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Abstract—Machine Learning (ML) with distributed privacy 

preservation is growing in significance as it focuses on facilitating 

multi-party learning without requiring actual data sharing. This 

is especially helpful for companies that want to work together but 

are unable to do so because of ethical, regulatory, or budgetary 

constraints on sharing data. In order to address these issues, this 

study examines three privacy-preserving algorithms: regularized 

logistic regression with Differential Privacy (DP), stochastic 

gradient descent (SGD) with differentially private updates, and a 

distributed Lasso that distributes gradients among data centers. 

The study emphasizes the relationship between error rate and 

privacy through these algorithms. In order to improve error rates 

for large datasets, both DP algorithms modify their sensitivity 

dependent on the amount of data, highlighting the significance of 

training data volume in model performance in the study. Results 

demonstrate that using the SGD; error rate can be reduced by 

employing random projections in advance. 

 

Index Terms—Distributed Privacy Preservation, Differential 

Privacy, Lasso, Machine Learning, Regularized Logistic 

Regression, Stochastic Gradient Descent 

I. INTRODUCTION 

Big data, the Internet of Things (IoTs), and Machine Learning 

(ML) are at the forefront of technological advancements, 

leading to increased user awareness of their data trails and 

privacy concerns. Users are recognizing that their personal 

information, such as medical history or online activities, might 

be accessible to organizations or vulnerable to hackers, raising 

significant privacy issues. This concern is amplified by 

instances of organizations mishandling sensitive data, 

underscoring the need for secure data management practices. 

ML's application across various sectors, including healthcare 

for early disease detection and fraud detection in financial 

services, highlights its importance. However, the potential for 

collaborative innovation is often hampered by ethical, legal, 

and financial constraints on data sharing. For instance, sharing 

sensitive data between a pharmaceutical company and a 

healthcare organization might be unethical without ensuring 

privacy. This dilemma points to the necessity of integrating ML 

with privacy-preserving techniques, a challenge recognized by 

leading companies like Apple, Microsoft, and Google. 

Addressing this challenge, this study focuses on developing 

differential privacy techniques for distributed ML that allow for 

gradient sharing without direct data exchange, using the 

MNIST dataset to evaluate the proposed methods. The concept 

of anonymizing data, which involves removing identifiable 

information, has been deemed insufficient for protecting 

privacy due to the risk of re-identification from other available 

data sources. This was exemplified by the re-identification of 

William Weld's medical records from an anonymized dataset, 

despite the removal of direct identifiers. This incident 

underscores the limitations of traditional anonymization 

techniques and the need for more robust privacy-preserving 

methods. 

 

This paper introduces differential privacy techniques for 

distributed ML, specifically distributed private Lasso and 

regularized logistic regression with Differential Privacy (DP), 

aiming to balance privacy and accuracy without requiring direct 

data sharing. The MNIST dataset serves as the testing ground 

for these algorithms, allowing for an in-depth analysis of the 

trade-offs between privacy protection and model performance. 

Structured as follows, the paper presents state-of-the-art work 

in Section II, details the study's materials and methods in 

Section III, analyzes the findings in Section IV, discusses the 

implications in Section V and concludes with conclusions and 

future research directions. This research contributes to the 

ongoing dialogue on privacy in the digital age, offering insights 

into the feasibility of ML applications that safeguard user 

privacy while maintaining accuracy. 

II. STATE OF THE ART 

Many different approaches have been attempted to preserve 

privacy. One of them is k-anonymity [12]. In k rows of the 

dataset, the goal is to make predefined identifiers 

homogeneous. To accomplish this, you can either change the 

identification to have a "range" or append a "*" when the 

identifiers differ. For instance, if age is used as an identifier, the 

file can indicate that the user was born in the years 1990–1999. 

An expansion of the k-anonymity approach is l-diversity [13]. 

The absence of variety in the sensitive attribute is why k-

anonymity may leak information, leading to the development of 
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l-diversity, which requires at least l well-represented values for 

the sensitive attribute. T-closeness further enhances l-diversity 

by ensuring the distribution of the sensitive attribute in any 

equivalent class closely matches the distribution across the 

entire dataset. However, these techniques may not prevent 

security breaches in extreme cases, prompting the use of secure 

Multi-Party Computing (MPC) to preserve confidentiality. 

MPC allows multiple participants to compute a global function 

without revealing their input data. Alternatively, Federated 

Learning (FL) distributes a model across devices like 

smartphones and tablets, where it's trained locally. The results 

are then encrypted and shared with a cloud, which updates a 

global model without direct access to raw data, maintaining 

data privacy. Differential Privacy (DP) provides another layer 

of privacy by introducing noise and randomness to offer 

plausible deniability to users in the dataset. DP ensures that the 

dataset doesn't allow user identification, even if an adversary 

gains additional information, by utilizing randomization to 

protect users. DP supports population research while 

safeguarding user privacy, highlighting its role as a crucial 

concept in privacy preservation. 

III. MATERIALS AND METHODS 

Convexity in ML optimization is crucial, ensuring that each 

local minimum is a global minimum, with strong convexity 

guaranteeing solution uniqueness and faster convergence rates, 

particularly vital in high-dimensional spaces for efficiently 

locating the global minimum. Privacy-preserving data analysis 

leverages DP, allowing insight extraction from datasets without 

compromising individual privacy. DP's inclusion of 

randomness, defined by parameters (ϵ, δ), minimizes the 

influence of any single data point on the analysis outcome, 

essential in sensitive data fields like healthcare and social 

science. Understanding a function's sensitivity is key to 

effective DP use, guiding the noise added to ensure privacy 

without significantly diminishing data utility. Depending on the 

desired privacy guarantees ((ϵ, δ)-DP) and function sensitivity, 

the choice between Laplace or Gaussian noise mechanisms is 

made, with Gaussian favored for assumed Gaussian data 

distributions and Laplace for its simplicity and strict ϵ-DP 

adherence. Regularization techniques like Lasso regression 

help prevent overfitting and assist in feature selection by 

penalizing large coefficients, crucial for models prone to 

interpreting training data noise as patterns. Dimensionality 

reduction methods such as PCA and random projection are 

indispensable in big data analytics, reducing variables to 

uncover underlying data patterns, enhancing model 

performance, and computational efficiency. Optimizing logistic 

regression with DP involves gradually adding noise, protecting 

training data individual privacy while maintaining predictive 

utility. SGD, combined with DP, offers privacy-preserving 

algorithms vital for sensitive application ML models, improved 

by gradient clipping to prevent large, potentially destabilizing 

steps. 

Model evaluation strategies like hold-out and k-fold cross-

validation ensure models are reliable predictors for new data, 

beyond training data performance. Hyperparameter 

optimization relies on grid search, systematically exploring a 

predefined grid to identify the hyperparameter combination that 

maximizes performance, a critical process for enhancing ML 

application effectiveness. 

 

Data Analysis (MNIST) 

 

A traditional dataset with a large number of well-known 

benchmarks is used. The dataset was created by [18]. It includes 

images of handwritten numbers together with their labels. One 

thousand test samples and sixty thousand training samples 

make up the dataset. Seventy-eight features are obtained from 

each 28 x 28 image. The target ranges from 0 to 9. A pixel in 

an image is represented by each feature. Pixel values range from 

0 for black to 255 for white, with grey representing a mixture 

of black and white (e.g., grey = 127.5). Fig. 1 shows the images 

for each target. Since every pixel represents a different color, 

it's interesting to look at how those colors are distributed 

throughout all of the images. The majority of the data points are 

black, as can be seen when examining the sample figure (Fig. 

1). Furthermore, since it only has spikes at the extremes, it is 

evident from that there is little to no grey in the images. 

 
Fig. 1. An illustration of the images to forecast using every image has a label 

that is arranged numerically 

After that, a study was conducted to find out how the images 

varied from the standard image. To calculate the usual image, 

the mean of each feature for each target was found, yielding 784 

means—one for each dimension. The Euclidean distance 

between each image and the usual image was determined in 

order to examine the differences between each image and the 

typical one. The violin plot in Fig. 2 displays the results. The 

images in each category that deviate the most from the average 

are the ones with the highest scores. This indicates that the 

number that gets drawn the most frequently is 1. In contrast, the 

violin plot indicates that the categories with the highest mass, 0 

and 2, appear to have the greatest diversity in their drawing. 

Finally, because image 8 has the largest spike, it seems to have 

the single worst drawing. The five images in each category with 

the largest Euclidean distance from the usual image are 

displayed in Fig. 3. Looking at the images makes it obvious that 

some of the numbers are quite badly drawn. Upon examining 

the images, it becomes evident that certain numbers are quite 

poorly painted. Moreover, a few of the numbers in the images, 

such the first 7 and 3, don't even resemble the actual numbers. 

To determine whether there was a class imbalance in the 

dataset, an easy calculation of the targets was performed (Table 

I demonstrates, there is imbalance). 
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Fig. 2. Displays each image's Euclidean distance from its usual image in each 

category 

 
Fig. 3. Displays the images that deviate the most from the average image 

 

TABLE I 

THE TOTAL NUMBER OF TARGET DATA POINTS FOR EVERY 

CATEGORY 
Sample

s 

0 1 2 3 4 5 6 7 8 9 

Trainin

g 

592

3 

674

2 

595

8 

613

1 

584

2 

542

1 

591

8 

626

5 

585

1 

594

9 

Test  980 113

5 

103

2 

101

0 

982 892 958 102

8 

974 100

9 

 

Data standardization is critical in ML as unstandardized data 

affects algorithms' performance, particularly in gradient-based 

methods like the distributed private Lasso. Standardizing 

gradients ensures step sizes are consistent, with the gradient 

indicating direction and the learning rate (η) determining step 

size. High-dimensionality (784 dimensions) complicates data 

visualization, necessitating PCA for dimension reduction. 

Despite standardization, PCA is essential to prevent larger-

scale features from falsely appearing more significant. In Figure 

4, projecting training samples onto the first two principal 

components reveals clustering of similar digits but only 

captures 9.7% of the original data's variance, highlighting the 

challenge in differentiating variables through PCA alone. 

 

For binary classification problems, PCA visualizes the 

distinctions between digit pairs, with datasets for digits 4 and 9, 

and 0 and 1, analyzed separately. The PCA projection of 4 and 

9 (Figure 5) shows overlapping classes, making class 

identification challenging without prior knowledge, and 

explains only 12.7% of variance. Conversely, the 0 and 1 

projection demonstrates better class separation and accounts for 

16.2% of the variance, suggesting easier differentiation 

between these digits. This contradicts the initial assumption that 

classifying between 4 and 9 is harder than 0 and 1, as the latter 

shows a more distinct distribution, particularly for digit 0, 

which has greater variation due to its visual characteristics in 

images. Figure 6 further supports this by showing how 

explained variance increases with more principal components 

for 0 and 1, indicating fewer components are needed to 

represent their data adequately. 

 
Fig. 4. PCA for every target variable 

 
Fig. 5. A PCA of two datasets with only the labels 4 and 9 in one and only the 

labels 

 

FIG. 6. DEMONSTRATES THE RISE IN THE EXPLAINED VARIANCE BY ADDING UP 

THE MAJOR COMPONENTS 

IV. EXPERIMENTAL ANALYSIS 

A. Distributed Private Lasso 

This study develops and analyses a distributed private Lasso 

model, logistic regression with DP, and SGD with differentially 

private updates to examine the incorporation of privacy into 

ML. Showcasing novel approaches to privacy-preserving ML, 

the distributed private Lasso model is focused on binary 

classification issues using MNIST data (classifying digits 4 and 

9 in particular). Two alternative scenarios were examined with 

this model: one in which half the data is analyzed by a single 

data center, and the other in which all the data is centralized. 

According to the hypothesis, when data was scarce, the 

distributed model would perform better than a single data 

center, but it might not be able to equal the performance of the 

completely centralized strategy. Extensive simulations utilizing 

grid search for hyperparameter tuning (weight decay λ and 

learning rate η) were performed to evaluate the models. 

Multiple iterations and 5-fold cross-validation were employed 

to ensure robustness. Error rates and feature selection skills 

were used to assess the models, and the distributed approach 
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was anticipated to provide a balance between privacy and 

predictive performance. Two sets of tests were performed: one 

using PCA to reduce the data to the first 100 principal 

components and another utlizing the entire 784-dimensional 

data without PCA. The findings showed that although PCA 

sped up convergence and decreased processing requirements, it 

may make it more difficult for the model to choose features 

efficiently because PCA chooses features primarily on variance 

rather than predictive relevance. In contrast, the distributed 

Lasso model performed better in terms of error rate without 

PCA (refer to Fig. 7); in several cases, it even outperformed the 

centralized data model. This improvement was credited to the 

regularisation effect brought about by data distribution, which 

may lessen overfitting by placing some sort of restriction on the 

complexity of the model. 

 
Fig. 7. Displays the PCA models' error rate 

Furthermore, the distributed method without PCA made it 

possible to choose features with greater nuance, identifying 

both those that are most suggestive of the variations between 

the numbers 4 and 9 and those that have little to no variance, 

which are judged useless for classification. In applications 

where interpretability is just as critical as accuracy, this fine-

grained feature selection is essential for comprehending the 

model's decision-making process. The possibility of reverse 

engineering the aggregated gradient to extract details about 

specific data points was investigated in order to allay privacy 

concerns (refer to Figs. 8, 9, and 10). This experiment 

highlights the benefits and drawbacks of distributed methods, 

adding to the larger subject of privacy-preserving ML. In order 

to reduce the hazards associated with reverse engineering, 

further study could improve privacy safeguards, investigate 

alternate dimensionality reduction strategies, and further refine 

these models. 

 
Fig. 8. Displays the without PCA models' error rate 

 
Fig. 9. The quantity of weights whose absolute value is lower 

 
Fig. 10. Displays the distributed Lasso feature selection with the most data  

B. Regularized Logistics Regression with Differential 

Privacy 

The difficult classification between digits 4 and 9 from the 

MNIST dataset is the study's main emphasis as it examines a 

regularized binary logistic regression model with DP. To 

accomplish DP, the model's weights are supplemented with 

Laplacian noise, the amount of which is dictated by the 

function's sensitivity and the privacy parameter ϵ. The 

sensitivity decreases as N or λ grows, indicating that larger 

datasets or more regularization contribute to privacy by 

lessening the impact of individual data points. The sensitivity is 

inversely proportional to the total number of observations (N) 

and directly to the weight decay (λ). Therefore, logistic 

regression models with l2 norm regularization were trained on 

a range of data sizes, from 1/50th to the entire dataset. Next 

searches were conducted based on discovered ranges to fine-

tune the initial broad grid searches for the ideal λ. To verify 

randomness and determine the most widely used ideal 

parameters, the models were tested throughout a number of 

simulations. The outcomes of the trial demonstrate the balance 

between accuracy and privacy. The model’s error rate falls as ϵ 

rises, signifying less noise, which is consistent with the 

hypothesis that less noise reduces model accuracy (refer to Fig. 

11). On the other hand, the error rates that were similar to 

random guessing were created by the lowest values of ϵ, which 

emphasizes how much noise impacts the performance of the 

model. However, the influence of the additional noise decreases 

with increasing training data, improving model accuracy (refer 

to Fig. 12). This is explained by the fact that as N increases, 

sensitivity decreases and less noise can be added. 

 
Fig. 11. Displays the logistic regression  error rate with and without DP 

 
Fig. 12. An enlargement of the error rates on a log axis in Fig. 11 
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The study also showed that models with ϵ values from 0.5 and 

higher converged to error rates that were similar to non-private 

logistic regression models across a significant amount of the 

data spectrum (refer to Fig. 13). This implies that the accuracy 

of the model is not significantly impacted by a moderate level 

of noise. But it becomes important to distinguish between the 

privacy levels provided by various ϵ values since even minor 

variations in ϵ might result in considerable variations in privacy 

assurances. The study emphasizes how crucial it is to choose ϵ 

carefully, striking a balance between model accuracy and 

privacy needs. Higher ϵ values decrease the privacy guarantee 

but may provide better accuracy by adding less noise. The 

results indicate that it is possible to obtain strong privacy 

safeguards (lower ϵ) without sacrificing model performance if 

enough data is available. In a nutshell, our study sheds insight 

on the complex interplay among data privacy, model precision, 

and training data volume within the framework of ML-DP. It 

validates the feasibility of upholding privacy restrictions 

without sacrificing model efficacy, particularly when dealing 

with larger datasets. It is still crucial to choose ϵ carefully, 

weighing the demands of privacy against accuracy objectives. 

This decision is context-specific, changing depending on the 

particular specifications and application-specific sensitivity. 

 
Fig. 13. Displays the error rate's confidence interval 

C. Stochastic Gradient Descent with Differential Privacy 

This study presents a nuanced approach to privacy preservation 

and model accuracy optimization through the investigation of 

SGD with DP for logistic regression on the MNIST dataset, 

specifically for the classification of digits 4 and 9. DP allows 

the SGD algorithm to adjust to protect specific data points 

during training while minimizing the model's predictive power. 

Laplacian noise is added to the weights to mask individual 

contributions. Normalizing predictors, mapping targets to -1 

and 1, projecting data onto a unit ball, and randomly projecting 

dimensions to 50 dimensions were all part of the preprocessing 

steps. The process of reducing dimensionality not only speeds 

up computations but also naturally caps the overall noise 

introduced in each gradient update, balancing privacy 

protection with sufficient data accuracy to enable precise 

categorization. Hyperparameter tweaking is required under 

privacy constraints, as proven by the training of fifty SGD 

models with different data sizes. Gradient clipping is used to 

prevent the gradient's norm from exceeding a predefined 

threshold, preserving the privacy guarantee. The DP model 

necessitates careful consideration of the learning rate, batch 

size, and weight decay (refer to Fig. 14). Grid search was used 

to guide the hyperparameter selection process, with a focus on 

bigger batch sizes to minimize noise-induced variance and 

closer resemble the genuine gradient. 

 
Fig. 14. A scatter plot with the λ and η separated 

The outcomes of the experiment demonstrated the trade-offs 

and inherent difficulties between model accuracy and privacy 

levels (measured by ϵ). As the quantity of training data rose, 

models trained with higher ρ values—which indicate less 

noise—became closer to the accuracy of non-private SGD 

models. On the other hand, higher error rates were associated 

with lower ϵ values, which indicated the effect of increased 

noise on model performance (refer to Figs. 15 and 16). This 

shows how privacy protection and model accuracy are directly 

correlated, with lower ϵ values corresponding to greater privacy 

and thus fewer accurate predictions. The intricate relationship 

between the quantity of features, the degree of DP used, and the 

final model accuracy was further highlighted by dimensionality 

analysis. Models with lower dimensions and suitable ϵ values 

showed that privacy and model efficacy could be maintained 

through a precisely calibrated feature space reduction. 

 
Fig. 15. The SGD's error rate when using DP 

 
Fig. 16. The SGD without DP error rate displayed with varying epoch counts 

V. CONCLUSION AND FUTURE WORKS 

Using three independent approaches—distributed Lasso, 

logistic regression with DP, and SGD with differentially private 

updates—this study investigates the relationship between 

privacy and ML. Every approach presents a different angle on 

how to balance privacy protection and ML needs, emphasizing 

the connection between privacy, error rates, and data volume. 
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The distributed Lasso method highlights the benefits of 

distributing gradients across data centers, particularly when 

data is scarce, showcasing the advantage of collaborative 

environments for enhancing model accuracy and convergence. 

Differentially private logistic regression illustrates how 

increasing data volume can maintain privacy without 

sacrificing accuracy, managing the trade-off between privacy 

and performance by adjusting the privacy budget (ϵ). SGD with 

differentially private updates introduces local differential 

privacy, focusing on batch size, epoch count, and the 

dimensionality-privacy link. Despite the highest error rates, this 

method provides insights into integrating privacy with iterative 

learning algorithms, underscoring the growing importance of 

privacy-preserving ML as data collection expands. In parallel 

to our exploration of privacy-preserving strategies in distributed 

ML environments, there have been significant strides in 

enhancing end-to-end multi-task dialogue systems [19], 

offering a comprehensive approach to improving interaction 

capabilities while potentially navigating privacy concerns 

inherent in user data handling. Similarly, advancing audio 

fingerprinting accuracy [20], particularly in mitigating 

challenges posed by background noise and distortion, 

underscores the necessity of sophisticated data processing 

techniques that can be aligned with privacy-preserving 

mechanisms. Future research could explore the algorithms' 

performance on multiclass tasks and different datasets, assess 

the integration of DP into the distributed Lasso for potentially 

better generalization, and consider the logistic regression model 

with DP in a distributed framework to examine privacy 

implications. 
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