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Abstract

While grid-forming (GFM) technology has gained increased attention for voltage-source converters (VSC) connected to low-

inertial AC systems, there exists a gap in addressing their fault ride-through (FRT) capability under large grid disturbances.

Specifically, the challenge lies in resolving the resynchronization issue of GFM-VSCs under current-limitation mode without rely-

ing on a phase-locked loop (PLL). To bridge this gap, this article proposes a novel approach called direct current-synchronization

control (DCSC), which directly regulates the VSC current for synchronization. The validity of DCSC is substantiated by estab-

lishing equivalent relationships between current and power, as well as power and phase angle. Thus, achieving synchronization

by controlling the VSC phase angle is made possible through the direct control of the VSC current. The stability boundary of

DCSC is theoretically analyzed, concluding that DCSC has the same stability boundary as power synchronization control (PSC)

with reactive power regulation in continued normal operations but a 90-degree stability boundary under large grid disturbances,

irrespective of voltage magnitude. Additionally, boundary conditions for system stability assessment during large grid distur-

bances are established, and a control gain self-adaptability (CGSA) scheme is introduced to accelerate resynchronization after

faults. Therefore, the DCSC scheme exhibits identical control dynamics to PSC with reactive power regulation in continued

normal operations, while offering enhanced FRT performance under large grid disturbances. Experimental results validate the

theoretical findings, affirming the effectiveness of the proposed control method.
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Abstract—While grid-forming (GFM) technology has
gained increased attention for voltage-source converters
(VSC) connected to low-inertial AC systems, there exists a
gap in addressing their fault ride-through (FRT) capability
under large grid disturbances. Specifically, the challenge
lies in resolving the resynchronization issue of GFM-VSCs
under current-limitation mode without relying on a phase-
locked loop (PLL). To bridge this gap, this article proposes
a novel approach called direct current-synchronization con-
trol (DCSC), which directly regulates the VSC current for
synchronization. The validity of DCSC is substantiated by
establishing equivalent relationships between current and
power, as well as power and phase angle. Thus, achiev-
ing synchronization by controlling the VSC phase angle
is made possible through the direct control of the VSC
current. The stability boundary of DCSC is theoretically an-
alyzed, concluding that DCSC has the same stability bound-
ary as power-synchronization control (PSC) with reactive
power regulation in continued normal operations but a 90-
degree stability boundary under large grid disturbances,
irrespective of voltage magnitude. Additionally, boundary
conditions for system stability assessment during large
grid disturbances are established, and a control gain self-
adaptability (CGSA) scheme is introduced to accelerate
resynchronization after faults. Therefore, the DCSC scheme
exhibits identical control dynamics to PSC with reactive
power regulation in continued normal operations, while
offering enhanced FRT performance under large grid distur-
bances. Experimental results validate the theoretical find-
ings, affirming the effectiveness of the proposed control
method.

Index Terms—Grid-forming, voltage-source converters,
fault ride-through, synchronization, overcurrent protection,
stability boundary.

I. INTRODUCTION

W ITH the increasing integration of renewable energy
sources (RES), conventional grid-following (GFL)

controlled voltage-source converters (VSCs) are encountering
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instability issues as the power grid weakens, while grid-
forming (GFM) technology is deemed a more promising so-
lution for establishing a robust connection to a low-inertia AC
grid [1],[2]. Within the realm of GFM converters, various con-
trol schemes have been proposed, including droop control [3],
power-synchronization control (PSC) [4], virtual synchronous
machine [5], synchronverter [6], and synchronous power con-
troller [7]. However, existing research predominantly focuses
on GFM control under continued normal operating conditions,
the requirement for its fault ride-through (FRT) capability has
not been thoroughly analyzed in these studies. Due to current-
sensitive semiconductor devices, power-electronic-based VSCs
exhibit limited overcurrent capability compared to traditional
synchronous generators [8],[9]. Therefore, ensuring effective
overcurrent protection under fault conditions becomes crucial
for GFM converters. Besides, with the increasing installed
capacity, grid-tied VSCs must remain connected to a faulted
grid for a specified period, as required by various grid
codes [10],[11]. This necessitates their rapid resynchronization
ability with the faulted grid voltage. In essence, achieving
fast resynchronization while guaranteeing that the current
stays within a safety range emerges as the key requirement
for the FRT capability of GFM converters under large grid
disturbances.

To realize FRT capability, two aspects need attention: over-
current protection and resynchronization. Regarding overcur-
rent protection, three different current-limiting methods for
GFM inverters are reviewed in [12], including current limiter
[13], virtual impedance [14], and voltage limiter [15]. Among
them, the current limiter is the most intuitive and simplest for
achieving overcurrent protection because it directly acts on
current references. In contrast, the performance of the virtual
impedance is sensitive to grid impedance, and designing ap-
propriate control parameters for the voltage limiter applicable
to different operating conditions is challenging [12]. Concern-
ing the resynchronization of GFM converters with a faulted
grid voltage, a typical approach is to switch the control mode
from GFM to GFL when the grid fault occurs [16]. This
method utilizes a current limiter for overcurrent protection
and a phase-locked loop (PLL) for resynchronization [16].
However, extensive research has identified a poor stability
margin of the PLL in weak grid connections, particularly
during fault scenarios when obtaining the grid phase angle
becomes more challenging [17]-[19]. Moreover, the wind-up
issue of the integrator within control loops potentially worsens



transient performance during the fault recovery process [20].
Aside from the approach, [21] proposed a method to

synthetically modify converter power references according
to the faulted grid voltage, while [22] suggested directly
limiting the phase angle of the converter terminal voltage
instead of current references. These methods aim to artificially
create a stable equilibrium operating point during the fault,
ensuring the power-synchronization mechanism still remains
effective for resynchronization purposes. However, the method
in [21] requires detecting the faulted grid voltage to adjust
power references and involves switching power control loops
between normal and fault conditions. This switching process
may introduce transient disturbances and lack accuracy across
various fault scenarios. Furthermore, [22] still partly relies on
the PLL to acquire the phase angle of the voltage at the point
of common coupling (PCC).

As discussed above, employing a current limiter stands out
as the optimal approach for overcurrent protection. Simultane-
ously, it is advantageous for VSCs to maintain synchronization
with a low-inertial AC grid without depending on the PLL.
However, achieving these objectives presents a challenge for
conventional GFM converters, which predominantly rely on
power for synchronization [3]-[7]. This reliance can lead to a
loss of synchronization under large disturbances when current
references are restricted because the proportional relation
between active power and power angle is destroyed [22]. To
address this conflict, this article proposes a direct current-
synchronization control (DCSC) law that operates directly
on current for synchronization. The validity of this law is
established by establishing equivalent relationships between
current and power, as well as power and phase angle. Thus,
a direct correlation between the converter’s current and phase
angle is established. In other words, synchronization through
control of the VSC phase angle becomes feasible by directly
regulating the VSC output current. The key contributions of
this article are outlined below:

1) The control concept and structure of DCSC are proposed
to address the resynchronization issue of GFM converters
under current-limitation mode without utilizing a PLL.

2) The theoretical stability boundaries of DCSC under both
continued normal operations and large grid disturbances
are derived.

3) The stability boundary conditions to ensure a stable
DCSC-based VSC-grid system are established after large
grid disturbances.

4) A control gain self-adaptivity (CGSA) scheme is pro-
posed to speed up resynchronization after large grid
disturbances, which has minimal effects in continued
normal operations.

In essence, the proposed DCSC scheme demonstrates iden-
tical small-signal control dynamics to the PSC scheme with
reactive power regulation in continued normal operations,
while exhibiting enhanced FRT performance under large grid
disturbances. The effectiveness of the approach is validated
through EMT simulation results.

The remainder of this article is structured as follows: Sec-
tion II introduces the control concept and structure of DCSC.
Section III presents the small-signal modeling of the DCSC-

based VSC-grid system. Theoretical stability boundaries under
both continued normal operations and large grid disturbances,
along with the stability boundary condition to ensure a stable
system after the fault, are derived in Section IV. Simulation
results are provided in Section V, and finally, Section VI
concludes the article.

II. CONTROL OF DIRECT CURRENT-SYNCHRONIZATION

This section introduces the control concept of DCSC, re-
vealing the inherent relationship between the VSC current and
its phase angle, as well as the control structure of the DCSC
scheme.

For clarity, hereafter, boldface letters denote complex space
vectors. The subscripts abc and s denote a vector referred to
the stationary abc and αβ reference frames, accordingly. The
subscript dq represents variables in the converter reference
frame, while DQ represents variables in the grid reference
frame. Italic letters stand for scalar variables and real transfer
functions. The reference for a controlled variable is denoted
by appending the subscript r, and a steady-state equilibrium
operating point is denoted with subscript 0. The Laplace
variable s is to be considered as the operator s = d

dt , where
appropriate.

A. Control Concept of Direct Current-Synchronization
To address the conflict between power-synchronization and

current-limitation inherent in conventional GFM-VSCs [22],
the DCSC scheme directly controls current for synchronization
instead of power. This approach enables the seamless integra-
tion of a current limiter for overcurrent protection. In simpler
terms, the current-synchronization law remains effective even
under current-limitation mode. The validity of the DCSC can
be demonstrated through the following analysis.

When operating in the VSC reference frame, the VSC
current references, denoted as idr and iqr, and actual currents,
denoted as id and iq , can be calculated below [23].

idr =
2

3
· Pr

V
, iqr = −2

3
· Qr

V

id =
2

3
· P
V
, iq = −2

3
· Q
V

(1)

where Pr and Qr are the references for active and reactive
power, respectively, and P and Q are the actual active and
reactive power outputs from the VSC. V represents the gen-
erated converter voltage magnitude.

Equation (1) plays a pivotal role in establishing the fun-
damental connection between current and power, aligning
current references with power references and actual currents
with actual powers. Leveraging this relationship allows for
the regulation of active power by manipulating the current
variables idr and id. Besides, [4] has theoretically validated
an intrinsic link between the active power of VSC and its
phase angle. That is, the VSC phase angle can be controlled by
regulating its active power output, which is the fundamental
working principle of PSC [4]. Therefore, by bridging these
relationships, the VSC phase angle can also be regulated
through direct control of idr and id. As a result, achieving
synchronization between the VSC and an AC grid becomes
feasible by directly influencing the current variables of VSC.



B. Control Structure of Direct Current-Synchronization
The basic control loop of DCSC is depicted in Fig. 1 (a).

After implementing the relationships in (1), current control
loops can be established behind. Here, a circular current limiter
is employed to restrain the calculated current references idr
and iqr. This current limiter restricts only the magnitude of
current references to idr,sat and iqr,sat while keeping the phase
angle of the current vector invariable.

ir,sat =

{
ir, |ir| ≤ Im

ir × (Im/ |ir|) , |ir| > Im
(2)

where Im =
√
i2dr,sat + i2qr,sat represents the maximum allow-

able steady-state current magnitude.
In continued normal operations, the circular current limiter

is transparent; it exerts effects only when the magnitude of
the current vector exceeds Im. The d-axis current error, ∆id,
is used to generate the converter phase angle θ, designating
the upper loop in Fig. 1 (a) as the phase angle loop (PAL).
Meanwhile, the q-axis current error, ∆iq , determines the
converter voltage magnitude V , thus labeling the lower loop
in Fig. 1 (a) as the voltage magnitude loop (VML).

It is worth noting that only large grid disturbances that
trigger the current limiter are considered as fault conditions in
this article. More specifically, current-limitation mode, where
idr and iqr are saturated to idr,sat and iqr,sat as constants.
Small grid disturbances where the current limiter remains
transparent, and continued normal operations, are deemed as
normal conditions in this article as converter currents are still
determined by (1) in both scenarios.

There is an additional term 1
V inserted into the PAL,

highlighted by the red dotted line in Fig. 1 (a), named as
PAL gain adapter to distinguish the denominator 1

V in (1).
This gain adapter minimally affects system performance under
normal conditions but brings about significant enhancements
in the FRT process. The specific role of this term will be
theoretically proven in Section III (B). The basic control law
of DCSC is given by

θ =

(
kp
V

(idr − id) + ωr

)
· 1
s

=

(
kp
V

(
Pr

V
− id

)
+ ωr

)
· 1
s

V = −kq (iqr − iq) ·
1

s
+ Vr

= −kq

(
−Qr

V
− iq

)
· 1
s
+ Vr

(3)

where kp and −kq represent controller gains. It is worth noting
that the VML controller gain is negative. This stems from the
negative nature of the transfer function JiqV (s) in (14), which
is the AC system transfer function from ∆iq to ∆V . Within the
frequency range smaller than the fundamental grid frequency
ω0, JiqV (s) indicates that an increase in iq leads to a decrease
in V .

Besides the basic control loop, two supplementary control
blocks are incorporated: the virtual resistance (VR) block in
Fig. 1 (b) and the overcurrent limitation (OCL) block in Fig.
1 (c). A high-pass filter with the gain Rvr and the cutoff

(a) Basic Control Loop

(d) Modulation Block (b) VR Block

(c) OCL Block
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Fig. 1. Control Structure of DCSC Controller

frequency ωHPC (GHPF = Rvr·s
s+ωHPC

) is employed as VR to
enhance system damping effect without consuming real power
[4], while the OCL block is utilized to restrain transient fault
overcurrent, with detailed explanations in Section II (C). The
modulation block, shown in Fig. 1 (d), is used to generate the
final modulation voltage vector vabc for controlling the VSC.

C. Overcurrent Limitation Scheme
Although the implemented current limiter can effectively

bring the steady-state fault current within permissible limits, it
fails to restrain transient fault overcurrent as V cannot change
instantaneously. This leads to a large voltage difference be-
tween the converter terminal and the grid at fault-inception and
fault-clearing points, resulting in considerable transient current
overshoot. As analyzed in [20], this transient overcurrent is
primarily caused by a DC-bias component. Hence, a transient
resistor is proven to be effective in attenuating this DC-bias
component, thereby limiting transient overcurrent [20].

To safeguard power electronic devices at fault-inception and
clearing points, an OCL block in Fig. 1 (c) is applied, as
described in (4).

vocls = F ·Rocl ·∆is (4)

Here, F is the fault flag, set to 0 under normal conditions,
and to 1 when the converter current magnitude surpasses a
predefined threshold IT . Consequently, the OCL voltage vector
vocl remains at 0 under normal conditions but follows the
expression in (4) when a large grid disturbance occurs. Rocl
represents the OCL resistance, defined the same as in [20] and
expressed as:

Rocl =

{
kocl · (Io − IT ) if Io ≥ IT

0 if Io < IT
(5)

Here, Io =
√
id2 + iq2 denotes the instantaneous current

magnitude. kocl is the proportional gain, and its value is



determined in the worst-case scenario of a three-phase bolted
fault [20]. [20] reveals that the operation of Rocl does not
impact system transient stability. As an improvement over
[20], instead of using i as the input to generate vocl, ∆i is
employed. This provides double assurance that Rocl will exit
operation when a new equilibrium is reached during the fault
(∆i = 0). Therefore, the implementation of the OCL block
does not affect the steady-state operating point during the fault
but effectively constrains transient overcurrent.

III. MODELLING OF DIRECT
CURRENT-SYNCHRONIZATION

This section delves into the modelling process of the DCSC-
based VSC-grid system. In addition, the functionality of the
PAL gain adapter is thoroughly explained.

A. Small-signal Modelling of VSC-grid System

A.1. Transfer Functions of Control Plant
The equivalent circuit of the VSC-grid system is illustrated

in Fig. 2, taking into account the grid voltage vector E,
VSC voltage vector v, and VSC current vector i. The grid
impedance is represented by an inductor Lg , while the equiv-
alent inductance at the converter terminal is represented by
Lc. The virtual resistor Rvr is moved to the VSC terminal,
and the DC link voltage Vdc is assumed to be constant.

When a small-signal perturbation is applied to v, the
resulting expression is given by

v(t) = (V0 +∆V (t)) ej(θ0+∆θ(t))

≈ V0e
jθ0︸ ︷︷ ︸

v0

+∆V (t)ejθ0 + jV0e
jθ0∆θ(t)︸ ︷︷ ︸

∆v(t)

(6)

where the prefix ∆ represents a small perturbation from
equilibria.

Applying the Laplace transformation to (6), the expressions
for v0 and ∆v in the frequency domain are derived as:

v0 = V0e
jθ0 ,∆v(s) = ∆V (s)ejθ0 + jV0e

jθ0∆θ(s) (7)

Similarly, the expressions for the current vector in the grid
frame iDQ0 and ∆iDQ can be derived as:

iDQ0 =
v0 −E0

Z0
,∆iDQ(s) =

∆v(s)

Z(s)
(8)

Where the expressions of steady-state grid voltage vector E0,
grid impedances Z(s), and Z0 are given by:

E0 = E0e
j0 = E0

Z(s) = sL+Rvr + jω0L,
(9)

Z0 = Z(s)|s=0 = Rvr + jω0L (10)

Here, L = Lg+Lc. Substituting (7), (9), and (10) into (8) and
keeping only the deviation parts results in the linearized form

vdc

Lc iv Rvr Lg

E

DCSC

vabc 

Pr Qr

vdc

Lc iv Rvr Lg

E

DCSC

vabc 

Pr Qr

Fig. 2. Equivalent circuit of VSC-grid system for small-signal analysis.

of (8). The transfer functions of ∆iD and ∆iQ versus ∆θ, as
well as ∆iD and ∆iQ versus ∆V , are obtained as:

∆iD = V0
ω0L cos θ0 − (sL+Rvr) sin θ0

(sL+Rvr)
2
+ (ω0L)

2 ∆θ

∆iQ = V0
ω0L sin θ0 + (sL+Rvr) cos θ0

(sL+Rvr)
2
+ (ω0L)

2 ∆θ

∆iD =
ω0L sin θ0 + (sL+Rvr) cos θ0

(sL+Rvr)
2
+ (ω0L)

2 ∆V

∆iQ =
−ω0L cos θ0 + (sL+Rvr) sin θ0

(sL+Rvr)
2
+ (ω0L)

2 ∆V

(11)

Utilizing the rotation transformation in (12), the current dy-
namics in the grid frame can be converted into the converter
frame. Therefore, the Jacobian transfer matrices that describe
the dynamics of the DCSC control plant are given by (13),
where the AC system transfer functions from ∆id to ∆θ, ∆iq
to ∆θ, ∆id to ∆V , and ∆iq to ∆V are expressed as Jidθ(s),
JidV (s), Jiqθ(s), and JiqV (s) in (14), accordingly.[

id
iq

]
=

[
cos θ sin θ
− sin θ cos θ

] [
iD
iQ

]
(12)[

∆id
∆iq

]
=

[
Jidθ(s) JidV (s)
Jiqθ(s) JiqV (s)

]
︸ ︷︷ ︸

J(s)

[
∆θ
∆V

]
(13)

Jidθ(s) = Iq0 +
ω0LV0

(sL+Rvr)
2
+ (ω0L)

2

Jiqθ(s) = −Id0 +
(sL+Rvr)V0

(sL+Rvr)
2
+ (ω0L)

2

JidV (s) =
sL+Rvr

(sL+Rvr)
2
+ (ω0L)

2

JiqV (s) =
−ω0L

(sL+Rvr)
2
+ (ω0L)

2

(14)

A.2 Transfer Functions of Controller
Depending on whether idr and iqr are constrained under

normal and fault conditions, the transfer functions of the
DCSC controller differ. In fault scenarios, where the fault
current magnitude exceeds Im, idr and iqr are saturated to
constant values idr,sat and iqr,sat. Conversely, during normal
conditions, idr and iqr are determined by (1), no longer
treated as constant values. The presence of the denominator
1
V in (1) introduces additional control dynamics to the DCSC



performance. For simplifying the analysis, we first derive the
transfer functions of the DCSC controller assuming constant
idr and iqr. Subsequently, we adapt these transfer functions
for normal conditions based on the form developed for fault
conditions.

In the event of large grid disturbances, the dynamic relations
between ∆id versus ∆θ and ∆iq versus ∆V are described by:

∆θ = −kp
V0

· 1
s
·∆id = −Gid(s) ·∆id

∆V = kq ·
1

s
·∆iq = −Giq(s) ·∆iq

(15)

However, when the current limiter is transparent during
normal conditions, idr = Pr

V and iqr = −Qr

V . Consequently,
the dynamics of the d-axis and q-axis controller loops are
given by:

∆θ = −kp
V0

· 1
s
·∆id −

kp
V0

· 1
s
· P0

V 2
0

·∆V

= −Gid(s) ·∆id −Gid(s) ·GθV ·∆V

∆V = kq ·
1

s
·∆iq − kq ·

1

s
· Q0

V 2
0

·∆V

= −Giq(s) ·∆iq +Giq(s) ·GV V ·∆V

(16)

where GθV = P0

V 2
0

and GV V = Q0

V 2
0

are coupling factors of
∆V between PAL and VML loops.

Comparing (16) with (15), it is evident that the controller
dynamics under normal conditions are not only related to
current errors (∆id and ∆iq) but also influenced by ∆V . This,
in turn, increases the coupling between PAL and VML loops.

B. Functionality of the Gain Adapter

To speed up the resynchronization with a faulted grid
voltage, the PAL gain adapter, as highlighted by the red dotted
line in Fig. 1 (a), is introduced. As indicated in (15), the
presence of the gain adapter does not introduce additional
small-signal control dynamics to the controller performance
but only alters the final controller gain of PAL to kp

V0
, which can

be simply compensated by adjusting the kp value considering
the narrow variations of V0 under normal conditions.

To attain an equivalent PAL gain under normal conditions,
the proportional gain kp1 of the PAL controller without the
gain adapter, Gid1(s) = kp1 · 1s , and the proportional gain kp2
of the PAL controller with the 1

V term, Gid2(s) = kp2 · 1
V0

· 1s ,
should satisfy the equation:

kp2 = Vn0 · kp1 (17)

Here, the subscript n0 indicates a steady-state operating point
under normal conditions.

In the event of an AC-side fault causing a grid voltage
sag, the new converter voltage magnitude after the fault Vf0

becomes smaller than Vn0 during normal conditions. The PAL
controller with the gain adapter is then adjusted to Gid2(s) =

kp1 ·
(

Vn0

Vf0

)
· 1s , with its equivalent loop gain significantly larger

than that of Gid1(s) = kp1 · 1s due to the Vn0

Vf0
term. Moreover,

as the severity of the grid voltage dip increases, the equivalent
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Fig. 3. Large-signal flow diagram of PSC-based VSC-grid system.

controller gain of Gid2(s) becomes larger, resulting in faster
resynchronization with a lower faulted grid voltage value.

The gain adapter is a component of the PAL controller,
exhibiting minimal effects under normal conditions due to
the narrow variation of V0, but it significantly increases
the PAL loop gain during a voltage dip disturbance. This
characteristic of the gain adapter is referred to as control gain
self-adaptability (CGSA).

IV. STABILITY BOUNDARY OF DIRECT
CURRENT-SYNCHRONIZATION

After introducing the direct current-synchronization control,
it is crucial to assess its synchronization capability. [24] has
revealed that the presence of right-half-plane (RHP) trans-
mission zeros in the PSC control plant substantially affects
its control bandwidth, primarily owing to the time delays
introduced by the RHP zeros. Therefore, this section focuses
on analyzing the stability boundaries of DCSC under both
normal and fault conditions, considering the impacts caused
by RHP zeros in the DCSC control plant.

A. Stability Boundary of Power-Synchronization Control
with Reactive Power Regulation

Let’s begin by reviewing the conventional PSC scheme with
reactive power regulation. The large-signal flow diagram of the
PSC-based VSC-grid system is shown in Fig. 3. Here, k1 and
k2 are the controller gains of PSC. Eθ→P , Eθ→Q, EV→P ,
and EV→Q symbolize the large-signal equations describing
the relationships from the converter phase angle and voltage
magnitude to its output active power and reactive power, re-
spectively. The small-signal control diagram of the PSC-based
VSC-grid system is depicted in Fig. 4, where GP (s) = k1 · 1

s
and GQ(s) = k2 · 1

s represent transfer functions of the PSC
controller, while JPθ(s), JPV (s), JQθ(s), and JQV (s) denote
the Jacobian transfer matrices of the PSC control plant.

To obtain the transmission zeros of the PSC control plant,
we can simply compute the determinant of square matrix
JPQ(s) using (18), with solutions provided by (19) [24].
The stability boundary of the PSC-based VSC-grid system is
reached when the RHP zero crosses the origin. It is evident
that when E0 = V0 = 1 p.u. and θ = 60◦, the RHP zero
intersects the origin, resulting in an unstable system [24].
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Fig. 4. Small-signal control diagram of PSC-based VSC-grid system.

[
∆P
∆Q

]
=

[
JPθ(s) JPV (s)
JQθ(s) JQV (s)

]
︸ ︷︷ ︸

JPQ(s)

[
∆θv
∆V

]

det [JPQ(s)] = JPθ(s)JQV (s)− JPV (s)JQθ(s) = 0

(18)

z1,2 = ±ω0

√
2E0V0 cos θ0 − E2

0

E2
0 + V 2

0 − 2E0V0 cos θ0
(19)

B. Stability Boundary of Direct Current-Synchronization
under Normal Conditions

For the DCSC-based VSC-grid system, the large-signal flow
diagram under normal conditions is shown in Fig. 5, where
Eθ→id, Eθ→iq , EV→id, and EV→iq describe the relationships
from the converter phase angle and voltage magnitude to its
output d-axis and q-axis current, respectively. For simplicity,
the PAL gain adapter is omitted from the subsequent analysis
in this part, as it solely adjusts the equivalent control gain PAL
under normal conditions, as discussed in Section III (B).

Simplifying the original large-signal flow diagram of the
DCSC-based VSC-grid system in Fig. 5 (a) yields the equiv-
alent flow diagram depicted in Fig. 5 (d). It’s important to
note that except for the red-marked area, the remainder of
Fig. 5 (d) mirrors the large-signal flow diagram in Fig. 3.
However, the inclusion of the factor 2

3 and the additional
term 1

V in the red-marked area doesn’t introduce additional
small-signal control dynamics to the DCSC-based VSC-grid
system. Rather, it only indirectly modifies the equivalent
values of kp and kq , considering the term 1

V as 1
V0

in small-
signal modeling. Consequently, it’s straightforward to achieve
equivalent controller gains in both PSC and DCSC schemes
by setting kp = 3

2 · Vr · k1 and kq = 3
2 · Vr · k2, assuming

V0 = Vr under normal conditions.
As a result, the stability boundary of the DCSC-based

VSC-grid system under normal conditions equals that of the
PSC-based VSC-grid system since their control plant transfer
functions remain identical. Thus, during normal conditions,
the RHP zero location of the DCSC control plant is also
determined by (19). For instance, if E0 = V0 = 1 p.u., the
phase angle boundary of the DCSC-based VSC-grid system
is 60◦. Moreover, both systems exhibit similar small-signal
control dynamics with proper control parameter settings.
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Fig. 5. Large-signal flow diagram of DCSC-based VSC-grid system
under normal conditions.

C. Stability Boundary of Direct Current-Synchronization
under Fault Conditions

In case of large grid disturbances, idr and iqr are saturated
to constant values; thus, the large-signal flow diagram of
the DCSC-based VSC-grid system under fault conditions is
depicted in Fig. 6, while its small-signal model is shown in
Fig. 7. The transmission zeros of the DCSC control plant Ji(s)
in (13) can be obtained simply by its determinant in (20), and
the expression of its RHP zero is given by (21).

det [Ji(s)] = Jidθ(s)JiqV (s)− JidV (s)Jiqθ(s) = 0 (20)
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Fig. 6. Large-signal flow diagram of DCSC-based VSC-grid system
under fault conditions
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z = ω0 cot θ0 (21)

Upon comparing (21) with (19), it is notable that the
location of the RHP transmission zero of Ji(s) is solely related
to the phase angle, independent of VSC and grid voltage
magnitude. In contrast, the location of the transmission zero of
JPQ(s) is significantly influenced by the voltage magnitude.
This characteristic of Ji(s) is highly advantageous for fault
scenarios, where the voltage variations of VSC and grid
become more significant. Consequently, the achievable control
bandwidth of DCSC remains unaffected by voltage magnitude
variations under fault conditions.

Moreover, according to (21), the RHP zero of Ji(s) in-
tersects the origin when θ = 90◦, regardless of voltage
magnitude. Therefore, the phase angle boundary of the DCSC-
based VSC-grid system under fault conditions is θ = 90◦.

D. Stability Boundary Condition of Direct Current-
Synchronization under Fault Conditions

As discussed above, the theoretical stability boundary of
the DCSC-based VSC-grid system under fault conditions is
90◦, namely θmax = 90◦, regardless of voltage magnitude.
This allows us to establish the stability boundary condition
to ensure a consistently stable system under fault conditions.
While the working control references are idr,sat and iqr,sat, the
setting control references are Pr and Qr; thus, the stability
boundary condition should be established to determine Pr and
Qr.

The classic power-angle relationship in steady-state is ex-
pressed as follows:

P =
3

2

EV sin θ

ω0L
(22)

Substituting (1) into (22) yields the expression of d-axis
current under fault, idf :

idf =
Ef

ω0L
sin θ (23)

where Ef represents the faulted grid voltage magnitude (peak
value of phase voltage).

Since idf increases monotonically with θ, the maximum d-
axis current under fault is given by:

idf,max =
Ef

ω0L
(24)

Notably, idf,max is solely dependent on the faulted grid
voltage level Ef . Once a voltage dip occurs, Ef is determined,
so idf,max is also established. Additionally, during the fault
steady-state, idr = idf and iqr = iqf ; thus, the maximum d-
axis current reference idr,max = idf,max. Consequently, as long
as idr during the fault is set lower than idr,max, θ remains
below 90◦, indicating a stable system. Conversely, if idr is set
larger than idr,max, synchronization is compromised.

However, with a high short circuit ratio (SCR) value,
corresponding to a low ω0L value, and a medium voltage
dip level, corresponding to a medium Ef value, Ef

ω0L
might

exceed Im. Therefore, idr,max should be set as the minimum
value between Im and Ef

ω0L
, as expressed in:

idr,max = min

{
Im,

Ef

ω0L

}
(25)

Since a circular current limiter is employed to mitigate over-
current, the corresponding q-axis current reference magnitude
is calculated as:

|iqr| =
√
Im2 − idr2 (26)

The active and reactive power output during the fault steady-
state, denoted as Pf and Qf respectively, are determined as
follows:

Pf =
3

2
· idr · Vf

Qf =
3

2
·
√
Im2 − idr2 · Vf

(27)

Here, Vf represents the converter voltage magnitude during
the fault steady-state. The ratio of active and reactive power
output following a large grid disturbance is contingent upon
the determination of idr. Therefore, we can derive the stability
boundary condition under fault conditions: as long as equation
(28) is satisfied, the DCSC-based VSC-grid system can always
maintain synchronization with the faulted grid:

Pr

Qr
≤ idr, max√

Im2 − idr, max
2

(28)

From (28), it is evident that the system remains stable
regardless of Pr and Qr setpoints when Ef

ω0L
> Im (idr, max =

Im), as the boundary threshold becomes infinite. Specifically,
in a stiff grid connection with a medium voltage dip level.
Moreover, according to grid code requirements [10],[11], once
the grid voltage drops below 0.5 p.u., the converter is solely
supposed to output reactive power, which means Pr = 0 p.u.
and Qr = 1.0 p.u.. In this case, Pr

Qr
= 0, which can always

satisfy the stability boundary condition to guarantee a stable
system.



TABLE I
SYSTEM AND CONTROL PARAMETERS

Symbol Description Value

Sr Rated capacity of VSC 1000 kVA (1.0 p.u.)
E Grid voltage (peak value of phase-

to-ground)
286 kV (1.0 p.u.)

fg Grid frequency 50 Hz
SCR Short circuit ratio 1
Vdc DC link voltage 640 kV (1.0 p.u.)
kp Controller gain of PAL 2.0 p.u.
kq Controller gain of VML 2.0 p.u.
Rvr Virtual resistor 0.245 p.u.
IT Threshold current of OCL 1.1 p.u.
Im Maximum allowable steady-state

current magnitude
2.333 kA (1.0 p.u.)

V. SIMULATION VALIDATION

To validate the effectiveness of the proposed DCSC, we
conducted simulation tests in PSCAD/EMTDC using the same
circuit topology in Fig. 2 and parameters outlined in Table I.
The simulation setup contains a grid-connected VSC sending
power to a 350-kV AC system. The DC link voltage of VSC
is assumed to be well controlled at the other end.

A. Comparison between Power-Synchronization and Di-
rect Current-Synchronization

As discussed in Section IV (B), with appropriate control
parameter settings, the DCSC scheme exhibits comparable
control dynamics to the PSC scheme with reactive power
regulation. Simulation tests are conducted to assess their
dynamic responses when subjected to a step change in the
active power reference.

A small step change in Pr, ranging from 0.7 p.u. to 0.8
p.u., was applied at the 3-second mark. The simulation results
are depicted in Fig. 8. It is evident from the results that the
dynamic responses of both DCSC and PSC schemes align
closely, with only minor discrepancies observed at transients
following the step input. These discrepancies arise from the
slight variation in V , which dynamically alters the equivalent
control gain of PAL and VML during transients.

B. Verification of Stability Boundary under Normal Condi-
tions

The theoretical stability boundary of DCSC under normal
conditions equals that of PSC with reactive power regulation,
specifically θ = 60◦ when V

E = 1. To validate this boundary,
we manually set Pr = 0.857 p.u and Qr = 0.485 p.u. to ensure
θ = 59◦ while V

E = 1 under normal conditions. Additionally,
to assess the dynamic response of DCSC, we applied a step
input of Pr from 0.757 p.u. to 0.857 p.u. The simulation results
are depicted in Fig. 9. It is clear to see that approximately 15
seconds are required for the phase angle to reach the target
value of 59◦. This is attributed to the time delays induced by
the RHP zero, which is very close to the origin when θ = 59◦,
indicating an extremely low control bandwidth. Nevertheless,
the system remains at a critically stable condition.

Next, a further small step input of Pr, increasing from 0.857
p.u. to 0.9 p.u., was applied, and the resulting phase angle
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Fig. 8. Comparison between DCSC and PSC when subjected to a step
input of active power reference (Pr changes from 0.7 p.u. to 0.8 p.u.).

response is illustrated in Fig. 10. Given that θ = 59◦ is near
a critical stable operating point, even a slight increase in Pr

can induce system instability. Consequently, the phase angle



(a) Active power response

59 °59 °

(b) Converter phase angle response

Fig. 9. Stability boundary of DCSC under normal conditions when
subjected to a step input of active power reference (Pr changes from
0.757 p.u. to 0.857 p.u.).

fluctuates within the range of −180◦ to 180◦.

59 °59 °

Fig. 10. Stability boundary of DCSC under normal conditions when
subjected to a step input of active power reference ((Pr changes from
0.857 p.u. to 0.9 p.u.).

C. Verification of Stability Boundary under Fault Condi-
tions

The theoretical stability boundary of DCSC under large grid
disturbances is θ = 90◦, independent of voltage magnitude. To
verify this boundary value, a severe voltage dip disturbance is
emulated at the 1-second mark, causing E to drop from 1.0
p.u. to 0.2 p.u. To attain idr,max, we manually set Pr = 0.466
p.u. and Qr = 2.286 p.u. during the fault. The simulation
results are depicted in Fig. 11. After approximately 20 sec-
onds, the phase angle approaches 88◦. This phenomenon is

(a) Grid voltage response

88 °88 °

(b) Converter phase angle response

(c) Converter current response

Fig. 11. Stability boundary of DCSC under fault conditions (Pr = 0.466
p.u. and Qr = 2.286 p.u. during the fault).

attributed to the RHP zero nearing the origin with idr,max,
resulting in significant time delays and an exceptionally low
control bandwidth. Nevertheless, the system maintains stability
even with θ = 88◦.

Furthermore, it is evident that the transient fault overcurrent
at the fault-inception point is approximately 1.4 p.u. as the
OCL scheme is deactivated to simplify the verification of
the stability boundary. Additionally, a transient phase angle
overshoot is observable at the fault-inception point due to
the delayed control dynamics in adjusting to the new power
reference values.

Next, Pr is slightly raised from 0.466 p.u. to 0.5 p.u., and
the resulting phase angle response is depicted in Fig. 12. It
is obvious that the system becomes unstable as the required
phase angle exceeds 90◦.



Fig. 12. Stability boundary of DCSC under fault conditions (Pr = 0.5
p.u. and Qr = 2.286 p.u. during the fault).

D. Verification of Fault Ride Through Process under Volt-
age Dip Disturbance

In this part, the entire FRT process of the DCSC-based
VSC in the case of a voltage dip disturbance (Ef = 0.2 p.u.)
was simulated. Two scenarios are tested: 1. The ratio between
Pr and Qr satisfies idr,max in (25) to achieve the stability
boundary during the fault. 2. Qr = 1.0 p.u. while Pr = 0 p.u.
to comply with the grid code requirement. Besides, the OCL
scheme is activated hereafter.

1) idr,max scenario: The simulation results of the FRT
process with the idr,max setting are plotted in Fig. 13. The
voltage dip disturbance occurs at the 1-second mark and
is cleared at the 20-second mark. The resulting steady-state
fault current in Fig. 13 (b) stays within 1.0 p.u. due to the
operation of the circular current limiter, while the transient
fault overcurrent at fault-inception and -clearing points stay
below 1.2 p.u. due to the operation of the OCL scheme. The
converter phase angle can reach up to 88◦ after the fault
occurrence and successfully returns to the pre-fault value after
the fault disappears. Some overshoots can be observed in
the phase angle at fault transients due to control delays. In
summary, the DCSC-based VSC can ride through the voltage
dip disturbance even under stability boundary conditions.

2) Qr = 1.0 p.u. scenario: To comply with the grid code
requirement, Qr is set to 1.0 p.u. during the fault. The same
voltage dip disturbance was implemented at the 1-second mark
and cleared at the 5-second mark. As the system control
bandwidth is much faster than that with idr,max during the
fault, the simulation duration can be shortened. Simulation
results are plotted in Fig. 14. It is clear that the transient fault
overcurrent can remain within 1.2 p.u. and the phase angle
reaches zero during the fault as Pr = 0 p.u..

E. Verification of Fault Ride Through Process under
Phase Jump Disturbance

Another common grid disturbance is the phase jump. Ac-
cording to the grid code requirement, the GFM converter is
supposed to remain connected to the grid under a −60◦ phase
jump disturbance [10]. Therefore, in this part, the performance
of the DCSC is tested with a −60◦ phase jump disturbance
occurring at the 1-second mark. Simulation results are plotted
in Fig. 15. It is clear to see that the converter phase angle

(a) Grid voltage response

(b) Converter current response

88 °88 °

(c) Converter phase angle response

Fig. 13. FRT process of DCSC under the voltage dip with idr,max.

changes from 29.8◦ to −30.2◦ under this disturbance, and the
corresponding transient fault current can be well maintained
below 1.3 p.u..

VI. CONCLUSION

This article proposes a DCSC scheme to address the syn-
chronization issue of GFM-VSCs operating under current-
limitation mode, without relying on a PLL. The validity of
the DCSC control concept is substantiated by establishing
connections between the VSC current and its phase angle,
with power serving as an intermediate variable. The theoretical
stability boundaries of DCSC under both normal and fault
conditions are derived, and stability boundary conditions are
established to ensure a stable system under large grid dis-
turbances. Additionally, a control gain self-adaptivity scheme
is designed to accelerate resynchronization after the fault,
with minimal effects on control performance under normal



(a) Converter current response

(b) (b) Converter phase angle response

Fig. 14. FRT process of DCSC under voltage dip with Qr = 1.0 p.u.

29.8 °29.8 °

-30.2 °
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(a) Converter phase angle response
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Fig. 15. FRT process of DCSC under the phase jump.

conditions. Essentially, the DCSC exhibits identical small-
signal control dynamics to PSC with reactive power regulation

under normal conditions but demonstrates enhanced FRT
performance in the case of large grid disturbances. Finally,
experimental results validate the control dynamic similarity
between PSC and DCSC, the stability boundaries of DCSC
under both normal and fault conditions, as well as the effec-
tiveness of DCSC in riding through large grid disturbances.
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