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Abstract

This paper presents an algorithm for a team of
heterogeneous mobile robots to estimate and adap-
tively sample a stationary, isotropic, Gaussian pro-
cess. An estimation framework is proposed to assim-
ilate measurements from robots with differing sensing
capabilities (i.e., measurement noise variance). To im-
prove computational efficiency of the Gaussian pro-
cess regression, the survey area is divided into re-
gions that each use a common semivariogram ma-
trix constructed with a truncated measurement set
determined by an adaptive selector. As the mission
proceeds, a Voronoi-based algorithm periodically par-
titions a density function—representing time-varying
sampling priority—to identify high-value sampling lo-
cations. The path for each robot is modeled as an
mechanical system: a sequence of masses (waypoints)
are interconnected by springs and dampers and pulled
towards Voronoi cell centroids. At each path planning
cycle the robots are iteratively simulated with hetero-
geneous dynamics (e.g., speed, turn radius) following
their respective waypoint paths as stiffness/damping
parameters are adjusted to satisfy mission time con-
straints. Numerical simulations show that the pro-
posed approach reduces mapping error when compared
to non-adaptive lawnmower coverage of a survey area.
The algorithm is demonstrated experimentally using
two cooperating autonomous surface vessels to map the
bathymetry in a section of Lake Norman near Char-
lotte, NC.

1 Introduction

Teams of robots equipped with sensors can coordi-
nate their actions to cover a large area and maximize
information gain using adaptive sampling (AS) algo-

rithms [1], also known as informative path planning
(IPP) [2]. Robotic sensor networks provide an auto-
mated, efficient, and scalable means to collect continu-
ous spatial data in applications such as precision agri-
culture, terrain mapping, and environmental monitor-
ing [3–7]. Adaptive sampling algorithms use a model
of the spatiotemporal process to assimilate measure-
ments and predict the underlying attribute of interest
in unsampled regions. Often the spatiotemporal distri-
bution of the attribute can be modeled as a Gaussian
Process (GP). A GP is a random process characterized
by a mean and a covariance function. GP regression
(known as kriging in the geosciences [8]) enables data-
driven estimation of a spatial attribute in unsampled
locations as a weighted linear combination of existing
measurements. Adaptive sampling algorithms that uti-
lize GP-based models of continuous spatial distribu-
tions have been widely studied, including for robotic
mapping of light intensity [7], water body salinity or
conductivity [4,9], temperature [5], terrain height [10],
chemical concentrations [11], and soil moisture [3]. The
main idea in AS/IPP is to allocate sampling trajecto-
ries to robots by periodically optimizing a performance
metric related to the quality of the estimated spatial
map of the attribute. In this way, robots can more
efficiently estimate a spatially distributed quantity of
interest, especially when there is not enough time to
perform a more exhaustive full coverage survey.

Our aim in this paper is to design and demon-
strate an adaptive sampling algorithm for heteroge-
neous robot teams that have continuous dynamics de-
scribed by ordinary differential equations (ODEs) and
to allocate sampling trajectories that are cognizant of
each robot’s differing dynamics and sensing capabili-
ties. In our method, we consider the precise path the
vehicle will follow and corresponding mission time as
a constraint. The agents may have differing dynam-
ics and measure the same attribute but with varying
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sensor quality (i.e., each robot’s sensor has differing
measurement noise variance). A Gaussian process re-
gression is proposed to efficiently handle this heteroge-
neous sensing scenario for a stationary, isotropic spatial
field. Then, an adaptive sampling algorithm is devel-
oped that iteratively simulates the motion of each robot
(with its heterogeneous dynamics) through a sequence
of path waypoints from the current time to the final
mission time to periodically replan the path. Samples
are obtained at a fixed time intervals along the path
and the sampling path is designed to minimize map-
ping error.

1.1 Contributions

The contributions of this paper are (1) an efficient
Gaussian process regression framework to fuse mea-
surements from multiple robots with heterogeneous
measurement noise using an adaptive truncation with
common data neighborhoods, (2) an adaptive sampling
approach that considers heterogeneous vehicle dynam-
ics and sensing to allocate sampling trajectories. The
approach is compared to non-adaptive lawnmower cov-
erage of a survey area through numerical Monte Carlo
simulations. The feasibility of the method is demon-
strated by a field experiment in which two autonomous
surface vessels adaptively map the bathymetry in a
subsection of a lake.

1.2 Organization

The paper is organized as follows. Section 1.3
presents related work. Section 2 introduces notation
and mathematical background on Gaussian process re-
gression and centroidal Voronoi tessellations. Section 3
formulates the optimization problem by describing the
robot dynamics, sensing, and the cost function and con-
straints. Section 4 proposes an efficient approach for
Gaussian process regression with heterogeneous mea-
surements. Section 5 describes the adaptive sampling
algorithm. Section 6 provides results from simulations.
Section 7 discusses a real-world demonstration of the
algorithm. The paper is concluded in Section 8.

1.3 Related Work

The following section highlights prior work related
to AS/IPP algorithms and compares and contrasts how
heterogeneity, vehicle dynamics, and spatial process es-
timation has been incorporated into prior problem for-
mulations. Various techniques used for optimizing the
sampling path and the relation of the proposed ap-
proach to prior work is discussed.

Heterogeneity Many prior works have focused on
AS/IPP for a single vehicle [3–5, 7, 10, 12–14] or a set
of homogeneous vehicles [9, 15–27]. When increasingly
larger teams of robots are considered communication
constraints [15, 28–30] and scalability [21, 31] must be
addressed. Heterogeneity arise when multiple vehicles
have differing platform dynamics and/or sensing capa-
bilities. In [28], vehicles with sensors that have vary-
ing fields of view are tasked with inferring the state
of an environment. In [32], agents use differing sensor
types to estimate a latent phenomena that is corre-
lated with the unique sensor measurements. In [33]
heterogeneous vehicles are equipped with unique sen-
sor suites and use a three-phase process to scan a re-
gion and identify points of interest. In [31] a general
framework to consider multiple heterogeneity criteria
(speed, battery life, terrain traversability, sensor type
etc.) is developed using a heterogeneity cost space to
leverage robot capabilities. Other examples of hetero-
geneity in the context of GP-based mapping include
AS/IPP while performing another task [34], for front
detection [35], and for symbiotic planning along a route
with a second supporting platform to conserve battery
life [36]. AS/IPP and mapping/exploration methods
that consider heterogeneity outside the context of GP
models of spatial fields include [28,37–40].

Models of Vehicle Dynamics To reduce complex-
ity, a common AS/IPP assumption is that the vehi-
cle moves along straight segments at a constant speed
without any turning dynamics [3–5, 7, 9, 12–14, 17, 19–
21, 25–27, 32]. Motion may be in arbitrary directions,
constrained to certain directions (e.g., in the four car-
dinal directions) [21], constrained between certain way-
points [32], or constrained to follow continuous paths
that are produced by the optimizer [15]. Ignoring ve-
hicle turn dynamics is well justified when the spatial
length scale of the survey is much larger than the length
scale of vehicle turning maneuvers. Vehicle low-level
controllers are assumed to adapt to any environment
factors (e.g., wind, current) and account for other dy-
namic model complexities. However, when operating
in more constrained environments, or when accurate
accounting of energy expenditure or time is critical, a
more sophisticated dynamic model may need to be in-
corporated into the planning process. A few authors
have developed algorithms that explicitly utilize an or-
dinary differential equation (ODE) model of the robot’s
motion. In [10] the motion of an autonomous sur-
face vessel is parametrized using a kinematic model
with speed and turn-rate constraints. In [28] continu-
ous time integrator dynamics are used to approximate
the motion of a quadrotor with a position controller



Ref. Multi-robot GP Heterog. Sensing Heterog. Motion Robot ODE Solution Type
Manjana et al. [21] x x – – – waypoint/discrete sequence
Malencia et al. [32] x x x (sensor type) – – waypoint/discrete sequence
Kathen et al. [33] x x x (sensor type) – – waypoint/discrete sequence
Salam et al. [40] x – x (sensor fidelity) x – waypoint/discrete sequence

Shi et al. [31] x x x (generalizable) x – coverage configuration
Zhang et al. [24] x x – – x continuous path
Tan et al. [10] – x – – x continuous path

Julian et al. [28] x – x (sensor FOV) – x continuous path
This paper x x x (sensor noise) x x continuous path

Table 1: Comparison of this paper to related work that considers heterogeneity and/or the ordinary differential equation (ODE)
describing the robot’s dynamics.

following waypoints. In [24], three-dimensional non-
holonomic rigid body underwater vehicle dynamics are
considered. Other works that, in principle, could incor-
porate vehicle dynamics include [22,23] using B-splines,
or [14,41] using the steering subroutine of a sampling-
based motion planning algorithm.

Estimation approaches GP regression and hyper-
parameter optimization is widely used to estimate a
spatiotemporal process of interest from noisy measure-
ments [5, 7, 9, 10, 13, 16, 17, 19, 20] [23–25]. GP re-
gression has been adapted to consider special cases,
such as localization uncertainty [11], distributed esti-
mation [42], correlation among several distinct mea-
sured quantities and a latent process [32], mixtures of
GP models [26, 31], and when the variance depends
on the measurement itself [3]. However, one draw-
back of GP regression (especially for robotic systems
with limited onboard computation) is that the time-
complexity is O(N3) [43, ch.8] where N is the number
of samples. To address this challenge GP-based adap-
tive sampling algorithms with an iterated covariance
update [13], truncated measurements [15], and fixed-
complexity [44] have been proposed. Other approaches
for improving scalability use global or local approxima-
tions such as sparse GPs [24, 45]. Sparse GPs reduce
the computational burden and can account for time-
varying environments by periodically re-estimating the
hyperparameters [4] and can be used for streaming
data [22] and distributed data [18].

Non-GP-based approaches have also been adopted
to model spatiotemporal processes for adaptive sam-
pling, for example, using Kalman filters to estimate
the weights of a set of basis functions [16, 41] or using
sequential Bayesian filters [28]. In the absence of a spa-
tiotmeporal process model and estimation method, ex-
haustive or partial coverage paths techniques that con-
sider energy limitations of the robotic team [12,46,47]
can be used for information gathering.

Optimization Problem Formulation and Ap-
proach Prior work has considered numerous opti-
mization objectives and techniques. When the plan-
ning space is sufficiently small each candidate sampling
location can be evaluated to identify the optimal ac-
tion at each iteration [3,5,7,32,32]. In [5] an objective
function balances reduction in variance and gradient
intensity and searches a waypoint graph to determine
the next best survey line. In [7], Bayesian optimiza-
tion selects the best sampling location from a set using
a metric that balances the mean and variance of pre-
diction with distance to travel. In [3] both greedy and
weighted randomized (Monte Carlo) selection criteria
are used to determine sampling points with high krig-
ing variance.

The adaptive sampling problem can also be formu-
lated as a combinatorial-optimization to visit a par-
ticular set of points in an optimal sequence. In [36],
prior knowledge is used to identify potentially misla-
beled (PML) points and a variant of a traveling sales-
person problem (TSP) is formulated to visit either all
of the points or maximizing the number of PML points
visited subject to energy constraints. In [4] the sam-
pling locations are chosen from a pre-defined grid to
maximize mutual information using the predicted mean
and variance at each sample location. In [22] the in-
ducing points of a sparse GP are used as waypoints to
formulate an assignment problem.

Gradient-following techniques have also been inves-
tigated to maximize mutual information [28], balance
energy expenditure with minimizing error variances at
target positions [16], to minimize the average of the
prediction error variances at target positions [15], or
to minimize the posterior entropy after making a new
observation [13]. Greedy approximations that lever-
age spatial decompositions have also been propoed to
optimize mutual information [9] or to optimize con-
dition entropy [17]. Receding horizon cross-entropy
trajectory optimization has investigated to maximize
an upper confidence bound [10]. Techniques that
use coverage control and geometric optimization (e.g.,



Voronoi partitions) have also been applied [17–19, 26].
Other methods include using Markov Decision Process
(MDP) [21] with a policy gradient algorithm to max-
imize the accumulated reward derived from a spatial
adaptive scoremap, reinforcement learning to reduce
uncertainty balanced with trajectory cost [20], evolu-
tionary algorithms [23, 24], and sampling-based meth-
ods [14,41].

Relation of Proposed Approach to Prior Work
Table 1 highlights several prior works that have in-
vestigated AS/IPP algorithms that consider (1) het-
erogeneous vehicle motion and sensing, and (2) differ-
ential constraints governing vehicle motion, and (3)
time or energy constraints computed by considering
the full continuous path motion of the robotic sys-
tem. However, to our knowledge, no prior work con-
siders all three aspects simultaneously. This paper
contributes to the literature and methodologies avail-
able to tackle such problems. Specifically, our paper
builds on the work in [12], which is an offline plan-
ning method for a single-vehicle to maximize cover-
age with energy-constrained robots. Our approach ex-
tends [12] to a multi-robot framework that considers
vehicle dynamics. We adopt the mass-spring-damper
architecture used for waypoint position tuning in [12]
and extend it into an adaptive framework that involves
GP estimation and periodic adaptation and path re-
planning. Rather than using a standard Voronoi dia-
gram as in [12], our method uses a centroidal Voronoi
partition with a time-varying surface (that changes as
measurements are assimilated) to represent sampling
priority and identify high-value sampling locations that
attract path waypoints. Moreover, the process of tun-
ing spring and damper constants in [12] is extended
to allow for satisfying a mission time constraint com-
puted for the continuous dynamics of each robot. To
our knowledge this paper is the first to make a con-
nection between the two geostatistical techniques of
Common Data Neighborhoods (CDN) [48] and hetero-
geneous measurement-error filtered kriging (HFK) [49]
with robotic informative path planning.

2 Background

This section introduces notation used throughout
the paper and relevant background, including: Gaus-
sian spatial processes, ordinary and heterogeneous
filtered-error kriging, and centroidal Voronoi tessella-
tions.

2.1 Gaussian Spatial Processes

A Gaussian process (GP) is a infinite collection of
joint random variables [50] from which any finite subset
have a joint Gaussian distribution. A GP is denoted
by [43]

Z(x) ∼ GP(µ(x), k(x,x′)) , (1)

where the collection of random variables Z(x) have a
mean function µ(x) = E[Z(x)] and covariance function
(or kernel) k(x,x′) = E[(Z(x)−µ(x))(Z(x′)−µ(x′))],
E[·] is the expected value of a random variable, and
x,x′ ∈ Rn are two locations in the input space (e.g., a
spatial domain). Gaussian processes that are second-
order stationary have a constant mean µ(x) = m and
a covariance function between points x and x′ = x+h
that is invariant under translation [8, 49]

k(x,x+ h) = E[(Z(x)−m)(Z(x+ h)−m)] = k(h) ,
(2)

where h is known as the lag beween two points x and
x′. Covariance functions describe the mount of varia-
tion of the process and the degree to which two points
in the spatial process are related (i.e., the smoothness
of the process). This paper uses the isotropic Gaussian
covariance function

k(h) = σ2
0e
−3(||h||ω−1)2 (3)

where σ2
0 is the overall variance of the process and ω

is the length-scale of the GP. The factor of three in
the exponent of (3) ensures that covariance function is
0.05σ2

0 when ||h|| = ω, a standard feature in kriging
for geosciences [8, p.78].

When sampling a real-world scalar field, the covari-
ance function of the model is generally unknown and
must be estimated. Often the covariance function is
substituted with the semivariogram, γ, which is a mea-
sure of dissimilarity of measurements with spatial dis-
tance [8]. For GPs which are second-order stationary,
the covariance and semivariogram are related by [8]

γ(h) = k(0)− k(h) . (4)

The semivariogram can be estimated by fitting a curve
to a scatter-plot of the average variation in measure-
ments over a given distance [8]. The fit curve is termed
the experimental semivariogram, γ̂(h).

2.2 Ordinary Kriging

Gaussian processes can be conditioned on prior mea-
surements to make predictions at unsampled points of
interest. A type of GP regression developed for use



in geostatistics is known as ordinary kriging [8]. Ordi-
nary kriging is referred to as a Best, Linear Unbiased
Estimator (BLUE) because it minimizes mean square
error using a weighted combination of measurements
for each estimate. Let Z(X) = [z1, . . . , zM ]T be a vec-
tor of noise-free measurements of the random function
Z(x) at spatial locationsX = {xi | i = {1, 2, . . . ,M}}.
The optimal weights in ordinary kriging, λOK, and the
Lagrange multiplier, µOK, for a desired a prediction
point, x0, are [49]

[
λOK

µOK

]
=

[
Γ̂(X)Z 1

1T 0

]−1 [
γ̂(X,x0)

1

]
, (5)

where the elements of the semivariogram vector
γ̂(X,x0) ∈ RM×1 are γ̂(X,x0)i = γ̂(||xi − x0||),
1 ∈ RM×1 is a column of ones, and the semivariogram
matrix Γ̂(X) ∈ RM×M has elements [49]

Γ̂(X)ij = γ̂(||xi − xj ||) (6)

for xi,xj ∈ X. The estimate and variance of the esti-
mation error at the prediction point x0 are [49]

ẐOK(x0) = λT
OKZ(X) (7)

σ2
OK(x0) = λT

OKγ̂(X,x0) + µOK , (8)

respectively. This estimation can be repeated for vari-
ous spatial locations to produce an estimate of the un-
derlying GP. Figure 1 shows the result of kriging over
a set of uniformly spaced grid of prediction points.

2.3 Heterogeneous Error Filtered Kriging

Ordinary kriging is an exact interpolator in the sense
that the prediction at sampled points is exactly equal
to the measurement observed at that sample point [49].
However, when the measurements are corrupted by
noise the filtered Kriging approach is used to produce
a smoothed prediction of the measurement-error-free
value of the process [49]. Heterogeneous measurement-
error filtered kriging (HFK) extends ordinary kriging to
the case of site-specific measurement error with known
variance [49]. Let

Z̃(xi) = Z(xi) + ε(xi) , (9)

represent the noise-corrupted measurement of the at-
tribute Z at location xi where ε(xi) is the realization
of a zero-mean Gaussian random variable with site-
specific measurement noise variance σ2

η(xi). The vec-
tor of noise-corrupted measurements obtained at loca-
tions X according to (9) is Z̃(X). This site-specificity

Figure 1: Two-dimensional field estimation using ordinary krig-
ing. The surface representing Z(x) is characterized by a covari-
ance function (3) with θ = [ζ, ω, σ2

0 ]T = [0, 0.3, 1]T and with
a mean µ = 5. A total of 20 measurements, represented by the
red projections from the surface to the x1-x2-plane, are the mea-
surements. The coloring on the x1-x2-plane indicates estimation
variance; the darker the color, the lower the relative variance. At
locations where measurements were taken, the variance equals
zero since the measurements are noise-free.

will be leveraged to account for heterogeneity among
robots in Sec. 4. Christensen [49] proposed to account
for noisy measurements (9) using the HFK estimator

ẐHFK(x0) = λT
HFKZ̃(X) (10)

σ̂2
HFK(x0) = γ̃TλHFK(X,x0) + µHFK , (11)

where the optimal kriging weights, λHFK, and La-
grange multiplier, µHFK, are found from[

λHFK

µHFK

]
=

[
Γ̃(X) 1

1T 0

]−1 [
γ̃(X,x0)

1

]
. (12)

In (12), Γ̃(X) and γ̃(X,x0) are augmented semivari-
ogram matrices and vectors, respectively. The matrix
Γ̃(X) is defined by augmenting (6) with the average
site-specific variance along off-diagonal elements [49]

Γ̃(X)ij = γ̂∗(||xi−xj ||)+(1−δ||hij ||)
σ2
η(xi) + σ2

η(xj)

2
,

(13)
where δ||h|| = 1 when ||h|| = 0, and δ||h|| = 0 other-
wise, and γ̃(X,x0) is defined by augmenting the ith
element of the semivariogram vector with half the site-
specific variance of the measurement [49]

γ̃(X,x0)i = γ̂∗(||xi − x0||) +
σ2
η(xi)

2
. (14)

In (13) and (14), γ̂∗ refers to the estimated semivar-
iogram of the noise-free process γ̂∗. In practice, the



noisy observations Z̃ are used to estimate the semivar-
iogram γ̂ of the noise-corrupted process and a nugget
term ζ is used to account for a discontinuity in the
covariance function at h = 0 to model micro-scale
variation/sensor measurement error [50]. The semivar-
iogram model used here follows from (3) and (4) with
the addition of a nugget term

γ̂(||h||;θ) = ζ(1− δ||h||) + σ2
0

(
1− e−3(||h||ω−1)2

)
,

(15)
and the vector of hyper-parameters is θ = [ζ, ω, σ2

0 ]T.
In [49] it is proposed that the noise-free estimated semi-
variogram γ̂∗ can be obtained from the noise-corrupted
estimated semivariogram γ̂ by subtracting the aver-
age of the measurement-error variance across all M
sampling locations from the nugget estimated using
the noisy measurements [49], i.e., γ̂∗(||xi − xj ||) =
γ̂
(
||xi − xj ||; ζ∗, ω, σ2

0

)
where

ζ∗ = − 1

M

M∑
k=1

σ2
η(xk) . (16)

2.4 Centroidal Voronoi Tesselations

This work uses centroidal Voronoi tessellations
(CVTs) to identify high-value sampling locations. Re-
call that a standard Voronoi tessellation (VT) parti-
tions a planar region, Q ⊂ R2, into a set contain-
ing k non-intersecting polygonal cells, {Vi}ki=1, whose
union equals Q. Given a set of generating points
{gi}ki=1 ∈ Qk, the Voronoi cell Vi is the set of points
within Q that are closer to the cell’s generating point,
gi, than any other generating point [51]:

Vi = {x ∈ Q | ||x− gi|| ≤ ||x− gj ||} (17)

for all j = {1, 2, . . . , k} with j 6= i. When a density
function is defined over the domain ρ : Q → R, each
cell has a mass and center of mass

MVi
=

∫
x∈Vi

ρ(x)dx and cVi
=

1

MVi

∫
x∈Vi

x ρ(x)dx ,

(18)

respectively. CVTs [51] are variants of VTs in which
the generating points of the VT are co-located with the
associated cell’s centroid (i.e., gi = cVi

). In this work,
(18) is discretized by replacing the integrals with sum-
mations over a uniform grid, and the CVT is computed
using a variant of Lloyd’s method [52].

3 Problem Formulation

This section describes the robot dynamics and sens-
ing and formulates the cost function and optimization
problem of the paper.

3.1 Heterogeneous Agent Dynamics

Consider a set of N robots with heterogeneous dy-
namics. Each robot is modeled as a differential thrust
autonomous surface vessels with equations of motion

ẍi =
1

mi
{[ur + ul] cos(θi)− biẋi}

ÿi =
1

mi
{[ur + ul] sin(θi)− biẏi}

θ̈i =
Li
2Ii

(ur − ul) ,

(19)

where (xi, yi) ∈ R2 is the planar position relative to
a fixed inertial reference frame with origin O and or-
thonormal basic vectors {i1, i2, i3} and θi ∈ [0, 2π)
is the heading (see Fig. 2) for the ith robot with
i ∈ {1, 2, . . . , N}. This choice of dynamics is moti-
vated by our experimental work (see Sec. 7) but it
can be generalized to other vehicle models. In (19),
mi is the mass, Ii is the rotational inertia, Li is the
distance between thrusters, and bi is a damping co-
efficient (i.e., linear drag) of the ith robot. The left
and right thruster forces, ul and ur, respectively, are
bounded: ul, ur ∈ [umin, umax] where umin and umax

are a minimum and maximum thrust force. The ith
robot follows a reference path consisting of a set of
waypoints Wi = {wi,1,wi,2, . . . ,wi,Nw

} where wi,j ∈
Q for all j = {1, 2, . . . , Nw} and Nw is the num-
ber of waypoints in the path. For a given waypoint,
wi,j = (xw, yw) ∈ Wi, the homing guidance law
θd = atan2(yw − yi, xw − xi) gives a desired heading
and the thrusters are commanded according to

ul = sat(δv − δθ; 0, umax)

ur = sat(δv + δθ; 0, umax) ,
(20)

where δv and δθ are the outputs of PID controllers
tracking a desired speed vd and the desired heading θd,
respectively, and sat(κ; al, ah) is the saturation func-
tion that bounds an argument κ between a lower bound
al and upper bound ah such that al ≤ κ ≤ ah. Once
the position of the ith robot is sufficiently close to the
jth waypoint, ||[xi, yi]T − wi,j || ≤ Rc, where Rc ∈ R
is a capture radius, the next waypoint in the sequence
becomes active by incrementing j. The closed-loop dy-
namics of the ith robot can be summarized as

ṡi = fi(si,ui(si);Wi) , (21)

where si = [xi, yi, θi, ẋi, ẏi, θ̇i]
T ∈ R2 × [0, 2π) × R3

is the state of the system (19) rewritten in first-order
form and ui(si) is the guidance and control law (20).



Figure 2: The ith robot is modeled as a differential thrust vehicle.
The desired heading angle θd points the vehicle towards waypoint
wj . Once robot’s position (x, y) is within a capture radius Rc of
the waypoint the next waypoint in the sequence becomes active.

3.2 Heterogeneous Agent Sensing

The team of N robots can have differing measure-
ment noise variance (e.g., due to differing sensors or
signal processing instrumentation). The measurement
noise variance for each robot σ2

i,η = E[(Z − Z̃)2] char-
acterizes the expected difference between the true and
measured values of the observed scalar field according
to (9). The robots are assumed to be in constant com-
munication with a centralized base station.

3.3 Cost Function

Given a waypoint list Wi, initial conditions si(t0), a
sensing time interval Ts, the closed-loop dynamics (21),
and a maximum mission time Tm, the map

φi(Wi; si(t0), t0, Tm, Ts) = [qi,1, qi,2, . . . , qi,M ] (22)

returns the ith robot’s sampling locations arranged
as columns of a matrix in chronological order where
qi,j ∈ Q for all j = {1, 2, . . . ,M}. During optimiza-
tion, these sampling locations φi are obtained by nu-
merically simulating the robotic team. Let the matrix
X ∈ R2N×M denote the stacked set of sampling loca-
tions across all robots at the end of the mission

X(W ) = [φ1(W1)T, φ2(W2)T, . . . , φN (WN )T]T .
(23)

The corresponding measurements made at each loca-
tion in X are denoted Z̃ ∈ RN×M .

The goal of the adaptive sampling algorithm is to
design waypoint paths for each robot to collectively
minimize the mapping error (ME)

ME(X, Z̃) =
1

|P|

|P|∑
i=1

|Ẑ(pi)− Z(pi)| , (24)

which is the average difference between the estimated
field Ẑ and the true field Z across |P| grid points

at which the spatial process is estimated. We con-
sider P = {p1,p2, . . . ,pm·n} to be a uniform grid
with m columns and n rows where pi ∈ Q for all
i = {1, 2, . . . ,m · n}.

3.4 Problem Statement

The optimization problem is to find the set of way-
points W ∗ that minimize the mapping error:

arg min
W

ME(X(W ), Z̃) (25a)

subject to ṡi = fi(si,ui(si);Wi), (25b)

si(t0) = (si)0, (25c)

umin ≤ ui(si) ≤ umax, (25d)

T (wi,Nw
) ≤ Tm for all i = 1, . . . , N, ,

(25e)

Z̃(xj) = Z(xj) + ε(xj), (25f)

for all xj ∈X(W .)

The cost (25) depends on the sampling locations X
which are, in turn, determined by the waypoints W
to be optimized. Heterogeneity in dynamics is encap-
sulated by the equations of motion (25b), the initial
conditions (25c), and the minimum/maximum thrust
input constraints (25d). The mission time constraint
is encoded by (25e) so that the estimated capture time
of the final mission waypoint is less than or equal to
the desired total mission time. In (25e) the function
T (wi,j) = ψ(wi,j ;Wi, si(t0), t0) denotes the time when
robot i reaches its jth waypoint given its list of way-
points and the initial state. The variation between
robots’ sensing capability is described by (25f) which
implicitly assumes robot-dependent measurement noise
variance, as described in Sec. 3.2.

The above optimization problem is addressed in two
parts. First, a method for Gaussian process regres-
sion is introduced in Sec. 4 that uses the measurements
(25f) to allow predicting the GP over the grid of points
P. Next, Sec. 5 describes the adaptive sampling al-
gorithm to find waypoint paths that aim to produce
paths with low mapping error (25). Path optimization
is performed by a centralized base station.

4 Efficient Gaussian Process Regres-
sion

In this section, a modified kriging approach is pro-
posed to account for robots with heterogeneous mea-
surement noise variance and to improve computational
efficiency.



4.1 Filtered Kriging with Heterogeneous Sensors

Consider a robotic sensor network of N robots that
measure a spatial attribute Z with heterogeneous mea-
surement variance σ2

η,i for i = 1, . . . , N . This work pro-
poses to specialize heterogeneous filtered kriging (HFK,
see Section 2.3) to the case of heterogeneous sensing
robots by replacing the site-specific measurement vari-
ance with a robot-specific one. Suppose that each robot
collects measurements at the same sampling rate and
begins to sample at the same time. The total number
of measurements from each robot is equal and all mea-
surements taken from all robots are used to populate
the set Z̃. An indicator function, β(x), is defined that
returns the measurement variance σ2

η associated with
the robot that took the measurement at x, assuming
no two samples are co-located. Thus, (13) and (14)
become

Γ̃(X)ij = γ̂∗(||xi − xj ||) + (1− δ||hij ||)
β(xi) + β(xj)

2
(26)

γ̃(X,x0)i = γ̂∗(||xi − x0||) +
β(xi)

2
, (27)

while (16) becomes

γ̂Z(xi,xj) = γ̂Z̃

(
xi,xj ; ζZ̃ −

1

N

N∑
i=1

σ2
η,i, ω, σ

2
0

)
.

(28)

4.2 Adaptive Spatial Truncation

The time complexity of kriging is dominated by the
inversion of the semivariogram matrix in (5) or (12).
To improve efficiency, spatial truncation can be used
to reduce the size of this matrix by considering only
nearby measurements with strong correlations to an es-
timation point and rejecting measurements that have
little influence [8], [15]. Typical truncation methods
rely on geometric selector regions (squares, circles, etc.)
centered about an estimation point to capture rele-
vant measurements. This strategy is effective when
there is a sufficient number of measurements around
the estimation point [15]; however, it performs poorly
in sparsely sampled regions (e.g., at the start of a mis-
sion or near the boundary of the field).

To address these challenges, an adaptive method of
measurement truncation is proposed wherein a stan-
dard rectangular geometric selector is used if it con-
tains a threshold Mmin number of measurements, and
otherwise a nearest-neighbor selector is used to guar-
antee a minimum number of measurements (i.e., by

considering measurements outside the geometric se-
lector, if needed). The geometric selector is denoted
GR(x,X;wG, hG) = {xi ∈X | xi ∈ R(x;wG, hG)} for
all i = {1, 2, . . . ,M}, where R(x;w, h) ⊂ R2 denotes
a rectangular area centered on x = (si, sj) ∈ R2 with
width w and height h. The nearest-neighbor selector is
denoted GNN(x,X;Mmin) ⊂X and it selects the sub-
set of at most Mmin measurement locations that are
nearest-neighbors to x [53]. The adaptive selector is
then

G(x,X) =

{
GR(x,X;wG, hG) if |GR(x)| > Mmin

GNN(x,X;Mmin) if |GR(x)| ≤Mmin

,

(29)
where |GR(x)| is the number of measurements in the
geometric selector.

4.3 Common-Data-Neighborhoods (CDNs)

Spatial truncation reduces the size of matrices re-
quired for inversion during the estimation process.
However, it still requires inverting unique semivari-
ogram matrices for every point to be estimated (since
the geometric selector moves with the estimation
point). Given many points of interest, the computa-
tion time of inverting many truncated matrices may
exceed inverting the original (full measurement set)
semivariogram. To reduce the number of required
matrix inversions for kriging we modify the common
data neighborhood (CDN) approach proposed in [48].
A group of estimation points are assigned a common
semivariogram matrix based on nearby measurements
(i.e., a fixed adaptive selector is used for multiple
nearby estimation points). This approach is imple-
mented as follows. The set of common data neighbor-
hoods, D = {D1, . . . ,DND

}, is defined as a collection
of ND disjoint rectangular regions whose union cov-
ers the entire survey area Q. Each data neighborhood
Di = R(ni;wD, hD) is centered at a point ni ∈ R2

and is defined by a width wD and height hD. Let
Gi = G(ni,X;wG, hG,Mmin) be the adaptive selec-
tor (29) for data neighborhood Di, with wG ≥ wD and
hG ≥ hD.

4.4 Heterogeneous CDN Kriging

The proposed estimation approach combines HFK
specialized to heterogeneous robots, adaptive selectors,
and CDNs. Suppose that an estimation point lies with
the ith CDN, x0 ∈ Di. For all such estimation points,
the HFK estimator (12) is used with the modifications
(26)–(27) and a subset of measurementsX given by the
adaptive selector (29). Importantly, this same trun-
cated data set is used for all estimation points in Di
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Figure 3: Example of the proposed adaptive truncation strat-
egy with Mmin = 5. Black circles are grid points, and blue ‘x’s
are measurement locations. Two CDNs Di and Dj , centered on
grid points pi and pj , respectively, are highlighted in purple.
When estimating a point A in Di the corresponding rectangu-
lar selector contains more than Mmin measurements and these
measurements are used to define Γ̃ in (12). When estimating
a point B in Dj the nearest-neighbor selector is used to define

Γ̃ instead since insufficient measurements are located within the
corresponding rectangular selector.

and hence the inversion in (12) need only occur once
per neighborhood. The kriging weights and Lagrange
multiplier for the point x0 ∈ Di are[
λHC

µHC

]
=

[
Γ̃(G(ni,X)) 1

1T 0

]−1 [
γ̃(G(ni,X),x0)

1

]
,

(30)
and the estimate and variance are denoted with a sub-
script HC,

ẐHC(x0) = λT
HCZ̃(G(ni,X)) (31)

and

σ̂HC(x0) = γ̃TλHC(G(ni,X),x0) + µHC . (32)

This approach is amenable to parallelization and per-
mits a trade-off between computational efficiency and
accuracy by adjusting the minimum number of consid-
ered measurements, Mmin, the dimensions of the com-
mon data/search neighborhoods, wD, hD, wG, hG.

4.5 Numerical Comparison

The heterogeneous, common-data-neighborhood
kriging (HC) estimator was compared through numer-
ical simulations to a HFK estimation [49] (without
adaptive selectors or CDNs) and to ordinary kriging.
The simulations consisted of generating a GP within a
normalized domain Q = [0, 1]2 using hyper-parameters
θ = [ζ, ω, σ2

0 ]T = [0, 0.3, 1]T. Measurement loca-
tions were randomly selected and the measurements
were polluted with noise according to (9). For half

of the measurements, σ2
η,1 = 0.1, for the other half,

σ2
η,2 = 0.5 to represent data collection by heteroge-

neous robots with different quality sensors. The noisy
measurements were processed by the HC estimator
with hD = wD = 0.5ω, hG = wG = ω and Mmin = 20.
The same measurements were also used to estimate the
field with HFK and OK using a naive approach for
nugget selection: ζ = (0.1 + 0.5)/2.

The estimate was computed over one hundred
unique realizations of the GP. For each realization,
each method (HFK, HC, ordinary kriging) was used
with 500, 1000, and 2000 measurements and the mean
ME (24) and computation time were recorded. The
results are shown in Fig. 4. An approximately ten-fold
computation time savings was achieved when compar-
ing HC to HFK and ordinary kriging. Also, HFK with
heterogeneous measurement noise variance is superior
to the naive approach of adjusting the nugget when us-
ing ordinary kriging. The accuracy reduction with HC
compared to HFK is minimal. Note that accuracy did
not improve with increased number of measurements
for ordinary kriging—this is due to numerical instabil-
ities in inverting large matrices, an effect which is pro-
nounced where measurement noise is not considered.
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Figure 4: A comparison between mapping error and computation
time for three kriging methods. Error bars indicate one standard
deviation.

5 Adaptive Sampling Algorithm

Since the actual realization of the field Z(x) is not
known to the robots, the mapping error (24) cannot
be computed online for path planning. Moreover, on-
line optimization of (25) for adaptive sampling is in-
tractable due to high-dimensionality of the waypoint
decision space and the nonlinear and differential con-
straints. Instead, we propose to use a surface of sam-



pling priority

J (X, Z̃;p, α) = [α+ σ2(X;p)] · |Ẑ(X, Z̃;p)| , (33)

to guide the allocation of waypoints. Equation (33) is
evaluated over the grid of points p ∈ P to give a time-
varying surface that depends on the measurements Z̃
and corresponding sample locations X that accumu-
late during the mission. We hypothesize that by allo-
cating waypoints where sampling priority (33) is high
a low cost (24) can be achieved. The sampling prior-
ity (33) includes a constant parameter α ≥ 0 and is a
function of the uncertainty σ2 and the estimated value
Ẑ at a point p computed using a GP regression, such
as (31)–(32). The term [α + σ2(X;p)] assigns a high
priority to unexplored areas where the uncertainty is
large. Multiplying by the estimate |Ẑ| scales the pri-
ority in areas that are uncertain and are predicted to
deviate significantly from the field mean (i.e., peaks or
valleys). Equation (33) assumes a zero-mean process
but it can be modified to account for a known or esti-
mated mean. The constant parameter α prevents the
point-wise priority from reaching zero in regions that
have already been sampled. Thus, α can be used as
a tuning parameter to balance exploring new regions
with returning to previously visited locations.

5.1 Algorithm Overview

The adaptive sampling algorithm proposed extends
the Voronoi-based path generation approach in [12] to
consider robots with heterogeneous sensing, heteroge-
neous dynamics, and mission time constraints. As the
mission proceeds, a centroidal Voronoi tesselation al-
gorithm periodically partitions the time-varying sam-
pling priority surface to identify high-value sampling
locations. The path for each robot is modeled as an
mechanical system: a sequence of masses (waypoints)
are interconnected by springs and dampers and pulled
towards Voronoi cell centroids (see Fig. 5). At each
path planning cycle the robots are iteratively simu-
lated following their respective waypoint paths as stiff-
ness/damping parameters are adjusted to satisfy mis-
sion time constraints under the robots’ heterogeneous
dynamics. A detailed implementation of the algorithm
is described below.

5.2 Algorithm Detailed Implementation

Algorithm 1 begins with the initialization of N ·Nw
unique waypoints W within the sample space Q [A1.2]
(e.g., using a nominal lawnmower coverage path for
each robot). This waypoint set is then discretized into

Figure 5: A constrained CVT of three waypoints visualized as
gray circles with mass m and associated capture radius. Voronoi
cells are defined by (17). Centroids are depicted as blue circles.
The time-varying sampling priority surface is indicated by the
contour plot with warmer colors representing regions of higher
priority. Pairs of adjacent waypoints are connected by a spring
with stiffness kp and a damper with damping coefficient b. Way-
points are connected to their associated centroids with spring
constant, kc, and a damper. A dynamically feasible trajectory
through the waypoints set is shown in blue.

Nc planning cycles consisting of C = dNw/Nce way-
points per cycle [A1.3], where d·e denotes the ceiling
operator. The integer index g denotes the current cy-
cle. At each new planning cycle, recently acquired mea-
surements Z̃ at locations X are assimilated via a GP
regression (Sec. 4) from which the sampling priority
surface (33) is evaluated point-wise (at each grid point
in P) [A1.5] and arranged as a matrix

J =

J (X, Z̃;p1,1, α) . . . J (X, Z̃;p1,n, α)
...

. . .
...

J (X, Z̃;pm,1, α) . . . J (X, Z̃;pm,n, α)

 ,

(34)
where pi,j is the grid point associated with the ith row
and the jth column. For the first iteration, when no
measurements have been performed, the priority at all
grid points is initialized to a non-zero constant. The
sampling priority matrix J is then passed, along with
the initialized waypoints W , to a modified centroidal
Voronoi path generation algorithm, mCVPG [A.2].

The mCVPG [A.2] algorithm select high-priority way-
points without considering the differential constraints
and mission time. The supplied initial waypoints W
are used as generating points, and mCVPG recursively
calculates the Voronoi tessellation [A2.3] to determine
Voronoi cell centroids (using J) until a convergence cri-
teria is met. At each iteration the waypoints W are
moved according to the dynamics of a mass-spring-
damper network. Waypoints are treated as having
equal mass m and are connected by springs to their
corresponding Voronoi cell centroid and to adjacent
waypoints in the path for each agent. Dampers are



Algorithm 1 Satisfying mission time constraint using
mCVPG with multiple robots

Require: 1
Require: T∆ ≥ 0 // mission time tolerance

Require: N // number of robots

Require: Nw // total num. waypoints in mission

Require: Nc // number of planning cycles

Require: γ0 // init. spring, damp. constants

Require: Q ⊂ R2 // survey area

Require: P // evaluation grid points set

Require: I // maximum iterations

Require: Is // maximum iterations for mCVPG

Require: {v̄i}Ni=1 // robots’ target speed

1: X ← ∅, Z̃ ← ∅ // initialize samples

2: W ← initializeWaypoints(N,Nw, Q)
3: C ← dNw/Nce // num. wpts per cycle

4: for g = {1, 2, . . . , Nc} do
5: J← evaluateCost(X, Z̃,P)
6: {γi}Ni=1 ← initSDs(γ0)
7: b← 0 // iteration counter

8: while b < I do
9: W ← mCVPG(W ;N, {γi}Ni=1, g, C, J, 10−4, Is)

10: for i = 1, . . . , N do
11: ti ← simulateAgent(Wi; si(T (wi,gC)), g, C, v̄i)
12: εi ← Tm − ti // sim. time error

13: if |εi| > T∆ then
14: γi ← updateSDs(εi, Tm,γi)
15: end if
16: end for
17: if |εi| ≤ T∆ for all i = 1, . . . , N then
18: break

19: end if
20: b← b+ 1
21: end while
22: (X, Z̃, tm)← collectData(W , N, g, C,X, Z̃)
23: Tm ← Tm − tm // remaining mission time

24: end for

placed alongside each spring to model energy dissipa-
tion as the system comes to a rest at an equilibrium
position. The values of the spring constants, dampers,
and relaxed spring length are uniform across a robot’s
path but differ between robots, γi = {kp,i, kc,i, bi, di}
for i = 1, . . . , N . The set of configuration parame-
ters is initialized at the beginning of each planning cy-
cle with user-defined values in initSDs [A1.6]. Fig-
ure 5 visualizes this spring-mass-damper system for a
series of three waypoints. Each waypoint, wi,j , exclud-
ing the first and last elements, has three linear spring
and damper connections: one to its previous neighbor
wi,j−1, one to its next neighbor (wi,j+1), and one to
its corresponding centroid (cVi,j

). The spring force ex-
erted upon the jth waypoint by its adjacent waypoints
is:

f
(p)
i,j = kp,i[(||ri,j−1||−di)r̂i,j−1+(||ri,j+1||−di)r̂i,j+1] ,

(35)
where ri,j±1 = wi,j −wi,j±1 is the vector distance be-
tween waypoint j and the next waypoint, (j + 1), or
the previous waypoint, (j − 1). The normalized dis-

Algorithm 2 Multi-robot centroidal Voronoi path
generation (mCVPG)

Require: {Wi}Ni=1 // waypoints

Require: N // number of robots

Require: {γi}Ni=1 // spring, damp. constants

Require: g // current cycle

Require: C // number of waypoints per cycle

Require: Jk // sampling priority surface

Require: η // stopping criteria

Require: Is // maximum iterations

1: b← 0 // iteration counter

2: while b < Is do
3: V ← voronoiTessellation({Wi}Ni=1)
4: cV ← voronoiMassCentroid(V, Jk)
5: for i = 1, . . . , N do
6: fi ← calcForce(Wi,γi, cV )
7: (Wi, Ẇi)← movePts(Wi,fi, g, C)
8: end for
9: if ||ẇi,j || ≤ η for all i = 1, . . . , N and j = 1, . . . , Nw

then
10: break // waypoints converged

11: end if
12: b← b+ 1
13: end while
14: return {Wi}Ni=1 // updated waypoints

tance vector is r̂i,p = ri,p/||ri,p||, di is the spring’s
unstretched length, and kp,i is a spring constant. The
relaxed spring length is updated prior to each plan-
ning cycle to be di = 0.5v̄i(Tm−T (wi,gC))/(Nw−gC),
where v̄i is the ith robot’s target speed. This relaxed
spring length heuristic divides the expected distance
robot i will travel in the remaining time Tm−T (wi,gC)
by the number of remaining waypoints. The remaining
Nw − gC are then equally spaced along the remain-
ing path. The force exerted on the jth waypoint by

its centroid is f
(c)
i,j = kci(cVi,j − wi,j) where kci is a

nominal constant for the centroidal attracting spring
force stiffness. Additionally, the linear damping force

is f
(b)
i,j = −biẇi,j where wi,j is the velocity of the way-

point. The total force [A2.6] acting on wi,j is

f i,j = f
(p)
i,j + f

(c)
i,j + +f

(b)
i,j . (36)

The equation of motion for waypoint wi,j with mass
m is then ẅi,j = fi,j/m. The function movePts per-
forms Euler integration to determine the new position
of each waypoint given the associated total force (36).
Waypoints that have already been visited during the
mission no longer need updating. Thus, if a waypoint
is associated with a future cycle, i.e., the waypoint in-
dex is greater than gC, the position is updated and the
velocity is recorded. Otherwise, the waypoint is frozen
and the associated velocity is zero [A2.7]. The sys-
tem is numerically integrated until the speed of each
waypoint is below a desired threshold, η [A2.9] or a
maximum number of iterations is reached [A2.2].



Once mCVPG has returned an updated set of way-
points each robot is simulated moving through its re-
maining waypoints from its current state [A1.11] and
the estimated time to traverse all remaining waypoints
is computed. This simulation time, ti, is compared
with the remaining mission time [A1.13]. If the differ-
ence exceeds the user defined mission time tolerance,
T∆, the spring-mass-damper system parameters are up-
dated (i.e., stiffness between waypoints and Voronoi
centroids is increased when the simulated mission time
is less than required and decreased otherwise). In prac-
tice, a buffer E records the mission time error from
previous iterations for each robot [A1.12]. Let max(Ei)
be the maximum mission time error for the ith robot.
Similar to [12], the spring stiffness is updated for the
next optimization iteration as

kc,i ←


kc,i

(
εi

max(Ei)
+ 1
)

if ti + T∆ < Tm

kc,i

(
εi

max(Ei)
+ 1
)−1

if ti − T∆ > Tm

kc,i if |ti − Tm| ≤ T∆

.

(37)
and the damping coefficient for the ith robot as bi =
0.5
√

max(kp,i, kc,i) [A1.14]. The optimization loop
[A1.8−21] runs, calculating a new constrained CVT so-
lution with updated parameters during each optimiza-
tion step, until the simulated mission time for all robots
is met. A maximum number of iterations of this outer
loop optimization is enforced [A1.8]. Once the opti-
mized waypoints are found, the robots execute them
and the process repeats at the next planning cycle. To
account for any discrepencies between simulated and
actual mission time (relevant during real-world exper-
iments), the time elapsed since the previous planning
cycle is reported and the remaining mission time is up-
dated [A1.23].

6 Simulation Study

A Monte Carlo simulation was designed to compare
performance of the adaptive sampling algorithm to a
non-adaptive lawnmower survey. The Monte Carlo
simulation tested 30 unique GP realization for each
combination of parameters listed in Table 2, resulting
in 3,600 simulations. Each GP realization was con-
structed using θ = [ζ, ω, σ2

0 ]T = [0, ωt, 1]T as the
hyper-parameters where ωt is a selected entry from
Table 2. The HC estimation parameters used were:
wD = hD = 0.5ω, wG = hG = 1.5ω and Mmin = 10.

Each trial compared mapping error (24) for an adap-
tive and a non-adaptive/control pair of robots. First,
the path of the control robots was planned by des-
ignating one of them the leader and assigned them

Parameter Symbol Value
Number of robots N 2

Agent speed v {0.01, 0.02, 0.04} LU/s
Measurement noise σ2

η {0.0, 0.05, 0.15}
GP length-scale ωt {0.1, 0.2, 0.3, 0.5} LU

No. swaths for leader robot Nl {6, 7, 8, 9, 10}
No. planning horizons Nc 10

Table 2: Parameters used in Monte Carlo simulation. Simula-
tions were conducted using a length unit (LU) that resulted in a
survey area with unit width and height.

Leader

Follower

Waypoints

Swath Width

Figure 6: Example simulation scenario featuring a leader and
follower robot. The leader is assigned four swaths and the fol-
lower is assigned three. Paths are positioned within the field
for uniform coverage. The dark shaded regions depict already
surveyed regions of the field.

a target speed and number of swaths (see Fig. 6).
The waypoints were defined in terms of swath width,
cw = Qw/(Nl+ 1) where Qw is the width of the survey
field and Nl is the total number of swaths. The points
were then inset from the border by a distance cw/2.
The leader was simulated following its assigned way-
points and the total mission time was recorded. The
follower robot’s target speed was then iteratively ad-
justed to ensure that it achieved its final waypoint at
the same time as the leader. Once mapping error for
the control robots was quantified the adaptive robots
were simulated with an identical GP realization for that
trial and mapping error was recorded.

Figure 7 shows changes in mapping error for robots
with equal speed (0.1 LU/s) and for GPs with increas-
ing length-scale for both noisy and noise-free measure-
ment cases. In the case of noise-free measurements,
the adaptive algorithm exceeds the performance of the
lawnmower pattern in fields where the GP’s length-
scale is less than 50% of the the survey area’s length.
These corresponds to GP realizations with a high de-
gree of variability. As the GP length-scale approaches
50% of the survey area’s length, the adaptive algorithm
and lawnmower patterns converge to similar mapping
errors given that there is little variation in the pro-
cess to observe in the survey area. When comparing
the noisy measurements, the same trend exists but is



less pronounced. The smoothing effect of measurement
error filtered kriging adds difficulty to the estimation
process which makes path selection less efficient.

0.1 0.2 0.3 0.5
Lengthscale

0

0.1

0.2

0.3

0.4

0.5

0.6

M
ap

pi
ng

 E
rr

or

Noise-Free Adaptive
Noise-Free Non-Adaptive
Noisy Adaptive
Noisy Non-Adaptive

Figure 7: Monte Carlo simulation results given parameters spec-
ified in Table 2 compareing final mean mapping error over all
simulated length-scales when both robots’ speeds are 0.01 LU/s
and given no measurement noise variance (noise-free measure-
ments) and σ2

1,η = 0.15, σ2
2,η = 0.05 for measurement error case

(noisy measurements). Error bars indicate one standard devia-
tion.

Table 3 compares the simulation results for a small
GP length-scale (ω = 0.1) under different combinations
of heterogeneous dynamics and sensing. In all cases
the adaptive algorithm outperforms the non-adaptive
lawnmower strategy, although the advantage is great-
est in the case of heterogeneous dynamics with equal
sensing capabilities. Considering the error bars of the
simulation, the results suggest that the proposed ap-
proach leads to statistically significant improvements
in performance by effectively leveraging heterogeneous
sensing and heterogeneous dynamics.

Lastly, Fig. 8 illustrates the multi-robot sampling
trajectories that result from adaptive sampling algo-
rithm with heterogeneous robots. Figures 8a–8d are
the completed and planned trajectories and sampling
priority surface at different stages during the mission.

7 Experimental Demonstration

The adaptive sampling algorithm was deployed on
a pair of autonomous surface vessels (ASVs) mapping
bathymetry in a small section of a lake. This section
describes the ASV platforms, the collection of ground
truth data, and the experimental results.

7.1 Autonomous Surface Vessels

Two custom-built autonomous surface vessels were
used in the experiments. The control framework for
each ASV was run on an Intel NUC (10i7FNH) with

a 4.7GHz i7 CPU and 32GB of RAM. Communica-
tion between each robot and a ground station (Dell
Vostro Notebook 7500) used Wi-Fi and a 900 MHz
radio (RFD900+ modem) for communication. Each
robot was outfitted with a BlueRobotics Ping Sonar
capable of measuring depths up to 70 m. A pair of
14.8 V and 6000 mAh LiPo batteries provided up to
one hour of mission time per ASV. The mechanical,
electrical, and software design is detailed in [54].

7.2 Ground Truth Survey

Prior to adaptive sampling experiments, a survey
was conducted in an approximately 140 m x 140 m
small rectangular section of Lake Norman, NC to gen-
erate a ground truth map of the bathymetry. The sur-
vey consisted of lawnmower pattern with waypoints ar-
ranged to form eight swaths. Approximately 5,000 data
points were collected during the survey and a semivar-
iogram was fit to the binned data, as shown in Fig. 9.
The curve fit was used to determine the hyperparame-
ters θ = [ζ, ω, σ2

0 ]T = [0, 153 m, 7.27m2]T.

7.3 Experimental Demonstration

The ability of our algorithm to improve perfor-
mance under heterogeneous sensing and mobility was
illustrated in Sec.6 through simulation results. For
the experiment, the team was limited to using avail-
able equipment consisting of identical ASVs with the
same onboard sensors and propulsion system (see
Fig. 10a). The purpose of the experiments was there-
fore to demonstrate the technical feasibility of imple-
menting the algorithms onboard a real system and re-
port lessons learned in doing so, rather than to quanti-
fying performance under heterogeneity. Moreover, be-
cause of the limited variability of the bathymetry in
the survey area (i.e., a large length scale similar to the
rightmost comparison in Fig. 7) we expect the adap-
tive and non-adaptive algorithms to produce similar
mapping error.

Experimental trials were conducted in the previ-
ously surveyed operating region described in Sec. 7.2.
The adaptive sampling algorithm used the parameters
listed in Table 4. Several trials were conducted, each
lasting between 7-10 minutes. This paper discusses one
of the trials; further experimental details can be found
in [54].

Through testing the team discovered that several
modifications were needed to the estimation and adap-
tive sampling algorithms. To account for the computa-
tion time required during planning, the re-planning cy-
cle was modified to start early within each cycle. That



Cases
Dynamics Sensing

Results
Equal Hetero. Equal Hetero.

1 X X

1.08

1.05

1.41

1.16
2 X X

3 X X

4 X X

Table 3: Comparison of simulation results given all combinations of dynamics and measurement error variance. The bar graph indicates
ratio of the mapping error of the adaptive sampling mission to the control sampling mission. The red line represents parity, a ratio of
1:1. Simulations performed over a scalar field with σ2

0 = 1 and ω = 0.1. Ninety simulations split evenly among the discrete mission
classifications.

(a) (b) (c)

(d) (e) (f)

Figure 8: Examples of adaptive patterns given v=0.01 LU/s, Nl = 3, and ω = 0.2 given measurement noise σ2
1,η = 0.15 for the red

robot and σ2
2,η = 0.05 for the white robot. Panels (a)-(d) show the sampling priority surface and planned paths at different stages of

the mission along with the sampling priority surface. Panel (c) is the path of the control robots and Panel (f) is the actual field in this
example.

is, rather than waiting to complete all waypoints in the
current cycle re-planning started pr waypoints prior to
the next cycle. The first robot that reached this tar-
get triggered the computation on the ground station.
Although this strategy ignores some measurements ac-
quired near the end of each planning cycle, it allows
the ASVs to smoothly transition to updated trajecto-
ries. To compensate for a non-zero pr, the waypoints
remaining in the current cycle are left unmodified along
with all previously reached waypoints in the movePts

function [A1.7].

Given bandwidth limitations with multi-robot com-
munication, the sensing interval, Ts was set at 10 sec-
onds. The relatively low number of measurements jus-
tified the use of HFK estimation rather than HC esti-
mation. The measurement noise used for both robots
with HFK was σ2

η(x) = 0.005d(x) where d(x) is the
depth measured at spatial location x based upon the
manufacturer’s specifications [55].

The trajectories of the ASVs during the experiment
are shown in Fig. 10b. The ASVs were launched from
a nearby dock and traveled to their first waypoint (in-
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Figure 9: Experimental semivariogram computed using data
gathered during ground truth survey on Lake Norman, NC.

Parameter Symbol Value
Number of cycles Nc 4

Number of waypoints Nw 32
Number of waypoints per cycle C 8

Early re-planning offset pr 2
Sensing interval Ts 10 s

Measurement noise variance σ2
η Variable[1]

Mission time tolerance T∆ ±10 s

Table 4: Common mission parameters among missions. [1]
Site-specific measurement noise variance is 0.5% of mea-
sured depth [55]

dicated by a red marker). The mission time allowed for
three additional planning cycles. Figure 10c depicts the
samples that were collected and the resulting kriging
estimate computed using the estimated semivariogram
parameters (Fig. 9). The result compares favorably to
the actual bathymetry determined during the ground
truth survey (Fig. 10d) and to publicly available bathy-
metric maps of the corresponding region. During the
experiment, the path of the left-most agent deforms
from the nominal lawnmower pattern (used to initial-
ize the algorithm) at two locations: near the valley lo-
cated at (x, y) = (35 m, 100 m) and towards the peak
located at (x, y) = (120 m, 140m). The first upward
swath of the right-most agent maintains a near con-
stant spacing to the downward swath of the left-most
agent and is also pulled toward the peak located at
(x, y) = (120 m, 140m). During the second half of the
mission the right-most agent allocates sampling effort
in the central region of the space where the gradients
are large. The fact that the adaptive algorithm looks
similar to a lawnmower with small deviations at a few
points is not surprising and consistent with the sim-
ulation results that show the adaptive algorithm and
non-adaptive lawnmower perform similarly when sur-
vey area has limited variability. The adaptive sampling
algorithm is expected to be most effective in regions

that exhibit more variation. A survey over a much
larger portion of the lake with longer endurance/range
vehicles outfitted with different sensing and propulsion
equipment would be more favorable for illustrating our
approach experimentally.

8 Conclusion

This paper presented an approach for adaptive sam-
pling of a stationary, isotropic, Gaussian process with a
mobile sensor network consisting of robots with hetero-
geneous dynamics and varying measurement noise vari-
ance. A Gaussian process regression was proposed to
handle the heterogeneous noise variance and use com-
mon data neighborhood to reduce computational com-
plexity. This estimation procedure is combined with
an adaptive sampling algorithm to periodically replan
the trajectory of each robot to visit high priority sam-
pling regions and meet mission time constraints. The
proposed strategy was evaluated through a numerical
Monte Carlo simulations and real-world experiments.
The numerical simulations showed that the adaptive
sampling strategy substantially reduced mapping error
in comparison to a non-adaptive lawnmower survey.
The feasibility of the approach was demonstrated by
deployed the algorithm on a team of two ASVs to sur-
vey a small section of a lake.

Future work should consider optimizing the adap-
tive sampling algorithm to allow for efficient scaling
for a large number of robots in a decentralized frame-
work, sampling time-varying spatial processes, estima-
tion of hyperparameters on-the-fly, and/or simultane-
ous estimation of multiple spatial attributes that are
statistically correlated (i.e., cokriging with heteroge-
neous measurement types). Outdoor testing with dif-
ferent ASVs can allow for more extensive experimental
evaluation.
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