of accurate channel knowledge, acquired through
the channel estimation procedure. In addition to equalization,
in mMIMO systems, accurate channel estimation is crucial for
the combining/precoding strategy to concentrate the radiation
pattern from/toward the target mobile station (MS), both in
beamforming and spatial multiplexing scenarios [5].

Traditional channel estimation acquires channel information
from pilot signals allocated in some OFDM symbols and
subcarriers. 5G OFDM systems reserve some resources for
pilot allocation and others for data transmission. 5G estimates
the channel response of pilots via traditional least squares (LS)
or minimum mean square error (MMSE) channel estimators.
The channel information of resources reserved for data trans-
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mission is commonly estimated through linear interpolation
methods [6]. The MMSE algorithm performs well in terms
of mean square error (MSE) but requires high complexity.
The LS estimator has low complexity, but its performance
is not as good as the MMSE algorithm, especially when
the MS presents weak coverage. In mMIMO, the transmitter
can send pilots allocated in every antenna, adding an extra
spatial dimension to the typical 2D time-frequency grid of
OFDM systems. In this case, the system performs channel
estimates for each antenna independently, in the same way as
in the frequency-time grid of single-antenna OFDM systems.
Nevertheless, the transmitter can also send pilots in some
antennas and perform an additional spatial interpolation to
estimate the channel response of the not transmitting antennas
during pilot transmission [7].

A. Related Literature

The channel estimation procedure determines the global
performance of mMIMO-OFDM systems. Some topic re-
search focuses on analyzing efficient interpolation methods:
linear interpolation [8], polynomial interpolation [9], polar lin-
ear interpolation [10], two-dimensional Wiener filtering [11],
matrix factorization [12], high-speed adaptive interpolation
[13], among others. Other research focuses on reducing the
complexity of MMSE channel estimator: a simplified linear
minimum mean square error (LMMSE) algorithm using the
Fourier Transform and an appropriate training-sequence-aided
is proposed in [14]; a novel low-rank LMMSE method to
simplify the filtering matrix is presented in [15]; and in [16],
the complexity of the MMSE channel estimator is reduced
by the simplification of the matrix inversion and matrix-
vector multiplication. Furthermore, mMIMO channel estimate
is ridden with several challenges such as pilot sequence design
[17], pilot overhead [18], and pilot contamination [19], [20].

Deep learning is used in extensive scientific fields for two
main reasons: (i) deep learning is an efficient method to
analyze data by identifying patterns and learning underlying
structures, and (ii) the development of graphic processing
units (GPUs) and increasingly specialized chips allowing to
parallelize the execution of deep learning architectures, and
achieving impressive computational throughput and energy
efficiency [21], [22]. The physical layer of wireless communi-
cation systems integrates deep learning algorithms to address
different tasks, including MIMO signal detection [23], error-
correcting codes [24], and channel resource allocation [25].

Most recent research includes deep learning algorithms
during the channel estimation procedure. Deep neural network
(DNN) is one of the most popular deep learning techniques
used for channel estimate [26]–[29]. DNN is a supervised
machine learning technique that tries to estimate the non-linear
mapping between the input and the output signals. The non-
linear mapping is defined as a concatenation of layers, each
layer is composed of a learnable vector linear transformation,
followed by a preselected scalar non-linearity [29]. Another
well-known deep learning tool is long short-term memory
(LSTM) network which is defined with a special architecture
capable of learning correlation over time. The main feature

of LSTM networks is the capability of tracking the time-
varying channels [30], [31]. Convolutional neural network
(CNN) is a type of deep learning method commonly used for
processing data with grid patterns. CNN is used for several
visual applications such as image classification, due to its
ability to extract features from the images [32]–[34]. The 3D
geometry of mMIMO-OFDM channels makes CNN algorithm
suitable for channel estimate. CNNs can extract patterns from
the correlation in any of the three dimensions (frequency,
time, and space). In [35], the authors design a 2D CNN
and a 3D CNN model for handling spatial correlation. The
CNN estimator interpolates the channel values of pilots for
estimating the channel of the full OFDM resources. In [36],
the designed dual CNN exploits the advantages of working
both in the spacial-frequency domain and the benefits of the
angle-delay domain.

B. Contributions

As far as we know, the previous work analyzes different
deep learning structures to optimize the number of layers
and hyperparameters providing the best estimation quality or
computational complexity. Previous research examines deep
learning models employing input data which often includes
some additional knowledge of the channel. Motivated by the
above considerations, in this work, we consider a CNN-based
approach that only uses the minimal and always available
information about the channel (the LS-estimated pilot channel
state information (CSI)). We describe the proposed CNN-
based structures for the estimation model and analyze their
performance in the accuracy of channel estimation and the
computational complexity.

• We propose two different CNN-based estimation mod-
els. We incorporate a preprocessing network, and an
attention-like network to enhance the performance in
the full range of channel conditions. We analyze and
compare these models, considering channel estimation
quality, computational complexity, and flexibility.

• We employ a training and validation framework capable
of generalizing well for different channel properties, i.e.,
DS, Doppler frequency, and signal-to-noise ratio (SNR).
The proposed CNN-based estimation models do not re-
quire prior statistical knowledge of the channel.

• We provide a deep analysis of the computational and
cost complexity of the CNN-based models, proposing a
hardware structure for a real implementation.

• We analyze the estimation accuracy in channels with
different properties (i.e., scattering model and SNR). We
evaluate the performance of the estimation models in
terms of MSE and spectral efficiency (channel capacity
of mMIMO systems) and compare them with benchmark
techniques such as LS, MMSE, and DNN. Extensive
simulated results and comparisons allow us to confirm
the robustness and efficiency of our proposed approach.

II. SYSTEM MODEL

Let us consider an OFDM single-cell consisting of one base
station (BS) equipped with a mMIMO uniform linear array
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Fig. 1: System model of a single mMIMO BS and a single-
antenna MS. Illustration of the UL mMIMO pilot transmission
and DL mMIMO data transmission.

(ULA) composed of Na antennas. We consider the link level
between the BS and a single-antenna MS. We characterize the
MS by the channel vector hft ∈ CNa×1 between the BS and
the single-antenna MS on the subcarrier f and the OFDM
symbol t. To simplify the channel estimation procedure, we
assume that the BS works in time division duplexing (TDD)
mode to benefit from channel reciprocity. TDD allows the BS
to estimate uplink (UL) and downlink (DL) channels from the
UL pilots, limiting the signaling overhead due to the channel
information feedback required in frequency division duplexing
(FDD) mode. FDD is not recommended in mMIMO systems
because the signaling overhead increases drastically with the
number of antennas. FDD operation can be employed in some
certain cases [37]. Each TDD frame is divided into two phases,
namely, the UL training phase and the UL-DL payload data
transmission phase, whose lengths, measured in samples, are
denoted as τp and τd, respectively. We denote the coherence
block length as τc = τp + τd. Figure 1 illustrates a single-cell
mMIMO system model with a single-antenna MS. The UL
mMIMO pilot transmission and the DL mMIMO data delivery
are specifically shown.

A. Channel Estimation

Let us suppose that the BS delivers a service to K single-
antenna MSs. We denote the set of MSs as K = {1, . . . ,K}.
Let ψk ∈ Cτp×1 be the pilot sequence assigned to the MS
k, with ∥ψk∥ = ψH

kψk = 1. To exploit mMIMO potential,
the BS needs to estimate the channel vector of MS k from
its pilot sequence. Ideally, pilot sequences should be mutually
orthogonal. Since τp mutually orthogonal UL pilot sequences
can be provided with a pilot length τp, there is no interference
(i.e., pilot contamination) if K ≤ τp.

The signal received at the BS during the UL pilot trans-
mission, on the subcarrier fp and the OFDM symbol tp, is
expressed as

RUL
p =

√
Pp

∑
k∈K

hp,kψ
T
k +N , (1)

where hp,k ∈ CNa×1 denotes the channel vector between the
single-antenna MS k and the BS on the subcarrier fp and the
OFDM symbol tp reserved for pilot transmission, Pp is the per
pilot-symbol transmit power of every MS, and N ∈ CNa×τp

is the AWGN with i.i.d. elements distributed as NC(0, σ
2
UL).

To estimate the channel of MS k, the BS projects the received
UL training signal on the corresponding pilot sequence ψ∗

k to
obtain

rUL
p,k = RUL

p ψ∗
k =

√
τpPphp,k +Nψ∗

k, (2)

where Nψ∗
k ∼ NC(0, σ

2
ULτpINa

) is the noise component
that modifies randomly the pilot signal. To achieve channel
estimate from the pilot signal, the BS can perform LS esti-
mator that minimizes the squared deviation

(
i.e., minimizes

E
{
∥rUL

p,k −
√
τpPpĥ

LS

p,k∥2
})

[38, Sec. 3.4.1]. We can formu-
late the LS estimator as

ĥ
LS

p,k =
1√
τpPp

rUL
p,k . (3)

Simplicity is the main feature of the LS algorithm, but
(3) does not consider the presence of the noise component.
The LS channel estimator is exposed to significant estima-
tion error, especially when the noise is comparable to the
power transmission of pilots. To address with this issue,
the MMSE estimator minimizes the MSE

(
i.e., minimizes

E
{
∥hp,k − ĥ

MMSE

p,k ∥2
})

[38, Sec. 3.2]. We can formulate
the MMSE estimator as

ĥ
MMSE

p,k = Akr
UL
p,k , (4)

where Ak is the smoothing matrix that suppresses the noise
of rUL

p,k , that is given by

Ak =
√
τpPpSk

(
τpPpSk + σ2

ULINa

)−1
, (5)

where Sk ∈ CNa×Na is the positive semi-definite spatial
covariance matrix of the channel between the MS k and
the BS, independent of t and f , capturing the macroscopic
propagation effects, namely the large-scale fading, which
incorporates path-loss, shadow fading, and spatial correla-
tions. Thus, MMSE estimator requires prior knowledge of
the channel statistics (i.e., Sk) to operate. The BS acquires
this knowledge through more pilot transmission, reducing
the available resources for data transmission. Furthermore,
the MMSE estimator handles many complex operations that
increase with the number of antennas [38, Sec. 3.4]. These
constraints make MMSE estimator hard to implement in
practical mobile scenarios.

We define the effective SNR perceived at the BS during the
pilot transmission of MS k as

γUL
k =

τpPpβk

σ2
UL

, (6)

where βk = 1
Na

tr (Sk) is the average channel gain. A high
γUL
k is desirable to achieve a good channel estimation per-

formance, especially when the BS performs the LS estimator
that is extremely susceptible to noise errors. Note that in high-
quality channels, i.e., negligible noise (σ2

UL ∼ 0) or when
γUL
k ∼ ∞, the LS and MMSE estimators are equivalent(
ĥ
LS

p,k ≈ ĥ
MMSE

p,k

)
.
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B. Channel Model

Clustered delay line (CDL) fading channel models charac-
terize 5G mMIMO transmissions for the full frequency range
from 0.5 GHz to 100 GHz with a maximum bandwidth of 2
GHz [39]. These models are based on scattering clusters to
define the small-scale channel characteristics in the azimuth
and the zenith dimensions. Each CDL model provides a small-
scale fading description that can be scaled in delay and
angle, so that the model achieves a desired normalized DS
and angular spread (AS), respectively, according to the fast
fading simulation environment. The Doppler frequency allows
adapting the channel to manifold time-selectivity scenarios
according to the relative movement of the MS concerning
the BS. The spatial correlation of the channels between the
different BS antennas and the single-antenna MS depends on
the departure/arrival angles, ASs, and the spacing between
antennas. Some of these parameters are fixed in the CDL
models, i.e., the departure/arrival azimuth/zenith angle, and
others are defined in the simulation setup, i.e., the DS, the
ASs, the Doppler frequency, and the antenna element spacing.
We employ the CDL-A channel model to represent non-
line of sight (NLOS) channel profile (see the channel profile
parameters in [39, Tab. 7.7.1.1]). Among the parameters that
can be defined in the simulation setup, we fix the ASs and
the antenna element spacing. These values will be detailed in
Table IV (Section V). We employ different DSs and Doppler
frequencies to achieve a variety of channel selectivity in time
and frequency domains. Table V (Section V) will detail these
channel configurations. Finally, the large-scale fading affects
the expected SNR. The path-loss and shadowing determine
the power of the received signal and, consequently, the SNR
experienced by the MS. The higher the SNR, the better the
coverage.

C. Combining/Precoding and Spectral Efficiency

For simplicity, from here on, we avoid the explicit use of
subscript k and we consider the data transmission in the DL.
Due to the channel reciprocity of TDD, the BS can use the
knowledge acquired during the channel estimation procedure
in the UL to design the beamforming vector wft ∈ CNa×1

that serves the MS in the DL. The conjugate beamform-
ing (CB) is the optimal linear combination that selects the
combining/precoding vector that maximizes the SNR received
at the MS and increases the perceived throughput. The CB
combining/precoding vector is defined as

wft =
√
Pd

ĥft√
E{∥ĥft∥2}

, (7)

where E
{
∥wft∥2

}
= Pd, and Pd denotes the available

transmit power at the BS. The received signal by the MS is
expressed as

rDL
ft = E

{
hH
ftwft

}
sft + n, (8)

where sft is the data signal sent to the MS, E
{
hH
ftwft

}
is the beamformed channel, and n ∼ NC(0, σ

2
DL) is the

AWGN present at the MS. From the received signal, we
can derive a closed-form approximation of the lower bound
spectral efficiency (SE) [40, Eq. (4)] perceived by the user as

SE ≥
(
1− τp

τc

)
log2

1 +
Pd/σ

2
DL

1 + σ2
ε (Pd/σ2

DL)
E

{
hH
fthft

∥hft∥

}2
 ,

(9)

where σ2
ε denotes the MSE of the channel estimate(

E
{
∥hft − ĥft∥2

})
.

III. CONVOLUTIONAL NEURAL NETWORKS FOR MASSIVE
MIMO CHANNEL ESTIMATION

Machine learning aims to find the optimal relationship
between an input x and its output ŷ, using a function
ŷ = fθ̂ (x) that depends on input x and model parameters
θ̂. In supervised learning, these parameters are refined with
labeled data. Given the complexity of wireless channels, we
propose CNNs because of their efficiency in handling data with
grid-like structures through convolution operations. CNNs are
adept at feature extraction and classification [41], with a subset
specializing in generative tasks to create data matching specific
patterns [42], [43]. A key element for generative CNNs is the
Conv2DTranspose layer, also termed transposed convolution
or deconvolution1, which upscales lower-resolution inputs
into higher-resolution outputs, using activation functions like
rectified linear activation function (ReLU) to enhance feature
representation and improve output quality.

Building on the capabilities of CNNs to manage complex
wireless channel data, we present two innovative models
designed to improve mMIMO channel estimation accuracy.
The first model leverages a CNN-based framework for pre-
processing spatial information, and the second incorporates
an attention mechanism to enhance reconstruction accuracy.
The next sections further describe the methodologies and
advantages of each model, highlighting the strategic use of
CNNs for effective channel estimation.

A. SW-NN+CNN Model

On this first model, we propose a CNN-based approach that
harnesses the spatial characteristics of mMIMO channels to
enhance channel estimate accuracy. Our methodology involves
two key steps: preprocessing spatial pilot information and
channel reconstruction using a generative CNN. The subse-
quent sections will delve into the intricacies of the preprocess-
ing and generative networks, showcasing their effectiveness
and benefits in the context of channel estimates.

Preprocessing Network: We introduce a preprocessing
with a SW-NN to exploit the spatial correlation between
nearby antennas. The network processes pilot signals re-
ceived across the Na BS antennas within an OFDM resource
block, aiming to estimate channel characteristics efficiently.

1Must be noted that despite ”deconvolution” is often used colloquially to
refer to the operation performed by the Conv2DTranspose, is not a strict
mathematical deconvolution but rather an operation that increases the spatial
resolution of the data.
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TABLE I: Detailed preprocessing network structure parameters.

Layer Function Input size Output size Details
Input layer LS pilot channel

estimation
- Npf ×Npt ×Na Processes ĥ

LS
p,k estimations for Npf subcarriers,

Npt OFDM symbols, across Na antennas.
shared-
weight
neural
network
(SW-NN)
dense layers

Data
compression

Npf ×Npt ×Na Npf ×Npt ×Nc Dense layers with ReLU, compressing data from Na

to Nc (Nc < Na), using weight sharing across all
pilot instances.

Flatten layer Data transforma-
tion

Npf ×Npt ×Nc Linear vector Converts multi-dimensional output into a single lin-
ear vector for further processing.

Final dense
layer

Channel charac-
teristic compres-
sion

Linear vector Npf ×Npt Applies a linear combination and ReLU activation
to generate a compact representation of the channel
characteristics.
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Fig. 2: Structure of the preprocessing network: input and
output mapping.

The structure of this neural network, presented in Figure 2
and described in Table I, begins with an input layer that
feeds pilot signal-derived channel estimates into the network
and progresses through the SW-NN dense layers for data
compression. The flatten layer then transforms the data into
a linear vector, effectively preparing it for the concluding
phase executed by the final dense layer, which compacts the
channel’s characteristics into an efficient representation.

Generative Network: The condensed data from the pre-
processing network is input into a CNN designed for chan-
nel reconstruction. The architecture of our generative CNN
detailed in Figure 3 and Table II, initiates with the reshape
layer to format the preprocessing output for convolution. It
then progresses through Conv2DTranspose layers for upsam-
pling, incorporating non-linearity with ReLU activation. This
sequence leads to a final Conv2DTranspose layer for precise
channel estimation in the time-frequency domain, concluded
by spatial cropping to tailor the CNN output to the exact
dimensions required, effectively encapsulating the network
channel reconstruction capabilities.

In a practical mMIMO communication system with Na

BS antennas, the BS must estimate Na distinct channels.
We replicate the preprocessing network structure Na times
to accommodate this requirement. Each replication learns
a unique relationship between the channel from a specific
antenna and the pilot information. The outputs of these Na

neural networks are then passed through the same CNN-
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Fig. 3: Structure of the generative network: input and output
mapping.

based generative network, resulting in Na different channel
estimations.

B. SW-NN+AN+CNN Model

In this second model, we add an attention-like network
between the preprocessing network and the generative CNN
network to improve the reconstruction capability of the system.

Attention-like Network: The attention mechanism archi-
tecture, depicted in Figure 4 and summarized in Table III,
starts with a combined input expansion layer. This layer
enriches the input data by integrating SW-NN outputs and
raw pilot signals. Through a series of lambda and dense layers,
the network modulates and transforms the data, facilitating the
refinement of channel information.

The proposed network structure is not a traditional attention
mechanism like the one used in sequence-to-sequence models
for natural language processing [44]. Nevertheless, it shares
some key aspects:

• Selective processing: The network selectively processes
different input parts based on learned patterns. Specifi-
cally, it applies sigmoid activations to control the influ-
ence of varying input data segments, effectively attending
to or ignoring specific information.

• Modulation: Using sigmoid activations to modulate the
impact of data components resembles the attention mech-
anism. The sigmoid activations determine the weights or
importance of different parts of the input data, allowing
the network to focus on relevant information while sup-
pressing less relevant parts.

• Adaptability: Controlling the influence of different input
segments is a characteristic commonly associated with
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TABLE II: Detailed generative network structure parameters.

Layer Function Input size Output size Details
Reshape layer Data reformat-

ting
Npf ×Npt Npf ×Npt × 1 Reformats preprocessing network output for

convolutional processing.
Conv2DTrans-
pose Layers

Upsampling Variable Variable Series of layers that increase spatial dimen-
sions using ReLU activation, tailored to the
channel reconstruction process.

Final Conv2D-
Transpose layer

Channel esti-
mation

Variable KfNf ×KtNt × 1 Applies linear activation to complete the chan-
nel estimation in the time-frequency domain
(Kf ,Kt ∈ N).

Spatial cropping Output format-
ting

KfNpf ×KtNpt × 1 Nf ×Nt × 1 Adjusts the final output dimensions to ensure
compatibility with system requirements.

TABLE III: Detailed attention-like network structure parameters.

Layer Function Input Size Output Size Details
Combined
input exp.
layer

Linear transformation 2(Npf ×Npt) 4(Npf ×Npt) Doubles the input size by performing a linear
transformation, preparing the data for further
processing.

Lambda
layer (1)

Activation, element-wise
multiplication

4(Npf ×Npt) 2(Npf ×Npt) Applies sigmoid activation to the second half
of the input and multiplies it by the first half,
controlling the influence of data.

Dense layer
(1)

Linear transformation 2(Npf ×Npt) 2(Npf ×Npt) Performs a linear transformation without altering
the input size, maintaining data dimensionality.

Lambda
layer (2)

Activation, element-wise
multiplication

2(Npf ×Npt) Npf ×Npt Same behaviour to the first lambda layer.

Dense layer
(2)

Linear transformation to
desired output

Npf ×Npt Npf ×Npt Transform the data representation maintaining
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Fig. 4: Attention-like network structure.

attention mechanisms. In attention, the model learns
which parts of the input to attend to, and similarly, in
this network, the sigmoid activations adapt to the data
characteristics during training.

Figure 5 presents the complete architecture of the SW-
NN+AN+ CNN model. The intermediary network introduced
in this architecture offers several advantages in the context
of channel estimates. First, it facilitates enhanced information
fusion by combining the learned features from the SW-NN
and the raw unprocessed pilot data from the target antenna.
This fusion is achieved using sigmoid activations, enabling the
network to merge adaptively to the valuable features from both
sources. This adaptability can lead to more comprehensive
and informative representations of the channel. This addition
can provide potentially finer-grained information about the
characteristics of the channel, allowing for more accurate
channel estimates.

Moreover, sigmoid activations within this network con-
tribute to adaptive control over the influence of different data
components. This adaptability is particularly advantageous in
scenarios where certain components may contain noise or
irrelevant information. By modulating the impact of various
data sources, the network can effectively filter out undesirable
elements, contributing to more robust channel estimations.
However, it is essential to consider that this intermediary
network does increase the complexity of the architecture.
While complexity can sometimes lead to improved perfor-
mance, it also poses the risk of overfitting. Nevertheless, the
intermediary network can counterbalance this risk by allowing
the neural network to learn how to appropriately balance the
shared information and antenna-specific data, thus potentially
mitigating overfitting concerns.

IV. COMPUTATIONAL COMPLEXITY AND COST FOR THE
NEURAL ESTIMATION MODELS

Assessing the computational complexity of channel estima-
tion models is interesting for evaluating their efficiency. This
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Fig. 5: The complete pipeline of the proposed CNN-based
model.

complexity reflects the quantity of computational resources an
algorithm requires, usually measured in time (time complexity)
or storage (space complexity). The complexity varies with the
input data size. A thorough understanding of this aspect is
essential for estimating how an increase in problem size might
impact the execution time of a model, as well as for comparing
it against other models.

To establish a benchmark for comparison, we first introduce
the time complexities of two methodologies that will serve as
references for evaluating the performance of our models in the
results section. These methodologies are the MMSE method
and the DNN-based channel estimators, as detailed in [29,
Model 2]:

• MMSE: Well-known for necessitating the computation of
an inverse matrix, the MMSE method generally exhibits
a cubic complexity, denoted as O(n3). Specifically, in
our analysis where the MMSE algorithm is applied to
the frequency domain and iterated over the time domain,
we denote its complexity as O(N3

pfNpt).
• DNN-based: Employing a deep multilayer perceptron

(MLP) with several layers, this model is tailored for
operations by dividing any given channel into smaller,
fixed-size blocks. Consequently, its computational com-
plexity, concerning the channel frequency and temporal
dimensions, is determined to be O(NpfNpt).

A. Computational Complexity

We divide the analysis into different model components
separately to gain insights into the computational complexity
of the proposed estimation models.

1) Preprocessing Network: It comprises two fully con-
nected neural networks. The SW-NN processes all system pi-

lots, generating a concise representation for each. The second
structure combines the outputs of the SW-NN to encapsulate
them into a vector representing the channel. In a general
form, the number of multiplications within each layer of a
fully connected neural network can be expressed as NinNout,
where Nin denotes the number of input values, and Nout is
the number of output values.

In the preprocessing network, the initial analysis is applied
to signals from different antennas, with the main parameters
being Na and the compact representation size Nc. This initial
analysis is executed for each pilot, totaling NpfNpt operations.
Thus, the computational complexity of the SW-NN can be
summarized as O (NaNcNpfNpt). Subsequently, all values
are merged and processed by a fully connected layer with
an output size of NpfNpt. The complexity of this layer is
O
(
NcN

2
pfN

2
pt

)
. Therefore, the preprocessing network com-

putational complexity exhibits a quadratic relationship with
the number of pilots.

2) Generative Network: In a general context, the number
of multiplications in a transposed convolution layer can be
described as Nch,inFxFyTx,outTy,outNch,out, where Nch,in

represents the number of input channels, Fx and Fy denote
the filter size in both dimensions, Tx,out and Ty,out are the
output channel sizes, and Nch,out is the number of output
channels.

The number of operations to upscale data from the initial to
the final size depends on the upsampling step and the number
of layers. In our proposed model, we fix the filter size, allowing
only the number of layers, denoted by NL, to increase with the
output data size. Since the final data size is NfNt with a single
channel and the initial number of channels is NpfNpt, we can
express the total complexity as a function of these elements
and the number of layers NL as O (NLNpfNptNfNt).

The number of layers NL can also be expressed as a
function of the output size. We can obtain the relationship
between the output size and the number of layers using
this expression Nout = N0U

NL , where N0 is the initial
input size, U is the constant upsampling step, and NL is
the number of layers. Thus, we can obtain the number of
layers as NL = log

(
Nout

N0

)
/ log(U). Therefore, the number

of layers needed exhibits a logarithmic relationship with the
output size. We can reformulate the complexity of this layer
using only the number of channels and the output shape as
O
(
log

(
NfNt

NpfNpt

)
NpfNptNfNt

)
.

3) Attention-like Network: It assembles linear combination
layers applying a sigmoid activation function, followed by
element-wise multiplication. The linear combination structure
resembles fully connected layers, yielding a complexity of
O(NinNout).

The computational complexity of the sigmoid function and
the element-wise multiplication are independent of problem
size and can be considered linear-dependant with the input
size O(Nin). Consequently, the most complex layers are the
linear combinations. The channel representative vector defines
the input size as NpfNpt in the proposed structure. The output
of every layer is designed to be a multiple of the input size,
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resulting in a computational complexity of this network given
by O

(
N2

pfN
2
pt

)
.

B. Analysis of Computational Complexity Across Models

1) Complexity of the SW-NN+CNN Model: This
model is constructed from two principal components: the
preprocessing network, with a complexity of O(NcN

2
pfN

2
pt),

and the generative network, with a complexity of
O
(
log

(
NfNt

NpfNpt

)
NpfNptNfNt

)
. Given that the ratios

between Nf , Nt and Npf , Npt are fixed due to the
constraints imposed by channel variability, the overall
computational complexity can be effectively reduced to
O(NcN

2
pfN

2
pt).

2) SW-NN+AN+CNN Model Complexity: This second
model incorporates the attention-like network alongside the
previous two networks. The addition of the aggregated
network complexity of O

(
N2

pfN
2
pt

)
, increases the coeffi-

cient by a marginal constant factor, leading to an overall
complexity of O

(
(Nc + 1)N2

pfN
2
pt

)
, which simplifies back

to O
(
NcN

2
pfN

2
pt

)
, mirroring the complexity of the SW-

NN+CNN model.
Through this comparative analysis, we have established

that the computational complexity of the SW-NN+CNN and
SW-NN+AN+CNN models are identical. This equivalence,
however, overlooks the practical impacts of constant factors
that could significantly influence the real-world performance
of the models. Therefore, while our complexity analysis offers
a foundational understanding of the scalability of these models,
it also prompts the need for a deeper examination of their
practical deployment. The forthcoming subsection will address
these considerations, offering a comprehensive overview of the
technological feasibility of deploying these advanced neural
network structures.

C. Computational Cost: Hardware Needs and Working Clock
Frequency

A clear distinction must be drawn between computational
complexity and computational cost. Computational complex-
ity, expressed through ”Big O notation,” offers a high-level
perspective on how the resource requirements of an algorithm
scale with input size, aiding in the identification of compu-
tational bottlenecks and scalability assessment. However, it
does not account for real-world resource consumption. On
the other hand, computational cost delves into the practical
aspects of execution, considering hardware, software, and
implementation specifics. It is crucial to recognize that an
algorithm with a favorable complexity order, such as O(n),
can incur high computational costs under certain conditions,
as factors like hardware efficiency, memory usage, and cache
management come into play. A comprehensive algorithm’s
performance evaluation necessitates a dual focus on computa-
tional complexity and cost, ensuring a holistic understanding
of its behavior and efficiency.

For instance, the literature indicates that the real and
imaginary parts can be estimated jointly [45]. However, to

enhance computational efficiency, our models are designed to
estimate either the real or the imaginary part of the channel
independently, leveraging the corresponding component of the
pilot information This necessitates using the model twice for
a full channel estimation: once for the real part and once for
the imaginary part. Opting for this bifurcated approach is a
strategic decision aimed at reducing computational complexity
(noting that complexity increases with the square of the
number of pilots, which would quadruple the cost if both real
and imaginary parts were analyzed simultaneously, as opposed
to just doubling the number of model evaluations) while
taking advantage of the independence between the real and
imaginary components. This methodology offers efficiency
benefits, speeding up the channel estimation process. Although
certain channel characteristics, such as SNR estimation, might
be slightly affected, this strategy is ultimately advantageous,
ensuring both precision and computational efficiency.

To carry on this analysis in a standardized way, we proposed
a micro neural-core structure to parallelize the execution of
convolutional networks and assess the hardware requirements
(chip complexity and clock frequency). The core concept be-
hind this micro-neural structure is to enable parallel processing
of the convolution operation2. Convolutions are performed on
data blocks with dimensions Fx ×Fy . Our proposed structure
efficiently computes the product of the Fx ×Fy filter weights
with the Fx×Fy input data block in parallel. Subsequently, the
results are combined using a merging structure, significantly
reducing the addition process to logarithmic time, as detailed
in [46]. From now on, we will refer to these structures as
logarithmic addition units (LAUs) to improve text clarity.

Assuming that this implementation takes two clock cycles
for multiplication and one clock cycle for addition, the total
number of clock cycles per operation is 2 + log2(Nin),
where Nin = FxFy , aligning the input size with the filter
size. In our pursuit of optimization for speed, we introduce
a pipeline structure that allows concurrent computation of
products and additions. In this setup, the clock cycles re-
quired for the operation can be expressed as CLK(FxFy) =
max {2, ⌈log2(FxFy)⌉}.

We propose replicating the product-sum structure M times
to mitigate costly data transfers. This allows the incorporation
of another LAU that will reduce the outputs from the M
channels to a final value. Leveraging the pipeline technique
mentioned earlier, the number of clock cycles is given by
CLK(FxFy) = max {2, ⌈log2(FxFy)⌉,M}. The illustrated
micro neural-core structure is presented in Figure 6.

Another important aspect is the computational cost of the
sigmoid function. Although it is an operation O(n), each
application of this operation is costly, and even specific hard-
ware approximations usually need two or three clock cycles
to compute it. In case of linear or ReLU functions are not
sufficient, it could be interesting to add the system a set of
parallel sigmoid computation units (PSCUs). Note that this
parallelization can be easily carried on with specific hardware

2Although the structure is designed to parallelize and reduce data transfer
on convolutional networks, this structure can be also applied to compute
efficiently fully connected outputs.
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Fig. 6: This diagram illustrates the micro neural-core con-
figuration, in which M denotes the count of product-sum
modules aligned in parallel. The notation Wi refers to the
neural network’s weights, and Xi represents the respective
data values

or by software employing classic multicore processing.
We illustrate this concept in Section V. An example allows

us to demonstrate the computational cost associated with
clock cycles and the number of micro neural-cores and LAUs
required for the model implementation while addressing a
specific channel estimation problem.

V. EXPERIMENTS AND NUMERICAL RESULTS

In this Section, we present some numerical results to
evaluate the performance of the proposed CNN-based channel
estimators. The simulated environment considers the link level
in the DL between the BS, equipped with 64 antenna ULA,
and the single-antenna MS. Table IV illustrates the main
system parameters and channel configuration, showing the
time/frequency/spatial structure of the channels used in our
proposed system. These parameters offer insight into the
number of resources employed in the time, frequency, and
spatial domains, apart from the pilot resource allocation.

We explain how we curated our training and validation
datasets in the following Subsections. Then, we provide in-
sights into the implementation of our models and the selection
of hyperparameters. Finally, we offer a complete view of the
effectiveness of our approach in this context with numerical
results regarding complexity and estimation performance.

A. Building the Dataset: Training and Validation Sets

We conduct training on our neural network using a diverse
dataset sourced from various mMIMO channels, each char-
acterized by small-scale fading parameters, namely DS and
Doppler frequency, along with large-scale fading parameters
such as the average SNR at the receiver.

Our training dataset includes samples with pseudorandomly
assigned values for DS, ranging from 32 ns, reflecting low-
frequency selective channels, to 650 ns, reflecting high-
frequency selective channels. Furthermore, the dataset includes
varying Doppler frequencies, extending from 5 Hz (repre-
senting low mobility channels) to 480 Hz (representing high
mobility channels). The range of the SNR in our dataset
spans from −10 dB (characterizing bad coverage MSs) to
20 dB (representing MSs with good coverage). For the sake
of simplicity, we consider that the MS during the DL data
transmission will also experience γDL

k = pβ
σ2
DL

= γUL
k . That is

if the UL pilots that the BS use for channel estimation present

γUL
k = 5 dB, we consider that the MS during the DL data

transmission will also experience γDL
k = 5 dB.

All training samples feature an antenna spacing of λ/2,
with λ denoting the wavelength (established at an operating
frequency of 3.5 GHz using 5G numerology 1) to ensure
consistency. Moreover, the dataset adheres to specific values
for the normalized ASs that collectively determine the spatial
correlation, including an azimuth spread of departure angles
at 5◦, an azimuth spread of arrival angles at 11◦, and a zenith
spread for both departure and arrival angles at 3◦.

Within the context of our extensive training dataset, we
encompass a broad spectrum of channel conditions. The entire
range of DSs, Doppler frequencies, and SNRs is subdivided
into 125 distinct subregions, each taking the form of a 1

5×
1
5×

1
5

cube. A random point is generated using a uniform distribution
within each subregion. Consequently, we obtain 125 distinct
data points, with each point residing inside one of the 125
defined cubes, collectively covering the full range of DSs,
Doppler frequencies, and SNRs. This strategy ensures compre-
hensive coverage of various channel behaviors and expedites
the training process by facilitating the representation of diverse
channel conditions.

In contrast, to improve clarity on the model’s behavior the
validation dataset includes samples with predefined values of
DS, Doppler frequency, and SNR as detailed in Table V. These
independent validation samples exhibit heterogeneous charac-
teristics, ranging from the less selective channels represented
by S1 to the highly selective channel denoted as S7, including
specific SNR values spanning from −5 dB to 20 dB. This
validation dataset enables us to assess the network capacity to
generalize estimates across a wide range of channel conditions.

B. Models Implementation and Hyperparameters

In this Section, we will explore the two separate models for
channel estimate, looking at their structures and the hyperpa-
rameters that control their behavior.

The preprocessing network is a crucial component of both
SW-NN+CNN and SW-NN+AN+CNN models, responsible
for condensing and processing pilot information from multiple
antennas. The most important hyperparameter for this network
is the value of Nc that denotes the initial compression level
applied to the pilot information. In this work, we set Nc

to 8. Table VI summarizes the whole preprocessing network
structure and the hyperparameter values used.

The second shared block in SW-NN+CNN and SW-
NN+AN+CNN models is the generative network, a pivotal
component responsible for the channel reconstruction from
a set of NpfNpt, that is, 13 × 11 = 143, input values.
Several critical hyperparameters require meticulous attention
to ensure optimal performance Within this generative network.
These parameters include strides, filter size, and the number
of ”feature maps” on each layer. You can find the specific
values set for these parameters in Table VII where the third
dimension of the output size represents the number of feature
maps.
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TABLE IV: System parameters and channel configuration.

Identifier Description Value
fc Carrier frequency 3.5 GHz
µ 5G numerology 1

TOFDM OFDM symbol time duration 35.7 µs
∆ Subcarrier spacing 30 KHz
Na Number of BS antennas 64
Nf Number of frequency subcarriers in the target block 145
Nt Number of OFDM symbols in the target block 141
Npf Number of pilots in the frequency domain in the target block 13
Npt Number of pilots in the time domain in the target block 11
CDL Clustered delay line model CDL-A
ASD Scaled root mean square azimuth spread of departure angles 5◦

ASA Scaled root mean square azimuth spread of arrival angles 11◦

ZSD Scaled root mean square zenith spread of departure angles 3◦

ZSA Scaled root mean square zenith spread of arrival angles 3◦

δ BS antenna element spacing λ/2

TABLE V: Predefined values of the validation dataset.

Validation samples DS Doppler frequency
S1 32 ns 5 Hz
S2 100 ns 30 Hz
S3 240 ns 60 Hz
S4 410 ns 90 Hz
S5 650 ns 120 Hz
S6 650 ns 240 Hz
S7 650 ns 480 Hz

TABLE VI: Implemented preprocessing network structure.

Layer Input size Output size Act. func.
Dense layer 1 Na (64) 32 ReLU
Dense layer 2 32 16 ReLU
Dense layer 3 16 Nc (8) ReLU

Combination & NcNpfNpt NcNpfNpt

flatten layer (1144) (1144) None
Dense layer 4 NcNpfNpt (1144) NpfNpt (143) ReLU

• Strides: Integral elements to the time-frequency resolu-
tion of the network. They determine how much the time-
frequency dimensions are increased or decreased at each
layer. Properly setting the strides is essential for con-
trolling the trade-off between computational efficiency
and the level of detail in the generated channel. Smaller
strides preserve finer details, while larger strides reduce
time-frequency dimensions and can speed up processing.

• Filter Size: In a generative network, filter size is key
to defining the range of input data processed. Larger
filters contribute to generating broader, more general
features for the overall structure. Smaller filters excel
in creating detailed, fine-grained features, thus increasing
the precision and intricacy of the patterns generated.

• Number of Feature Maps: Variety of data matrices pro-
cessed in each convolutional layer, essential for capturing
diverse patterns for channel regeneration.

The attention-like network, unique to SW-NN+AN+CNN
model, operates based on several essential hyperparameters
crucial to ensure optimal performance. These parameters en-
compass aspects like intermediate data size and the number of
layers. Table VIII reviews these specific parameter values.

Configuring Training Key Parameters and Settings:
We have adopted a systematic and well-organized approach
involving an exhaustive examination of the key parameters

TABLE VII: Generative network structure.

Layer Output size Filter size Strides Act. func.
Reshape Layer (1, 1, 143) - - None

Conv2DTr layer (1) (3, 3, 120) (3, 3) 3 ReLU
Conv2DTr layer (2) (6, 6, 60) (3, 3) 2 ReLU
Conv2DTr layer (3) (12, 12, 40) (3, 3) 2 ReLU
Conv2DTr layer (4) (24, 24, 20) (3, 3) 2 ReLU
Conv2DTr layer (5) (48, 48, 10) (3, 3) 2 ReLU
Conv2DTr layer (6) (96, 96, 5) (3, 3) 2 ReLU
Conv2DTr layer (7) (192, 192, 1) (3, 3) 2 Linear

Lambda layer (145, 141, 1) - - None

TABLE VIII: Attention-like network structure with detailed
data processing.

Layer Output size Data processing
(details)

Activ.
function

Input layer 2NpfNpt (286) - -
Dense layer 1 4NpfNpt (572) - Linear

Lambda layer 1 2NpfNpt (286)

Passes the second
half through sigmoid.

Multiplies it with
the first half.

Custom

Dense layer 2 2NpfNpt (286) - Linear

Lambda layer 2 NpfNpt (143)

Passes the second
half through sigmoid.

Multiplies it with
the first half.

Custom

Dense layer 3 NpfNpt (143) - Linear

and their associated values. Our primary goal during this
training phase is to enhance the model performance while
using efficiently the available computational resources. Table
IX details the most relevant parameters and their respective
values to ensure a straightforward and concise explanation of
our training process.

The training process commences with the specified initial
learning rate of 0.001. At each iteration, the learning rate is
intelligently decreased by a 0.999 factor, effectively reducing it
by 0.1% to enhance model convergence and fine-tuning. Each
iteration loads a data block comprising 125 channel examples,
ensuring the model is exposed to a wide range of training data.
During model training, we use a batch size of 32, allowing us
to process simultaneously 32 examples. The chosen objective
function for this training endeavor is the MSE, a metric that
quantifies the squared differences between predicted and actual
values. This function guides the model optimization process,
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TABLE IX: Training parameters.

Parameter Value Description
Initial learn-
ing rate

0.001 The initial rate at which the model
learns.

Learning
rate decrease

0.999 The rate at which the learning rate
diminishes at each iteration, reduc-
ing by 0.001 (0.1%).

Number of
iterations

10000 The total number of training itera-
tions.

Data block
size per
iteration

125 The size of the data block loaded
at each iteration containing 125
channel examples.

Batch size 32 The number of examples processed
in each training batch.

Objective
function

MSE The mathematical function used to
measure the dissimilarity between
predicted and actual values.

TABLE X: Computational cost and clock cycles needed for
the preprocessing network.

Layer id #µ neural-cores # LAUs Clock cycles
Layer 1 3616 0 16
Layer 2 904 0 4
Layer 3 226 0 4
Layer 4 2020 1 12

Total 6766 1 36

facilitating its quest to estimate channels accurately.

C. Computational Complexity Results

In this Subsection, we compute the hardware requirements
and the necessary clock frequency for operation. Note that
these initial calculations are for one channel and one of the
complex components of the channel. So the results will be
later multiplied by the number of antennas (i.e., Na = 64)
and by two (for the real and imaginary parts).

Since our model filter size is 3×3 we set the micro neural-
cores input size of 9. The value of M is also set to 9, so
all the LAUs inside the micro neural-cores maintain the same
structure. This implies that a micro neural-core can carry on
81 multiplications and perform all summations on 4 clock
cycles. For the external LAUs, maintaining a 9 input structure,
the 9 values summation is done in 4 clock cycles. We also
consider 32 PSCUs to speed up the data processing for the
attention-like network. It is necessary to set in the system
the number of micro neural-cores and LAUs to calculate the
clock cycles required for each layer. For the computational
cost analysis, we employ 1024 micro neural-cores for the main
neural computation, and 128 LAUs to facilitate the final data
summation.

1) Preprocessing Network: The computational cost of the
preprocessing network, measured in micro neural-cores and
LAUs hardware units, is shown in Table X. These values
are then translated into clock cycles, considering the available
units and the clock cycles per unit.

2) Generative Network: Table XI outlines the computa-
tional cost associated with the generative network. Similarly,
this cost is converted to clock cycles.

3) Attention-like Network: We should consider the time
required to calculate the sigmoid activation function. For our

TABLE XI: Computational cost and clock cycles needed for
the generative network.

Layer id #µ neural-cores # LAUs Clock cycles
Layer 1 17280 1080 104
Layer 2 30240 2160 188
Layer 3 40320 0 160
Layer 4 57600 0 228
Layer 5 69120 0 272
Layer 6 92160 0 360
Layer 7 21025 0 80

Total 327745 3240 1392

analysis, we assume that it takes 2 clock cycles to perform this
function. Furthermore, it is essential to consider the multiplica-
tion process of vectors, which can be highly time-consuming
if parallelization is not implemented. Table XII provides an
overview of the computational cost for the attention-like
network. This cost is measured in micro neural-cores, LAUs,
products, and PSCUs hardware units, and converted into clock
cycles.

4) Global Clock Cycles and System Frequency: Using
only the basic parallelization previously described, Table XIII
presents a comparison of the clock cycles needed to compute
the complete channel estimation using the proposed CNN-
based models and the DNN-based in [29, Model 2]. The
proposed models must be able to realize channel estimate
each NtTOFDM = 5 ms, so the clock frequency both for
SW-NN+CNN and SW-NN+AN+CNN models is given by
fclk = 2× CLK

5×10−3 Hz, where CLK is the clock cycle needed
to carry on an evaluation of the model. Note that we double
the number of clock cycles due to the real and imaginary parts
estimates. Upon examination of the results, we observe the
proposed models induce an increase in the total clock cycle
number. Specifically, the SW-NN+CNN model demonstrates
a slight elevation of 3.6% in total clock cycles, and the
more complex SW-NN+AN+CNN model necessitates a more
considerable increase of almost 47%.

Table XIV illustrates the clock frequency required for
the channel estimates using both SW-NN+CNN and SW-
NN+AN+CNN models per BS antenna and MS in comparison
with the utilization of the DNN-based model in [29, Model 2].

D. Channel Estimation Results

In this subsection, we present numerical results to evaluate
the channel estimation performance with the proposed CNN-
based models, i.e., SW-NN+CNN and the SW-NN+AN+CNN.
We analyze the channel estimation results based on the MSE
and the SE (bit/s/Hz), comparing with the benchmark solutions
consisting of LS-based, MMSE-based, and DNN-based [29,
Model 2] channel estimators. For reference, we also include
the upper limit representing the theoretical maximum achiev-
able SE under the assumption of perfect channel knowledge.

Figure 7 illustrates the MSE between the actual and the
estimated channel using the benchmark estimators, i.e., LS-
based, MMSE-based, and DNN-based, and the proposed
SW-NN+CNN and SW-NN+AN+CNN estimators. Figure 7a
shows the results achieved in a low-variable (time and fre-
quency) channel (S1 validation samples) while Figure 7b
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TABLE XII: Computational cost and clock cycles needed for the attention-like network.

Layer id #µ neural-cores # LAUs # Products # PSCUs Clock cycles
Layer 1 2288 2020 - - 80
Layer 2 - - 286 9 304
Layer 3 1144 1010 - - 48
Layer 4 - - 143 5 153
Layer 5 286 4 - - 12

Total 3718 3034 429 14 597

TABLE XIII: Comparison of computational resources (clock cycles) required for channel estimation with DNN-based in [29,
Model 2] and the proposed CNN-based models on the same hardware (1024 µ neural-cores + 128 LAUs).

Model MLP Preproc. Netw. Interpolation Gen. Netw. Att-like Netw. Total clk cycles
DNN 1298 (118x11) - 80 - - 1378

SW-NN+CNN - 36 - 1392 - 1428
SW-NN+AN+CNN - 36 - 1392 597 2025

TABLE XIV: Comparison of working clock frequency required for channel estimation with DNN-based in [29, Model 2] and
the proposed CNN-based models.

Model 1 ant. & 1 MS 64 ant. & 1 MS 64 ant. & 8 MSs 64 ant. & 64 MSs
DNN 551 KHz 35 MHz 282 MHz 2.2 GHz

SW-NN + CNN 571 KHz 37 MHz 293 MHz 2.3 GHz
SW-NN + AN + CNN 810 KHz 52 MHz 415 MHz 3.3 GHz

presents the results in a high-variable channel (S5 validation
samples). We observe that the proposed CNN-based models
outperform all the benchmark estimators in the low SNR
regime, both in S1 and S5 scattering channels. The MSE
of the SW-NN+AN+CNN model maintains lower than the
benchmark solutions, except the MMSE estimator, indepen-
dently of the channel variability and SNR experienced by the
MS. However, the MSE achieved by the SW-NN+CNN model
does not continue improving with better SNR and presents
poorer results than DNN-based estimation in a high SNR
regime. These results demonstrate the benefit of including the
attention-like network in the proposed models to enhance the
performance with high SNR, at the time that keeps excellent
estimates with low SNR.

Intending to validate the proposed estimators with different
channel conditions, Figure 8 shows the MSE achieved for the
predefined channels detailed in Table V. First, we observe how
both models achieve better estimates in low-variable channels.
We notice that the SW-NN+CNN model achieves only slight
improvements in the estimates with the enhancement of SNR
conditions. However, the SW-NN+AN+CNN model allows the
system to obtain significantly enhanced estimates when the MS
experiences high SNR conditions.

The MSE results have been complemented with the analysis
of the channel estimation accuracy impact on the spectral
efficiency. Figure 9a shows the SE in a low-selectivity channel
(S1). We observe the SE achieved with the proposed CNN-
based estimators within the low-SNR range (from −10 to
0 dB) is extremely close to the perfect channel knowledge
SE, i.e., 99.75% and 99.78% for the SW-NN+CNN and SW-
NN+AN+CNN channel estimation models, respectively. These
results are significantly better than LS-based SE in the same
low-SNR region, i.e. 83.33%, slightly better than the DNN-
based estimation, i.e., 98.37%, and even better than MMSE-
based estimation, i.e., 99.6%. Examining the high-SNR region
(ranging from 10 to 20 dB), we notice that the proposed CNN-
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(a) Low-time and frequency selectivity channel (S1)
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(b) Medium-time and high-frequency selectivity channel (S5)

Fig. 7: MSE between the actual and the estimated chan-
nel by the LS-, MMSE-, DNN-, SW-NN+CNN-, and SW-
NN+AN+CNN-based models for different γUL

k . Low-time
and frequency variability vs. medium-time and high-frequency
variability channels (S1 vs. S5).

based channel estimators obtain SE of 98.06% and 99.52% for
SW-NN+CNN and SW-NN+AN+CNN models, respectively.
We appreciate a slight performance degradation in the SW-
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Fig. 8: MSE between the actual and the estimated channel by
the SW-NN+CNN- and SW-NN+AN+CNN-based estimation
for different γUL

k and different channel selectivity.

NN+CNN model at a high SNR regime. We should remark
that the SW-NN+AN+CNN model exhibits SE results better
than LS- and DNN-based estimators, similar to MMSE-based,
and extremely close to perfect channel knowledge results
(i.e., 99.6%) for the full range of the assessed SNRs. On
average, for the full range of SNRs analyzed in the low
selectivity channel, the SW-NN+AN+CNN model results in
approximately 0.74%, 1.32%, and 11.31% higher SE than
the SW-NN+CNN-, the DNN-, and the LS-based channel
estimation, respectively.

Figure 9b shows the SE achieved in a high-selectivity
channel (S5). Observing the low-SNR region, we note that
SE achieved by the CNN-based channel estimation mod-
els continues very close to perfect channel knowledge SE,
i.e., 99.43%. These results outperform both LS- and DNN-
based estimation SE, which result in 83.98% and 97.46%,
respectively. Besides, the proposed CNN-based estimators’
performance is similar to MMSE-based estimation in this
region (i.e., 99.58%). In the high-SNR region, the proposed
models achieve spectral efficiencies of 94.05% and 97.34% for
SW-NN+CNN and SW-NN+AN+CNN models, respectively.
We should emphasize that the SW-NN+AN+CNN model
outperforms both LS- (93.17%) and DNN-based (96.78%)
approaches in this region and channel model. However, the
SW-NN+CNN model performance is degraded in the high-
SNR region of the high-variable channel. We should remark
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(a) Low-time and frequency selectivity channel (S1)
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(b) Medium-time and high-frequency selectivity channel (S5)

Fig. 9: Spectral efficiency achieved by perfect channel knowl-
edge and the estimated channel by the LS-, MMSE-, DNN-,
SW-NN+CNN-, and SW-NN+AN+CNN-based models for dif-
ferent γDL

k . Low-time and frequency variability vs. medium-
time and high-frequency variability channels (S1 vs. S5).

that the proposed SW-NN+AN+CNN model outperforms the
benchmark LS- and DNN-based estimation both in low and
high SNR regimes, and only results in a slightly worse SE
than MMSE-based estimation and perfect channel knowledge
when the user experiences a high SNR. On average, for the full
range of SNR analyzed in the high selectivity channel, the SW-
NN+AN+CNN model results in approximately 1.67%, 1.28%,
and 9.82% higher SE than the SW-NN+CNN-, the DNN-, and
the LS-based channel estimation, respectively.

VI. CONCLUSIONS

This work presents two CNN-based models to estimate the
channel between the BS antennas and an MS in mMIMO
systems. Both models employ preprocessing networks based
on SW-NN and generative CNN. The proposed models differ
because of the introduction of an attention-like network to en-
hance the high-SNR region performance. The presented results
show how the proposed CNN-based models can improve the
channel estimates obtained by LS- and DNN-based estima-
tion, independently of the channel scattering characteristics
in the low SNR regime. The attention-like network in the
SW-NN+AN+CNN model, allows this estimator to achieve
better estimates than LS- and DNN-based approaches in all
ranges of channel scattering behavior and SNR. The proposed
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SW-NN+AN+CNN model exhibits close to perfect channel
knowledge SE in all the assessed environments.

This work also analyzes the computational and cost com-
plexity of the proposed estimation models. We present a deep
complexity study split into the different network structures
in the proposed model. The complexity analysis leads to
the hardware requirements and the working clock frequency
needed. We proposed a neural-core structure to parallelize
the execution obtaining the clock frequency required for the
proposed models, depending on the system number of MSs
and BS antennas.
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