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Abstract

This paper investigates the efficacy of linear regression enhanced by gradient descent with momentum for predicting real-

world outcomes. The introductory sections establish the significance of machine learning in driving sustainable innovations

and detail the foundational aspects of linear regression, a statistical technique pivotal for modelling relationships between

variables using a least squares approach. Enhanced with momentum-based gradient descent, these models achieve faster and

more stable convergence, which is particularly beneficial in complex, real-life data scenarios. Through empirical analysis using

the Boston and California housing datasets, we demonstrate that linear regression, when optimized, can effectively predict

housing values with high R 2 scores, indicating robust predictive power across socioeconomic and geographic variables. Our

findings underscore the model’s utility as a forecasting tool in today’s data-driven landscape. Future research directions include

optimizing momentum coefficients and learning rates and potentially incorporating adaptive methods to enhance convergence

efficiency. This study provides insights into the continuous improvements required in predictive analytics to maintain accuracy

and reliability in diverse applications.
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Momentum-Enhanced Linear Regression for Faster
Convergence in Real-World Predictions

Hussein Al-Bazzaz

Abstract—This paper investigates the efficacy of linear regres-
sion enhanced by gradient descent with momentum for predicting
real-world outcomes. The introductory sections establish the
significance of machine learning in driving sustainable innova-
tions and detail the foundational aspects of linear regression,
a statistical technique pivotal for modelling relationships be-
tween variables using a least squares approach. Enhanced with
momentum-based gradient descent, these models achieve faster
and more stable convergence, which is particularly beneficial
in complex, real-life data scenarios. Through empirical analysis
using the Boston and California housing datasets, we demonstrate
that linear regression, when optimized, can effectively predict
housing values with high R2 scores, indicating robust predictive
power across socio-economic and geographic variables. Our
findings underscore the model’s utility as a forecasting tool in
today’s data-driven landscape. Future research directions include
optimizing momentum coefficients and learning rates and poten-
tially incorporating adaptive methods to enhance convergence
efficiency. This study provides insights into the continuous im-
provements required in predictive analytics to maintain accuracy
and reliability in diverse applications.

Index Terms—Momentum Gradient Descent, Linear Regres-
sion, Predictive Analytics, Convergence Efficiency, Housing Mar-
ket Analysis, Machine Learning Optimization

I. INTRODUCTION

The transformative capability of science now harnessed
through machine learning, is at the forefront of identifying
complex patterns and developing efficient solutions for a
sustainable future. This capability has played a pivotal role
in ensuring global food security and overcoming challenges
previously deemed impossible. Such advancements have been
propelled by the relentless efforts of scientists, whose contri-
butions have profoundly altered our societal landscape. As we
embark on this new chapter, machine learning stands to deepen
our comprehension of the natural world further, improve the
efficiency of resource use, and reduce our ecological impact,
leading us toward a thriving and sustainable future.

Linear regression is a foundational statistical technique used
to predict a dependent variable’s value from one or more in-
dependent variables [1], where a linear equation characterizes
the relationship between the variables. This method is instru-
mental in forecasting outcomes, as it minimizes the variance
between actual and predicted results by fitting a linear model
through the data, typically using the ”least squares” method
for its simplicity and efficiency in finding the best-fit line.
When enhanced with gradient descent optimization algorithms,
incorporating momentum, linear regression models can gain
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improved convergence rates, which is especially beneficial in
complex, real-life data that present ravines and noisy gradients.
The momentum in these optimization algorithms smoothes the
path toward the optimum by considering the direction and
magnitude of prior updates, thereby enhancing the stability
and speed of convergence in finding the optimal solution for
the linear regression model.

Recent studies highlight the fundamental aspects of linear
regression, emphasizing its utility in modelling relationships
between dependent and independent variables through least
squares and generalized linear models (GLM). The diverse
applications of these techniques in fields such as image quality
assessment and fire detection underscore their significance.
For instance, the research in [2] presents a self-supervised
approach for No-Reference Image Quality Assessment (NR-
IQA) using linear regression to map image representations
to quality scores, demonstrating improved data efficiency
and generalization capabilities. Similarly, the research in [3]
proposes a different approach to image quality assessment,
leveraging a mixture of experts’ approaches to learn image
quality features in an unsupervised setting, further training
a linear regression model for accurate quality assessment.
Moreover, the research in [4] discusses the effectiveness of lin-
ear regression over logistic regression in a differential private
setting for image classification, highlighting the lower compu-
tational burden and improved privacy-performance trade-offs.
The research in [5] utilizes linear regression in the Recurrent
Trend Predictive Neural Network (rTPNN) for multi-sensor
fire detection, showcasing its capability to process and predict
from multivariate time series data. Additionally, the research
in [6] presents an embedding model for knowledge graph
link prediction, conceptualizing the task as a simple linear
regression problem to capture diverse connectivity patterns and
relation properties, achieving significant performance improve-
ments. Furthermore, linear regression’s application in predict-
ing rainfall from environmental variables illustrates its adapt-
ability and efficiency in various fields, merging traditional and
computational methods to enhance prediction accuracy [7].

These examples illustrate linear regression’s broad appli-
cability and effectiveness in addressing complex, real-world
problems across various domains, from enhancing the ac-
curacy of image quality assessments to advancing fire de-
tection technologies and knowledge graph embeddings. The
continued evolution of these methodologies, incorporating
machine learning techniques, exemplifies their critical role
in developing innovative solutions and improving decision-
making processes. The remainder of this paper is organized
as follows: Section II delves into the intricacies of linear
regression. Section III presents a comprehensive demonstration
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of linear regression applied to real-world datasets. Finally,
Section IV concludes this paper’s findings.

II. METHODOLOGY

In linear regression models, input data serve as independent
variables; their corresponding targets are the dependent vari-
ables. Equation 1, fundamental to linear regression, delineates
the relationship between dependent and independent variables
as follows:

f(x⃗i|ω) = ω0 +

D∑
j=1

ωj x⃗ij (1)

In this context, x⃗I denotes the feature vector for the ith
observation, while ω symbolizes the model’s coefficients,
encompassing the intercept. The intercept term, denoted by
ω0, is essential for setting the regression line or hyperplane’s
position in relation to the data points, ensuring it does not
necessarily pass through the origin. This term serves as the
baseline prediction when input features are zero. To integrate
the intercept seamlessly with other coefficients, a feature x⃗i0

with a constant value of one is introduced, preserving the
intercept’s effect without modification. The linear regression
equation is efficiently expressed in matrix form as follows:

f(X|ω) = Xω (2)

where ω includes the intercept ω0. The input matrix X
features a first column of ones, aligning with the intercept
to ensure its effect is considered in the model. This format
facilitates handling multiple variables and data points, with
the intercept enabling vertical adjustments of the regression
line for optimal data fit, referred to as the ”bias term” or
”intercept column.” In regression modelling, selecting the most
suitable coefficients is crucial and involves the application
of a loss function. This function calculates the discrepancy
between the predicted outcomes of the model and the actual
data. The least squares method, which aims to minimize this
discrepancy, is essential for improving the model’s accuracy
in capturing the patterns of real-world data. Although the
least squares method is foundational in linear regression for
determining the best coefficients, several alternative metrics
can be used as loss functions for optimization. These alter-
natives provide a variety of approaches for evaluating model
performance, accommodating different data requirements and
modelling objectives. Below, we describe the most commonly
used evaluation metrics in linear regression, each offering a
unique framework for optimizing coefficients to achieve the
most accurate model predictions.

1) Least Squares Method: - Summary: Aims to reduce
the sum of squared residuals, the squared differences
between observed and predicted values. - Formula: Min-
imize

∑n
i=1(yi − f(xi))

2

2) Ridge Regression (L2 Regularization): - Summary: In-
corporates a penalty on the sum of squared coefficients
to the least squares criterion. - Formula: Minimize∑n

i=1(yi − f(xi))
2 + λ

∑p
j=1 ω

2
j

3) Lasso Regression (L1 Regularization): - Summary: A
penalty is applied to the absolute value of the coefficients
to the least squares objective. - Formula: Minimize∑n

i=1(yi − f(xi))
2 + λ

∑p
j=1 |ωj |

4) Elastic Net: - Summary: Merges ridge and lasso re-
gression penalties into the least squares function. -
Formula: Minimize

∑n
i=1(yi−f(xi))

2+λ1

∑p
j=1 ω

2
j +

λ2

∑p
j=1 |ωj |

5) Mean Squared Error (MSE): - Summary: Calculates the
average of the squared differences between observed and
predicted values. - Formula: MSE = 1

n

∑n
i=1(yi − ŷi)

2

Subsequently, we will delve into the optimization methods,
focusing mainly on the least squares solution. The least
squares method is fundamental for several reasons. It is no-
tably simple and computationally efficient. Despite its apparent
simplicity, the least squares approach is highly effective and
versatile, offering reliable outcomes across various contexts.
Furthermore, the underlying mathematical principles of the
least squares method serve as a vital basis for discussing
critical issues such as overfitting, underfitting, and model
variance. The associated loss function is expressed as follows:

L(w) =

N∑
i=1

(yi − f(x⃗i|w))2 (3)

Here, yi represents the target variable. We also express this
equation in matrix form as follows:

L(w) = (Y − f(X|ω))T (Y − f(X|ω)) (4)

In this representation, X is an N × (D + 1) matrix, and
w is a (D + 1) × 1 matrix, yielding an N × 1 matrix where
each entry predicts the output for each corresponding input.
Using the target variable y to find the best coefficients in the
equation above highlights that this optimization method falls
under supervised learning. To determine the model coefficients
that minimize the loss function detailed in Equation 4, we
take the derivative of the loss function with respect to the
coefficients and equate it to zero. This approach is grounded
in the principle that a function’s minimum is located where its
derivative equals zero. Solving this system of linear equations
yields the values of the coefficients that minimize the loss
function, providing the optimal parameters for the linear
regression model and thus minimizing the squared differences
between the predicted outputs and the actual observed values.
Starting from the linear regression algorithm’s loss function,
we differentiate this function with respect to the coefficients.
The expanded form of the loss function is:

L(ω) = YTY − YTXω − ωTX TY + ωTX TXω (5)

Differentiation of Equation 5 against ω requires evaluating
each term separately. The derivative of the constant term YTY
is zero. The derivatives of −YTXω and −ωTX TY lead to
−2X TY by applying the derivative rule of Ax with respect to
x as AT . The last term, ωTX TXω, follows the differentiation
rule of xTAx to x, resulting in 2X TXω. Thus, the derivative
of the loss function is:
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−2X TY + 2X TXω = 0 (6)

Solving for ω in Equation 6 yields the estimated coeffi-
cients:

ω̂ = (X TX )−1X T Y (7)

The estimated coefficient vector, ω̂, is critical for making
predictions with the linear regression model, using either train-
ing or new data. These coefficients reveal the influence of each
independent variable on the dependent variable, indicating
the expected change in the dependent variable for a one-unit
increase in an independent variable, holding others constant.
The size of a coefficient shows its effect’s strength, and its
sign indicates the direction (positive for direct and negative
for inverse relationships). Coefficients close to zero suggest
minimal influence. This analysis is critical to understanding
and predicting the dependent variable’s response to changes
in independent variables. The move towards superintelligent
AI calls for a unified global effort, highlighting two critical
areas in AI research. First, the focus on ensuring model
reproducibility is vital for collaborative advancement in the
field. Replicating AI models and their outcomes is fundamental
to building scientific cooperation and trust. Such clarity in
research methods and results is also essential for navigat-
ing safely toward superintelligent AI. Second, it is crucial
for researchers to comprehensively outline the computational
complexity of their AI models in academic papers. An in-depth
complexity analysis is essential to a system’s manageability
and viability. Grasping the scalability and practicality of AI
solutions is crucial for their alignment with human well-
being and applicability under realistic conditions. Emphasizing
these factors is critical to supporting the development of
superintelligent AI as a beneficial and secure advancement for
humankind.

Computational complexity refers to the amount of compu-
tational resources needed by an algorithm to solve a problem,
which typically varies with the input data size. This complexity
is commonly expressed using Big O notation, O(·), which
estimates the maximum time or space (memory) an algorithm
might require relative to the size of its input. For instance,
O(n) complexity suggests that the algorithm’s resource needs
increase linearly with the input size n. In contrast, O(n2)
complexity indicates a quadratic increase, with resources
growing proportionally to the square of the input size. Lower
complexities like O(n) or O(log n) are preferred for handling
large datasets, as opposed to higher complexities like O(n2)
or O(n3).

For linear regression, the computational complexity mainly
involves matrix multiplication and inversion. Considering X
as an N × D matrix, the complexity of multiplying X T by
X is O(ND2), assuming each element of the resultant matrix
necessitates N multiplications and summations. Conversely,
inverting the D × D matrix, (X TX )−1, which is the most
computationally intensive step, exhibits cubic complexity,
O(D3). Thus, the overall complexity for computing the model
coefficients is O(D3 +ND2), with the final multiplication of
X TY having a minimal impact on total computational cost.

Fig. 1. Convex Function Demonstration

This complexity mirrors the structure of a polynomial func-
tion f(x) = ckx

k+ ck−1x
k−1+ . . .+ c1x+ c0, where x is the

variable and ck, ck−1, . . . , c0 are constants, with k being a non-
negative integer. Although polynomial complexities are man-
ageable for medium-sized datasets, they become challenging
for vast datasets. In order to mitigate the aforementioned chal-
lenge, methods like Gradient Descent are applied, which are
particularly effective for large datasets. We will next explore
the mathematical framework of the linear regression learning
process via Gradient Descent, emphasizing its adaptability and
efficiency for large-scale data analysis.

Within the realm of model optimization, the gradient of
the loss function indicates the direction and magnitude of
adjustments required for the model parameters to reduce error.
The gradient, a vector of partial derivatives of the loss function
concerning each model coefficient, signifies the necessary
adjustments per parameter to lower the loss, maintaining other
parameters constant. The gradient direction points towards the
steepest increase in error, and its components suggest whether
to increase or decrease a parameter (positive values indicate a
decrease is needed, while negative values suggest an increase)
and the urgency of this change.

The expansion of the least squares loss function yields a
quadratic formula in the model coefficients ω, akin to a poly-
nomial with degree two, f(x) = ax2+bx+c, where a, b, and
c are constants with a not equal to zero. This quadratic nature
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deems the least squares solution a convex function, implying
that any local minimum is a global minimum, facilitating a
straightforward optimization path.

To rigorously prove the function’s convexity, we examine
the second derivative or the Hessian. Convexity is confirmed if
the Hessian is positive semidefinite, indicating that the second
derivative across all directions is non-negative, a characteristic
ensuring the presence of a global minimum.

The first derivative of the loss function with respect to the
coefficients is previously outlined as:

∂L(ω)

∂ω
= −2X TY + 2X TXω (8)

In matrix calculus, matrix and vector terms are differentiated
by specific rules. For scalar products, the derivative Ax with
respect to x yields AT , while for matrix-vector products, the
rule adapts accordingly. Thus, the second derivative of the loss
function, indicative of its curvature and convexity, is:

∂2L(ω)

∂ω2
= 2X TX (9)

The Hessian matrix’s role is paramount in determining
function curvature and convexity in optimization. In linear
regression, the positive semi-definiteness of the Hessian, and
thus the convexity of the function, is assured if the input data
matrix X is of full column rank, indicating linear indepen-
dence among columns. To maintain X TX ’s positive semi-
definiteness, certain prerequisites regarding the data matrix
X ’s structure must be met:

1) Sufficient Data Points: There should be at least as many
observations (rows in X ) as there are variables (columns
in X ). Excessive observations over variables enhance the
chances of achieving full column rank in the matrix.

2) Independence of Features: It is crucial that the vari-
ables (columns in X ) are independent of each other,
meaning no variable is a linear combination of the
others.

3) Data Preparation: Applying data preparation tech-
niques such as feature selection or extraction can aid
in eliminating feature dependencies, ensuring the matrix
attains full column rank.

After recognizing the necessity of a full-rank input matrix
X for ensuring the convexity of the objective function in
linear regression, we explore the QR factorization technique.
This method verifies the full rank status of X and provides
insights into the data’s structure. If X lacks full rank, the
QR factorization helps identify steps to preprocess X and
achieve full rank, essential for preserving the convexity of the
objective function during optimization. The QR factorization
decomposes a matrix into Q (an orthogonal matrix) and R
(an upper triangular matrix), offering a strategic approach to
understanding and modifying the data matrix. Researchers gain
crucial insights by applying QR factorization to the training
data matrix X . First, they can ascertain whether X possesses
full rank, indicating that its columns are linearly independent.
Should X not exhibit full rank, this suggests the presence of
linear dependency among its features; a scenario QR factor-
ization helps identify by pinpointing the redundant features.

A full-rank status for X is confirmed when all diagonal
elements of the R matrix from the QR factorization are non-
zero. Moreover, QR factorization aids in detecting linearly
dependent features within X ; if any diagonal element of the R
matrix is zero or approaches zero, it signals linear dependence
between that column and its predecessors. Specifically, a zero
value in the j’th diagonal element of R indicates that the j’th
column of X is a linear combination of the preceding j − 1
columns.

We will explore the application of gradient descent in
the linear regression learning process, where the aim is to
iteratively refine the model’s coefficients to minimize the loss
function. Each iteration updates the coefficients to lower the
loss function’s value than the last, progressively reducing the
overall loss. This iterative improvement can be represented as:

L(ω(0)) > L(ω(1)) > L(ω(2)) > L(ω(3)) > . . . (10)

Here, ω(k) refers to the coefficient set at the k’th iteration.
This sequence illustrates that with each iteration, the loss
associated with the current coefficient set should be lower than
that of the previous set, demonstrating advancement in the
optimization process. To effectively leverage gradient descent
for optimization, it is critical to grasp the gradient of a func-
tion, the concept of a tangent in this scenario, and the strategy
of moving against the gradient (towards the negative gradient
direction). The gradient represents the direction of the steepest
increase at any point on a function’s surface. Drawing a
tangent line or plane in the gradient’s direction would indicate
where the function’s value rises most sharply. Thus, advancing
in the direction opposite to the gradient is fundamental for
systematically finding the function’s minimum, embodying the
essence of gradient descent optimization. The steps for this
learning approach are detailed in Algorithm 1.

Algorithm 1 Linear Regression using Gradient Descent
Require: Learning rate α, convergence threshold ϵ
Ensure: Optimal parameters ω

1: Initialize the parameters ω randomly
2: Initialize iteration pointer as follows: k = 0
3: while |L(ω(k))− L(ω(k−1))| < ϵ do
4: Calculate the gradient ∇L(ω)
5: Update the Parameters as follows: ω = ω − α∇L(ω)
6: Increment iteration pointer as follows: k=k+1
7: end while
8: return ω

Selecting an appropriate learning rate α involves trial and
error, necessitating empirical adjustment and insight gained
from experience.

Linear regression via gradient descent can substantially
benefit from incorporating the least squares method with a
momentum term in the optimization algorithm as demonstrated
in Algorithm II.

The addition of momentum, denoted by β, helps to acceler-
ate convergence in the gradient descent process, which is cru-
cial when dealing with uneven objective function landscapes
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Algorithm 2 Linear Regression using Gradient Descent
Require: Learning rate α, convergence threshold ϵ
Ensure: Optimal parameters ω

1: Initialize the parameters ω randomly
2: Initialize iteration pointer as follows: i = 0
3: while |L(ω(i))− L(ω(i−1))| < ϵ do
4: Calculate the gradient ∇L(ω)
5: Update the velocity: ν = βν − α∇L(ω)
6: Update the Parameters as follows: ω = ω + ν
7: Increment iteration pointer as follows: i=i+1
8: end while
9: return ω

that exhibit steep ravines or suffer from noisy gradients due
to stochastic variability in the data. By updating the velocity
at each iteration, which blends the momentum of past updates
(β) with the current gradient scaled by the learning rate (α),
the algorithm can navigate more smoothly toward the optimal
solution. This smoother path is attributed to the momentum
term’s ability to retain a fraction of the previous update,
thereby applying a form of ”friction” that lessens oscillations
and avoids erratic swings in parameter updates.

Choosing an appropriate learning rate, α is critical and usu-
ally requires empirical tuning to achieve the best performance.
It often starts with a small value and is adjusted based on
the model’s validation performance. Advanced techniques like
learning rate scheduling or adaptive learning rate methods
further refine the process by dynamically adjusting α, thus
ensuring a balance between fast convergence and the stability
of the learning process. The algorithm iteratively adjusts the
parameters, moving closer to the optimum as long as the
change in loss between iterations is above a convergence
threshold, ϵ. This iterative process continues until the loss
stabilizes within the desired threshold, indicating that the
parameters have converged to an optimal set.

III. ANALYSIS OF MODEL PERFORMANCE AND
VALIDATION RESULTS

Evaluating the effectiveness of a linear regression model
entails examining its predictive capabilities to ascertain its
proficiency in forecasting the values of the dependent vari-
able from the independent variables. Several indicators offer
perspectives on distinct facets of the model’s performance,
encompassing the precision of its predictions, the detection
of anomalies, and the model’s competence in reflecting the
variability inherent in the dataset.

The R2 score, also known as the coefficient of determi-
nation, quantifies the fraction of variance in the dependent
variable that can be predicted from the independent variables.
This metric ranges from 0 to 1, with higher values denoting
a more accurate alignment of the model with the observed
data. The R2 score plays a pivotal role in gauging the
extent to which the linear regression model accounts for the
variability observed in the dataset. Moreover, it is instrumental
in evaluating and comparing the efficacy of various models
applied to the same dataset [8], [9].

The Mean Absolute Error (MAE) measures the average
magnitude of errors within a collection of predictions, dis-
regarding the direction of these errors. It is determined by
computing the mean of the absolute discrepancies between
forecasted and observed values. MAE serves as an intuitive
metric for gauging prediction accuracy, facilitating an evalua-
tion of the proximity between the model’s predictions and the
actual results on average [10].

The Mean Squared Error (MSE) calculates the average
squared discrepancies between the predicted and actual values.
This approach of squaring the errors amplifies the significance
of more significant discrepancies, rendering MSE exception-
ally responsive to outliers. It is an effective tool for detecting
the model’s tendency to commit substantial errors. However, it
does so with the caveat of potentially exaggerating the impact
of outliers in the assessment [11].

The Root Mean Squared Error (RMSE) is derived by taking
the square root of the Mean Squared Error. This calculation
results in a metric presented in the same units as the dependent
variable, enhancing its interpretability compared to the MSE.
By imposing heavier penalties on more significant errors,
RMSE offers an insightful gauge of the model’s predictive
accuracy, concurrently emphasizing the influence of substan-
tial outliers on the model’s overall performance [11].

The Median Absolute Error (MedAE) represents the median
value of all absolute deviations between the predicted out-
comes of the model and the actual observed values. Distinct
from Mean Absolute Error (MAE) and Mean Squared Error
(MSE), MedAE remains unaffected by outliers, offering a
sturdy indicator of the model’s predictive precision. It captures
the median error magnitude, making it especially valuable
in analyzing datasets characterized by substantial outliers,
thereby reflecting a more central tendency of the model’s
predictive discrepancies [12].

In validating the performance of linear regression models,
adopting metrics such as the R2 score, MAE, MSE, RMSE,
and MedAE is pivotal for a comprehensive assessment. The R2

score is crucial for understanding the proportion of variance
the model explains, offering a measure of fit that facilitates
comparison across different models. MAE provides an intu-
itive gauge of average prediction error magnitude, focusing
on accuracy without influencing error direction. MSE and
RMSE are particularly valuable for highlighting the impact of
more significant errors, with RMSE improving interpretability
by matching the units of the dependent variable. MedAE
offers robustness against outliers, presenting a median er-
ror particularly useful in datasets with significant anomalies.
These metrics provide a nuanced view of model performance,
encompassing accuracy, sensitivity to outliers, and the ability
to capture variability, thereby enabling a thorough evaluation
and comparison of predictive models within research contexts.

A. Analysis of the Boston Housing Dataset

The dataset from the Boston Standard Metropolitan Statis-
tical Area [13] of 1970 is explored to analyze the influence of
various factors on the median value of owner-occupied homes.
The dataset comprises various features of housing areas around
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Fig. 2. The comparison of ground truth versus predicted values for the
Boston housing dataset

the Boston suburb, such as crime rate, average number of
rooms, accessibility to highways, and others, alongside the
median value of homes. Our primary objective is to predict
the median value of homes based on these features using a
Linear Regression model.

We employed a comprehensive experimental analysis to
assess the linear regression model’s performance in our inves-
tigation into the Boston Standard Metropolitan Statistical Area
dataset. We evaluated the model’s efficacy based on various
metrics using the KFold cross-validation method with ten splits
and ensuring data shuffling with a fixed random seed for
reproducibility. These metrics were calculated through cross-
validation, with their average values and standard deviations
reported to evaluate the model’s performance comprehensively.

Figure 2 presents a scatter plot comparing the ground truth
against the predicted values for the regression model using
the Boston Standard Metropolitan Statistical Area dataset. As
demonstrated in Table I, the average R2 score is 0.717 with
a standard deviation of 0.075, suggesting that, on average,
the model explains about 71.7% of the variance in the dataset,
which indicates a relatively strong predictive power. The MAE
and the MedAE average at 3.377 and 2.619, respectively,
signifying the average deviation of the predictions from the
actual values. The MSE and RMSE provide information on
the average squared error and its square root, with the RMSE
averaging 4.793. The standard deviation in these scores reflects
variability in the model’s performance across different cross-
validation folds or test sets. The model is reasonably well-
fitted, although there is room for improvement, especially
for higher-value predictions where the plot shows a greater
dispersion of points from the prediction line.

B. the California Housing dataset

This dataset is a variant of the California Housing dataset,
originally procured from Luı́s Torgo at the University of Porto
[14]. Their research utilized data from the 1990 California
census, formatting it into a dataset where each row represents
a census block group, a geographical unit defined by the
U.S. Census Bureau as the smallest for which sample data is

Metric Average Score Standard Deviation
R2 Score 0.717 0.075
Median Absolute Error (MedAE) 2.619 0.279
Mean Absolute Error (MAE) 3.377 0.294
Mean Squared Error (MSE) 23.364 6.199
Root Mean Squared Error (RMSE) 4.793 0.626

TABLE I
ANALYSIS OF REGRESSION MODEL PERFORMANCE ON THE BOSTON

HOUSING DATASET

Fig. 3. Caption

published, generally encompassing a population ranging from
600 to 3,000 individuals.

The primary dependent variable in the California Housing
dataset commonly used for regression analysis is the median
house value, representing the central housing value within
each block group. The independent variables, which serve as
predictors for the median house value, include median income,
median house age, average number of rooms per household,
average number of bedrooms per household, population, aver-
age household occupancy, and geographical coordinates (Lat-
itude and Longitude). These predictors are selected to analyze
the influence of economic, demographic, and locational factors
on housing prices across California, offering insights into how
various attributes contribute to real estate valuation.

TABLE II
ANALYSIS OF REGRESSION MODEL PERFORMANCE ON THE CALIFORNIA

HOUSING DATASET

Metric Average Score Standard Deviation
R2 Score 0.618 0.026
Median Absolute Error (MedAE) 39681.544 555.972
Mean Absolute Error (MAE) 51722.390 896.286
Mean Squared Error (MSE) 5079307182.379 344122565.648
Root Mean Squared Error (RMSE) 71229.000 2395.163

The scatter plot demonstrated in Figure 3 and Table II
substantiate the model’s efficacy in predicting housing prices
within the Californian market. The table comprehensively
analyzes a regression model’s performance on the California
housing dataset. The R2 score, with an average of 0.618 and
a low standard deviation of 0.026, suggests that the model
reasonably predicts approximately 61.8% of the variance in
housing prices, showing consistency across different model
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evaluations. The MedAE and MAE are considerably high,
averaging 39,681.544 and 51,722.390, respectively, with rel-
atively low standard deviations, indicating a consistent but
significant difference between predicted values and actual
prices. The MSE and RMSE present exceptionally high values,
with averages of about 5,079,307,182 and 71,229, respectively.
These large values and their considerable standard devia-
tions imply substantial variability in the model’s predictions,
particularly highlighting the impact of outliers or extreme
values in the dataset. This analysis underscores the model’s
effectiveness in capturing general trends while indicating areas
where accuracy could be improved, particularly in handling
data variability and outliers. The scatter plot provides a visual
affirmation, displaying a concentration of data points around
the line of best fit, which denotes predictions closely aligned
with actual values, notwithstanding some variability at higher
values, which is typical in real-world data. These performance
metrics collectively validate the model’s reliability and predic-
tive power, rendering it a valuable tool for stakeholders in the
housing domain. The high values of performance metrics such
as MedAE, MAE, MSE and RMSE in the regression model
are amplified by the large number of test observations, which
increase the aggregate of squared errors and, consequently, the
magnitude of these metrics.

IV. CONCLUSION

In this paper, we explored the effectiveness of linear re-
gression models in predicting real-world outcomes across
diverse domains. The study highlighted linear regression’s
broad applicability and robustness in fields such as real estate,
underscoring its relevance and adaptability in today’s data-
driven landscape.

Our detailed analysis using the Boston and California hous-
ing datasets demonstrated that linear regression models offer
significant predictive power when optimized and applied cor-
rectly. The model’s ability to explain a substantial portion of
the variance in housing prices and its consistent performance
across different datasets emphasize its utility as a forecasting
tool. Notably, the R2 scores from both datasets—0.717 for
Boston and 0.618 for California—indicate that the models
can reliably predict housing values based on various socio-
economic and geographic features.

The findings from this study affirm the potential of linear
regression as a valuable tool in predictive analytics. While
the model demonstrates substantial efficacy in interpreting and
predicting outcomes, continuous improvements and adapta-
tions are necessary to enhance its accuracy and reliability.

Future research on linear regression using gradient descent
with momentum offers promising avenues for enhancing the
efficiency and stability of convergence in predictive modelling.
Critical areas for further investigation include optimizing the
choice of the momentum coefficient (β) and the learning
rate (α) to adapt dynamically to different data characteristics
and objective landscapes. Experimental work could explore
adaptive momentum methods that adjust β in response to
changes in the gradient’s direction and magnitude, poten-
tially reducing the number of iterations needed to achieve

convergence. Additionally, integrating second-order deriva-
tives or incorporating adaptive learning rate schedules could
address challenges associated with steep ravines and noisy
gradients, which are common in high-dimensional data sets.
By systematically evaluating these enhancements on diverse
datasets, researchers can develop more robust guidelines for
practically implementing this algorithm, thereby improving its
applicability and performance across various predictive tasks.
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