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Zhilin Li, Xianghe Chen, Jie Li, Zhongfei Bai, Hongfei Ji, Lingyu Liu, and Lingjing Jin

Abstract— Surface electromyography (sEMG) signals are
electrical signals released by muscles during movement,
which can directly reflect the muscle conditions during vari-
ous actions. When a series of continuous static actions are
connected along the temporal axis, a sequential action is
formed, which is more aligned with people’s intuitive under-
standing of real-life movements. The signals acquired dur-
ing sequential actions are known as sequential sEMG sig-
nals, including an additional dimension of sequence, em-
bodying richer features compared to static sEMG signals.
However, existing methods show inadequate utilization of
the signals’ sequential characteristics. Addressing these
gaps, this paper introduces the Spatio-Temporal Feature
Extraction Network (STFEN), which includes a Sequential
Feature Analysis Module based on static-sequential knowl-
edge transfer, and a Spatial Feature Analysis Module based
on dynamic graph networks to analyze the internal rela-
tionships between the leads. The effectiveness of STFEN
is tested on both modified publicly available datasets and
on our acquired Arabic Digit Sequential Electromyography
(ADSE) dataset. The results show that STFEN outperforms
existing models in recognizing sequential sEMG signals.
Experiments have confirmed the reliability and wide appli-
cability of STFEN in analyzing complex muscle activities.
Furthermore, this work also suggests STFEN’s potential
benefits in rehabilitation medicine, particularly for stroke
recovery, and shows promising future applications.

Index Terms— Surface electromyograph, Sequential fea-
ture analysis, Spatio-temporal feature extraction, Dynamic
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I. INTRODUCTION

SURFACE Electromyographic signals (sEMG) are widely
used for their ability to detect and analyze the electrical

activity of muscles in various fields. These signals are acquired
from skin-placed surface leads and analyzed through complex
procedures, providing valuable information on muscle activity,
strength, and coordination.

With technological progress, the use of sEMG has ex-
panded, especially in rehabilitation medicine. It helps create
personalized treatment plans by accurately monitoring muscle
activity, aiding stroke recovery [1]. Additionally, sEMG is
increasingly applied in various fields such as personal identifi-
cation and entertainment, due to its accuracy in capturing the
intent behind movements. Unlike other types of signals, sEMG
directly mirrors muscle activity, making it an essential tool
for understanding movements and identifying specific motion-
related features.

Sequential actions, which are a series of ordered and contin-
uous action patterns, offer a deep dive into human behavior’s
dynamic nature. They reveal how actions evolve over time
and detail the transitions between different states. Studying
these actions is key to grasping how movements are performed
and controlled, particularly useful in rehabilitation. This un-
derstanding aligns with human cognitive processes, helping
interpret the intentions behind movements more effectively.

Even though integrating sEMG technology with sequential
actions shows a lot of potential, the research on sequential
sEMG signals is still in the early stages and faces several
challenges:

1) Focus on Static Action Features in Algorithms: Most
current sEMG signal recognition algorithms concentrate
on extracting and classifying features related to static
actions. This emphasis results in a lack of representa-
tion for features tied to sequential actions within these
models, and a gap in comprehensive sequential analysis.

2) Confusion in Public Datasets Over Action Types:
Many sEMG datasets do not distinguish clearly between
static and sequential signals, complicating the extraction
of sequential features. This confusion contributes to
a lack of datasets specifically designed for sequential
actions, resulting in obstacles in the design of algorithms
for sequential features right from the first step.



2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

This paper introduces an algorithm designed to extract
features from sequential signals, filling in the shortcomings of
traditional static sEMG signal analysis methods in sequential
sEMG feature exploration. The contributions of this paper are
summarized below.

1) We set up an experiment for drawing Arabic numerals
in the air to create the ADSE dataset, tackling the lack
of sequential sEMG datasets.

2) We develop the STFEN model specifically for sequential
sEMG signals, which includes a knowledge transfer
module for time feature extraction and an adaptive
dynamic graph neural network for spatial feature ex-
traction.

3) We use the ADSE dataset and modified publicly avail-
able datasets to compare the performance of STFEN
with other models and determine the excellent perfor-
mance of STFEN in sequential sEMG signal processing.

4) We analyze the effectiveness of STFEN by visualizing
intermediate features and explore the potential applica-
tions of sequential sEMG signal analysis in rehabilita-
tion strategies.

II. RELATED WORKS

A. Analysis of Sequential sEMG Signals

Since Marey [2] first recorded surface muscle electrical
signals in 1890, research into sEMG has steadily advanced.
Sequential sEMG signals, which are recorded during human
sequential actions and represent long time patterns, give a
deeper time-based perspective than traditional static sEMG
signals. They capture the changing sequential features over
time, shedding light on the dynamic patterns of muscle activ-
ity. There is already a body of research concentrating on these
sequential sEMG signals.

Chen et al. [3] developed a model that uses sequential
sEMG to accurately predict the three-dimensional movements
of the upper limb, aimed at rehabilitation robotics. Pan et
al. [4] compared musculoskeletal models with data-driven
approaches such as linear regression and classical artificial
neural networks to predict sequential wrist and hand actions
in sEMG interfaces. Liu et al. [5] worked on continuously
decoding actions of the shoulder, elbow, and wrist from
sequential sEMG, showing great promise for myoelectric-
controlled exoskeletons used in upper limb rehabilitation.

Even with these advancements, there’s a significant differ-
ence between these algorithms and those specifically designed
for sequential sEMG, affecting the ability to identify sequential
features effectively. To tackle this, we propose two consider-
ations:

• Sequential signals essentially consist of static signals
linked over time, indicating a strong similarity between
two types of sEMG signals. We aim to use this similarity
by applying knowledge transfer from the analysis of static
actions to improve the recognition of sequential actions.

• Most current algorithms for sequential sEMG use Convo-
lutional Neural Networks (CNNs), which do not specif-
ically target the relationship between different leads.

Considering the important spatial relationships in sequen-
tial actions, we suggest using graph networks to more
accurately capture these relationships in sequential sEMG
data.

B. Transfer Learning in sEMG Signal Analysis
Transfer learning is a key method in machine learning

that improves a model’s performance and its ability to be
applied to new tasks by using knowledge gained from one
task on another. This method has been widely used in fields
such as natural language processing and image recognition.
In the study of sEMG signals, transfer learning is becoming
important for addressing issues like limited data and the
need for models that perform well across different tasks. For
example, Chen et al. [6] showed how transfer learning could
enhance the accuracy of hand gesture recognition from sEMG
data, leading to better results with less training on varied
datasets. Ameri et al. [7] developed a CNN-based transfer
learning approach that effectively handles the challenge of
electrode displacement in sEMG recognition tasks. Rezaee
et al. [8] successfully used deep transfer learning to detect
Parkinson’s disease using sEMG, with an accuracy rate of over
99%.

C. Graph Networks in sEMG Signal Analysis
Graph Neural Networks (GNNs) have become a powerful

type of deep learning used to work with data that has a
graph structure, like social media, traffic systems, and biology
research. Recently, researchers have started using GNNs to
analyze sEMG signals. For instance, Massa et al. [9] applied
GNNs to high-density sEMG data to recognize action inten-
tions, reaching a low classification error rate of 8.75% over
65 gestures. Vijayvargiya et al. [10] used a GNN based on
Pearson correlation for analyzing lower limb sEMG signals
and achieved a high accuracy of up to 99.36% in recognizing
different activities. Li et al. [11] enhanced the performance of
action prediction by integrating a Graph Isomorphic Network
with models that learn over sequences, for both Electroen-
cephalography and sEMG, attaining an accuracy of 88.89%.

These studies highlight how well GNNs model the con-
nections between sEMG sensors, performing better than tradi-
tional methods. However, GNNs sometimes miss the changing
interactions during actions because they usually work with
fixed graph structures. We suggest using a dynamic graph
structure, which can adjust the graph as needed. Dynamic
graph networks are already helping improve recommendations,
predict traffic, model 3D shapes, and other fields. For sEMG
analysis, Lee et al. [12] developed a network that updates
its adjacency based on what it learns from stretchable sEMG
leads, managing to recognize actions with 95% accuracy
across 18 different gestures.

III. SIGNAL ACQUISITION

A. Acquisition Device
To acquire the sequential sEMG signal, we use acquisition

leads shown as Fig. 1(a). Signal acquisition and annota-
tion are conducted via a PC-based program, following the
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Fig. 1. (a) Experimental Acquisition Equipment: Comprising 8 circuits,
it simultaneously acquires sEMG signals from 8 distinct muscles. (b)
Signal Acquisition Process Module.

workflow in Fig. 1(b). Our system includes an acquisition
module, transmission module, and power supply. The acqui-
sition module initially enhances and filters the sEMG sig-
nal, followed by analog-to-digital (AD) conversion using the
STM32F373CCT6 chip. The transmission module, centered
on the BLE 5.3 ING91680C Bluetooth chip, connects to the
PC and acquisition module, enabling signal transmission from
eight muscle locations. The power supply module powers the
whole device.

B. Paradigm Design

Our paradigm focuses on sequential sEMG signals by eval-
uating action sequence representation, subject familiarity, and
action discrimination. We use an experimental setup involving
drawing Arabic numerals 0-9, each for 5 seconds as shown
in Fig. 2(a). As Arabic numerals are ubiquitous symbols in
everyday life, it’s unnecessary to provide special training to
the participants. Additionally, the process of drawing these
numerals naturally creates a specific sequence of actions,
which fits the goals of our study well. We also acquire static
sEMG signals with subjects’ hands in five positions (center,
up, down, left, right) for 20 seconds as shown in Fig. 2(b).
These static signals help train the initial model in transfer
learning approach, improving the model’s understanding of

Fig. 2. (a) Sequential Action Paradigm: The upper limbs draw 10 Arabic
digits from 0 to 9 in the air. (b) Static Action Paradigm: The upper limbs
are located in five positions in front of the body: the center, up, down, left,
and right. (c) Schematic Diagram of 8 Muscle Groups Pasting Positions
of the Corresponding Acquisition Leads.

feature extraction. For muscle selection, focusing on upper
limb movements, we identify eight key muscle groups for
sequential sEMG signal collection: upper trapezius, deltoid
middle fiber, biceps, triceps, flexor carpi radialis, extensor
carpi radialis, pecs, and lats, with corresponding lead place-
ments shown in Fig. 2(c).

C. Acquisition of ADSE Dataset

Following this paradigm, we acquired data from 10 male
adults aged between 22 and 28, each contributing 100 se-
quential sEMG sequences and 10 static signal sets. We also
measured the distances between the leads to analyze the rela-
tionships between different lead locations. This effort resulted
in the Arabic Digit Sequential Electromyography (ADSE)
Dataset, available at http://ieee-dataport.org/12775.

IV. SPATIO-TEMPORAL FEATURE EXTRACTION
NETWORK

A. Basic Framework of STFEN

In our study, we develop the Spatio-Temporal Feature
Extraction Network (STFEN) shown as Fig. 3 to effectively
process sequential sEMG signals. STFEN combines two pri-
mary modules: a temporal feature extraction module that
utilizes knowledge transfer, and a spatial feature extraction
module that employs both dynamic and static graph networks.
These modules work in parallel to extract temporal and spatial
features from sequential sEMG signals. The two features are
jointly used for the classification of the sequential signal after
concatenating.

The temporal feature extraction starts by training a static
action recognition network based on static sEMG datasets.
STFEN acts as a knowledge base for transferring insights to
sequential sEMG signal recognition. The sequential sEMG sig-
nals are first partitioned along the temporal axis into multiple
’static sEMG atoms’. Then, recognizing each atom’s category
probability for specific static actions allows for the creation
of a feature sequence that captures the dynamic changes in
sEMG characteristics through the sequential action.

The spatial feature extraction module prepares the sEMG
sequences by partitioning them into time windows and con-
verting these into frequency band energy vectors. A graph
neural network, informed by inter-lead correlations, processes
these vectors. STFEN utilizes two kinds of adjacency graphs:
one static, based on inter-lead distances, and another dynamic,
formed based on signal similarity. This approach enables a
detailed spatial feature analysis, considering both static spatial
relationships and dynamic signal characteristics.

After extracting features from both modules, the sequential
sEMG signal provides temporal and spatial feature vectors.
These vectors are concatenated to form a composite feature for
the input sequential sEMG signal. By applying this composite
feature in a fully connected neural layer, digit drawing actions
based on the sequential sEMG data can be classified.

http://ieee-dataport.org/12775
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Fig. 3. (a) The Main Process of STFEN: The acquired signals go through the temporal feature extraction module based on ”static-sequential”
knowledge transfer and the spatial feature extraction module based on adaptive dynamic graph network, and then the temporal features together
with spatial features are merged for sequential action recognition. (b) Temporal Feature Extraction Process: It divides the sequential signal into
multiple overlapping continuous atomic windows, uses the pre-trained static sEMG recognition model to identify the state features of each window,
and then flattens the temporal sequential feature matrix and feature embedding. (c) Spatial Feature Extraction Process: It converts the sequential
signal into multiple frequency domain windows, performs spatial feature analysis through a two-layer static graph network and a two-layer dynamic
graph network, and then performs feature embedding after merging and pooling.

B. Temporal Feature Extraction Module Based on
”Static-Sequential” Knowledge Transfer

Knowledge transfer uses knowledge and features obtained
from a source task to improve the performance of target task,
enhancing the generalization of the target model, particularly
in tasks with intricate features.

In STFEN, the high cost and small size of sequential
sEMG data limit the model’s adaptability, making it hard to
identify common features that apply across different muscle
activities. To tackle this, STFEN involves constructing a source
model using static sEMG signals. This source model learns
universal sEMG feature extraction through extensive static
data. Then, through knowledge transfer, STFEN applies the
insights from the source model to sequences of static-like

sEMG segments in sequential signals, helping to identify their
sequence-specific features. Notably, during the construction of
the source model, we find that transforming signals into the
frequency domain often leads to higher recognition accuracy
than directly recognizing them in the time domain.

1) Transformation from Time Domain to Frequency Domain:
Frequency band energy, important in signal processing, illus-
trates energy distributions within specific frequency ranges.
Fourier Transform (FT) is as follows:

X(f) =

∫ ∞

−∞
x(t)e−j2πftdt (1)

Through FT, a temporal signal x(t) is converted into its
frequency representation X(f), performing the energy at var-
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Fig. 4. Training Process of the Static sEMG Source Model: After acquiring the sEMG signals corresponding to the static paradigm actions, the
data are augmented through overlapping slices, and then sent to the paradigm recognition network composed of a DFT module and a three-layer
fully connected network.

ious frequencies. For sEMG signal analysis, Discrete Fourier
Transform (DFT) as 2 is preferred because it deals with
discrete voltage values from leads. It calculates frequency band
energy yk for discrete frequencies k from signals x(n) in the
time domain.

yk =
N−1∑
n=0

x[n] · e−j2πkn/N (2)

Compared to time-domain signals, frequency band energy
offers insights into signal periodicity, frequency distribution,
and energy levels, enhancing feature distinctiveness and facil-
itating subsequent models’ capabilities in discerning different
types of sEMG statuses and signal patterns.

2) Construction of sEMG Source Model: For analyzing static
sEMG signals, we partition static signals into 300-frame
lengths with a 40% overlap between each window, forming
the training set for our source model. As shown in Fig. 4,
the source model, based on a multilayer perceptron (MLP),
concentrates the DFT-converted frequency band energies from
each channel into a single input vector. Through fully con-
nected layers, the MLP classifies static actions by using
features from the frequency domain for better signal under-
standing, calculating probabilities for classifying static actions.

3) Knowledge Transfer from Static Features to Sequential
Features: Addressing the temporal complexity of sequential
sEMG signals, STFEN adopts a sliding data window method,
facilitating the knowledge transfer from static to sequential
features while capturing their temporal features. With windows

covering 300 data frames and a 60% overlap, each sEMG atom
presents a segment of static muscle activity.

Then, the pre-trained static sEMG model analyzes each
atom to identify class probabilities for static actions, which are
then compiled into a feature matrix representing the sequential
signals’ temporal evolution. Since each static sEMG atom
window matches an individual element within the overall
sequential sEMG feature, stacking the class probability vectors
for each sEMG atom yields a feature matrix. This matrix
is processed through two fully connected layers after being
flattened, thereby extracting the temporal feature vector corre-
sponding to the input sequential sEMG signal.

C. Spatial Feature Extraction Module Based on Adaptive
Dynamic Graph Network

Compared to traditional deep networks like CNNs, graph
neural networks offer a wider perspective by considering the
relationships between different leads in signal data, improving
the analysis and extraction of features from sEMG signals.
This inclusive view greatly enhances the algorithm’s general-
ization capability.

In STFEN, spatial feature extraction begins with partitioning
data into windows and transforming these into frequency band
energy via DFT. Upon stacking the band energy matrices
across each channel, the transferred data are set for further
spatial analysis with graph networks.

STFEN uses two kinds of adjacency graphs to model inter-
node relationships: a static graph based on inter-lead distances



6 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

and a dynamic graph based on signal similarities. Through
layers of graph convolutional networks that process both static
and dynamic graph data, STFEN captures comprehensive
spatial features from the sEMG signals by concatenating and
pooling.

1) Constructing Static Adjacency Matrix Based on Inter-Lead
Distance: Constructing a static graph based on inter-lead
distances stands as a key component within the spatial feature
extraction module of STFEN, which determines the direction
of diffusion and aggregation of signal features within the
graph. This process involves normalizing inter-lead distances
to form a weighted adjacency matrix, which reflects the spatial
relationships. Leads positioned closer together are assigned
higher weights, indicating stronger interactions. STFEN uses a
threshold mechanism in the static adjacency graph to maintain
flexibility, and ensure precision in representing spatial relation-
ships, balancing the adjacency based on physical proximity.

The formula for the static adjacency matrix Astatic is as
follows:

Astatic
i,j =



0, i = j

ωmax, i ̸= j & di,j ≤ dislower

ωmin, i ̸= j & di,j ≥ disupper

ωmin +

(
ωmax − ωmin

)(
disupper − di,j

)
disupper − dislower

,

otherwise
(3)

where Astatic
i,j represents the static adjacency weight between

leads i and j, di,j signifies the actual measured inter-lead
distance between leads i and j, disupper and dislower are
respectively set as the maximum and minimum thresholds
for skin distances (in STFEN, empirically disupper is set
to 40cm and dislower is set to 5cm), ωmax and ωmin are
the maximum and minimum threshold values for adjacency
weights (in STFEN, empirically ωmax is set to 1.0 and ωmin

is set to 0.2). Notably, during measurements, for very far apart
leads like the pecs and the flexor carpi radialis, their adjacency
weight is set to 0.

2) Constructing Dynamic Adjacency Matrix Based on Cosine
Similarity of Signals: Cosine similarity is a useful method
for measuring how similar the directions of two vectors
are. It calculates the angle between two vectors in a multi-
dimensional space, independent of the vector magnitude. Its
applicability spans across various domains such as natural
language processing, recommendation systems, and signal
processing. The formula to compute cosine similarity is as
follows:

Similarity(A,B) =
A ·B

∥A∥∥B∥
(4)

where A and B denote two vectors, and ∥A∥ and ∥B∥
represent the norms of A and B, respectively.

For sEMG signal analysis, cosine similarity is advantageous
as it reduces the impact of different muscle intensities on
signal amplitudes. It focuses solely on the direction of the
sEMG signals from various leads, effectively showing the
degree of association between various muscles. The more
alike two signals are, the smaller the cosine angle between

them, indicating a closer dynamic adjacency between the cor-
responding leads. Furthermore, the simplicity and efficiency
of cosine similarity calculations enable its incorporation into
deep learning models, making it easier to quickly build the
dynamic adjacency graph.

Within STFEN, the formula for the dynamic adjacency
matrix Adynamic is as follows:

Adynamic
i,j =

{
0, i = j

Similarity(Si,Sj), i ̸= j
(5)

where Adynamic
i,j signifies the dynamic adjacency weight be-

tween leads i and j, and Si and Sj are the sEMG signals on
leads i and j. By employing cosine similarity between Si and
Sj to construct the dynamic graph, it helps to capture complex
associations among different sEMG leads beyond the physical
distances represented by static adjacency matrix. This dynamic
graph allows the depiction of cooperative muscle associations
that might be non-dominant but possess underlying synergistic
effects.

3) Extracting Spatial Features Using Graph Convolutional
Networks: Graph Convolutional Network (GCN) is a funda-
mental algorithm that uses convolutional techniques to handle
graph-structured data. Its main strategy is to use the infor-
mation from a node’s neighbors to update its own, allowing
for the spread of information across the graph. GCNs are
adept at learning the connections between nodes in such data,
applicable in areas like node classification, graph analysis, and
predicting connections.

GCNs consist of several convolutional layers where each
one updates the information of its nodes by aggregating
information from adjacent nodes, along with diffusing their
own features to others, resulting in improved information for
each node. The node update process in GCNs can be shown
as:

h
(l+1)
i = σ

 N∑
j=1

1

cij
· h(l)

j ·Astatic/dynamic

 (6)

where h
(l)
i is the information of node i’s at layer l, σ is the

activation function, cij are normalization factors, and A is the
weighted adjacency matrix. In STFEN, A includes both the
static Astatic and the dynamic Adynamic adjacency matrix.

STFEN uses two graph convolutional layers, each with a
static and a dynamic GCN, to extract spatial features from the
input signal based on physical proximity and signal similarity.
The initial inputs for the first layer’s GCNs come from the
frequency band energy obtained after signal partition and DFT.
The second layer’s GCNs take the output from the first layer’s
static GCN.

In the convolution process, the static graph network consis-
tently employs the current subject-normalized static adjacency
matrix Astatic, while the dynamic graph network recalculates
its dynamic adjacency matrix Adynamic based on the latest
data before each operation. To thoroughly extract spatial
features from the sequential sEMG signals across multiple
dimensions and depths, STFEN retains the results of the four
node updates from two GCN layers.
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TABLE I
ACCURACY OF STFEN - SOURCE MODEL ON STATIC ADSE SEMG DATASET

Subject s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 Mean

Accuracy 0.8882 0.943 0.962 0.8249 0.9747 0.9219 0.9916 0.8608 0.9705 0.9684 0.9306

TABLE II
PERFORMANCE COMPARISON OF STFEN AND BASELINE MODELS BASED ON ACCURACY ON THE ADSE DATASET

Methods s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 Mean

Conventional
Algorithms

SVM 0.1238 0.1429 0.1619 0.1905 0.1714 0.1333 0.1524 0.1143 0.1809 0.1048 0.1476
MLP 0.1429 0.1810 0.1714 0.2381 0.2095 0.1905 0.2286 0.1619 0.2000 0.1524 0.1876
RF 0.4381 0.4762 0.4667 0.4476 0.4286 0.4952 0.4571 0.4857 0.4571 0.4667 0.4619

sEMG Feature
Analysis

Algorithms

Tsagkas [14] 0.5714 0.6190 0.5905 0.6095 0.5619 0.6476 0.6000 0.5810 0.5524 0.6286 0.5962
Betthauser [15] 0.8095 0.8190 0.8381 0.7905 0.8476 0.8000 0.8286 0.7714 0.8571 0.7809 0.8143

Wu [16] 0.7333 0.7143 0.7809 0.6952 0.7619 0.7238 0.7429 0.7048 0.7714 0.7524 0.7381
Garg [17] 0.6667 0.7238 0.6857 0.6476 0.7048 0.6190 0.6571 0.5333 0.6762 0.6381 0.6552

Karnam [18] 0.6667 0.6857 0.6762 0.6476 0.6571 0.6952 0.6381 0.7143 0.7619 0.6286 0.6771
Zabihi [19] 0.8095 0.7429 0.7809 0.8667 0.7143 0.7524 0.8381 0.7619 0.7905 0.7333 0.7790

Sun [20] 0.8476 0.8190 0.8286 0.8095 0.8667 0.8000 0.8571 0.7905 0.8952 0.8762 0.8390

sEMG Transfer
Learning

Algorithms

Yu [21] 0.8476 0.8762 0.8286 0.8571 0.8095 0.8857 0.8381 0.8190 0.8952 0.8667 0.8524
Lu [22] 0.7429 0.7905 0.7238 0.7714 0.7524 0.8095 0.7333 0.7809 0.8476 0.8000 0.7752

STFEN(Ours) 0.8667 0.9143 0.9048 0.8762 0.9429 0.8762 0.9143 0.8381 0.9524 0.9333 0.9019

4) Pooling for Spatial Feature Extraction: Pooling is a widely
used technique in deep learning that aims to lessen the dimen-
sions of feature maps and computational demands while pre-
serving essential feature information. In GCNs, even though
local information gets combined at each node, the broader
information of the whole graph might not be fully captured.
Therefore, pooling is crucial for further extracting this wide-
ranging graph information, simplifying feature dimensions,
reducing the model’s complexity, and improving robustness.

Typical pooling methods include max pooling and average
pooling. Max pooling takes the highest value within the
pooling area as the outcome, described as:

Pmax(i, j) = max
p,q∈window(i,j)

F (p, q) (7)

where Pmax is the max pooling matrix, window(i, j) is the
central point of the ith row and jth column within the pooling
area, and F is the matrix being pooled. In contrast, average
pooling calculates the mean value of features within the
pooling area, described as:

Pavg(i, j) =
1

m× n

∑
p,q∈ window(i,j)

F (p, q) (8)

where Pavg is the average pooling matrix, with m and n
indicating the number of rows and columns in the pooling
window, respectively.

For sEMG signal processing, max pooling focuses on local
features, highlighting critical aspects that are responsive to
abrupt changes or significant occurrences. Average pooling,
meanwhile, sums up broader information, providing a steady
summary of signal traits and effectively spotting overall signal
changes.

STFEN employs both max and average pooling after graph
convolution and concatenation to utilize their benefits. The
pooled results are then merged and processed through MLPs

to derive a spatial feature vector. This approach of using both
pooling types boosts the model’s capacity to generalize across
different sEMG signals.

V. RESULTS AND ANALYSIS

A. STFEN Performance on the ADSE Dataset

We first train the static sEMG source model within STFEN
and assess its effectiveness through a subject-wise cross-
validation approach on the ADSE static dataset.The results,
shown in Table I, showcase an average accuracy of over 93%,
proving the static model’s effectiveness as a transfer source
model.

After training the source model, the comprehensive STFEN
framework is trained on the ADSE dataset, using a cross-
validation approach to assess it as well. For comparison,
ten benchmark models, including traditional machine learning
methods like SVM and MLP, recent sEMG feature extraction
methods, along with two advanced sEMG transfer learning
methods, are evaluated on the ADSE dataset. The comparative
results, presented in Table II, highlight STFEN’s superior
classification performance against both contemporary sEMG
feature extraction methods and transfer learning methods on
the ADSE task. This comparison not only confirms STFEN’s
strong classification ability but also shows the overall ad-
vantage of deep learning over traditional machine learning
methods. Specifically, transfer learning-based methods show a
significant advantage, benefiting greatly from the use of static
information, compared to some end-to-end sEMG feature
analysis methods.

B. Performance of STFEN on the Modified NinaPro DB2

To assess STFEN’s effectiveness in recognizing sequential
sEMG actions across different datasets, the NinaPro DB2
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Fig. 5. Comparison of STFEN and Baseline Models based on Accuracy on the Modified NinaPro DB2

TABLE III
STFEN’S ABLATION EXPERIMENT BASED ON ACCURACY ON ADSE DATASET

Subject s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 Mean

Omission of Temporal Feature
Extraction Module

0.7238 0.7619 0.7524 0.7333 0.7810 0.7333 0.7619 0.7524 0.7905 0.7714 0.7562

Omission of Spatial Graph Feature
Extraction Module

0.8571 0.8571 0.8476 0.8190 0.8762 0.7714 0.8571 0.8286 0.8857 0.8286 0.8428

Substitution of Temporal Feature
Extraction with LSTM Method

0.7524 0.8000 0.7905 0.7619 0.8190 0.7619 0.8000 0.6952 0.8381 0.8095 0.7829

Substitution of Temporal Feature
Extraction with GRU Method

0.7048 0.7524 0.7143 0.6857 0.7905 0.7238 0.7429 0.6476 0.8381 0.8286 0.7429

GCN Utilizing Solely Static Graph
Adjacency Matrix 0.8571 0.9048 0.8667 0.8476 0.8952 0.8762 0.8762 0.8000 0.9143 0.9048 0.8743

GCN Utilizing Solely Dynamic Graph
Adjacency Matrix 0.8476 0.8667 0.8571 0.8286 0.8952 0.8286 0.8667 0.7905 0.9048 0.8857 0.8572

Sole Use of Max Pooling in GCN
Pooling Layer 0.8857 0.9143 0.8762 0.8667 0.9143 0.8762 0.8952 0.8381 0.9333 0.9143 0.8914

Sole Use of Avg Pooling in GCN
Pooling Layer 0.8476 0.8952 0.8857 0.8667 0.9429 0.8667 0.8952 0.8190 0.9238 0.9048 0.8848

Direct Processing of sEMG without
DFT

0.7429 0.7810 0.7524 0.7238 0.8095 0.7143 0.7810 0.6857 0.8190 0.7714 0.7581

STFEN(Ours) 0.8667 0.9143 0.9048 0.8762 0.9429 0.8762 0.9143 0.8381 0.9524 0.9333 0.9019

dataset [13] is chosen for a detailed study. We re-categorize
actions into sequential and static groups and modify data
segmentation to better represent the sequential features in
sequential sEMG signals.

The NinaPro DB2 dataset includes sEMG signals from 40
subjects performing 49 unique actions six times, with each
action lasting 5 seconds, separated by 3 seconds of rest. It
is recorded using the Delsys Trigno Wireless system with 12
leads at a 2kHz sampling rate.

Given the lack of explicit lead distance measurements in
the NinaPro dataset, we base on the spatial layout on the lead
setup during the DB2 data acquisition. The first eight sensors
are arranged in an arm band at equal distances, while leads
9 to 12 are placed on specific muscle areas. For STFEN’s
analysis, facilitating modeling of spatial relationships among
lead locations, this setup informs the establishment of the static

adjacency matrix Astatic as:

Astatic
ninaPro =



0.0 1.0 0.5 0.3 0.3 0.3 0.5 1.0 0.2 0.2 0.1 0.1
1.0 0.0 1.0 0.5 0.3 0.3 0.3 0.5 0.2 0.2 0.1 0.1
0.5 1.0 0.0 1.0 0.5 0.3 0.3 0.3 0.2 0.2 0.1 0.1
0.3 0.5 1.0 0.0 1.0 0.5 0.3 0.3 0.2 0.2 0.1 0.1
0.3 0.3 0.5 1.0 0.0 1.0 0.5 0.3 0.2 0.2 0.1 0.1
0.3 0.3 0.3 0.5 1.0 0.0 1.0 0.5 0.2 0.2 0.1 0.1
0.5 0.3 0.3 0.3 0.5 1.0 0.0 1.0 0.2 0.2 0.1 0.1
1.0 0.5 0.3 0.3 0.3 0.5 1.0 0.0 0.2 0.2 0.1 0.1
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.8 0.3 0.3
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.0 0.3 0.3
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.0 0.8
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.0



(9)

We conduct a comparative analysis between STFEN and
four benchmark models previously performing well on the
NinaPro DB2 dataset, as shown in Fig. 5. for accuracy
comparison. STFEN achieves the highest accuracy in 37 out
of 40 subjects, surpassing the other models. This comparison
confirms STFEN’s effectiveness and adaptability in recogniz-
ing sequential sEMG tasks, demonstrating its ability to extract
relevant patterns from datasets like NinaPro DB2, which are
originally designed for static action analysis.

C. Ablation Study on STFEN
An ablation study is carried out on the STFEN framework

to determine the impact of each component on its overall
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Fig. 6. Confusion Matrix of STFEN for Identification across All Subjects
in the ADSE Dataset: The vertical axis represents the true labels, while
the horizontal axis represents the labels predicted by STFEN.

effectiveness. By removing or replacing specific parts or
structures, we make corresponding adjustments to the rest
of the model. Nine variations of the model are evaluated: a.
Without the temporal feature extraction module; b. Without the
spatial feature extraction module; c. Substituting the temporal
feature extraction’s knowledge transfer with a 2-layer LSTM;
d. Substituting with a 2-layer GRU; e. Using only static
adjacency in GCN for spatial features; f. Using only dynamic
adjacency; g. Applying only Max pooling; h. Applying only
Average pooling; i. Bypassing DFT for direct sEMG feature
extraction.

Results, shown in Table III, highlight several key observa-
tions:

a) Spatial and Temporal Modules: Including both spatial
and temporal modules significantly improves movement de-
tection, underscoring their collective importance.

b) Temporal Feature Extraction: The knowledge transfer
method outperforms RNN-based algorithms like LSTM and
GRU networks in temporal feature analysis, emphasizing the
value of leveraging static sEMG knowledge to boost temporal
feature extraction.

c) Graph Structures in GCN: Employing both dynamic and
static adjacency graphs for spatial analysis offers a view of
spatial relationships in sEMG signals from more perspectives,
better than relying on just one type of adjacency graph.

d) Pooling Methods: While both Max and Average pooling
contribute to higher accuracy, Max pooling shows particular
efficacy with certain subjects, indicating it may better capture
local signal features. However, STFEN’s approach of using
both pooling methods consistently deliver competitive and
superior results, showcasing its more comprehensive ability
in feature extraction.

e) Frequency Band Energy Transformation: Extracting fea-
tures directly from sEMG signals without using DFT is less
effective than transforming sEMG signals into frequency band
energy, indicating DFT’s critical role in precise recognition of
sequential sEMG actions.

TABLE IV
TOP 5 DIGIT PAIRS MOST FREQUENTLY MISIDENTIFIED BY STFEN

Pairs Occurrences of
Misclassifications

0-6 16
1-7 15
7-8 14
2-3 13
2-8 12

D. Confusion Matrix Analysis

Evaluating STFEN’s ability to classify actions on the ADSE
validation set results in the confusion matrix shown as Fig. 6.
Table IV lists the top five digit pairs that are most frequently
confused. These misclassifications mainly fall into two cate-
gories based on their characteristics.

The first category includes digit pairs ’0-6’ and ’1-7,’ which
share a high degree of similarity. This similarity mirrors typical
difficulties in distinguishing handwritten digits, where alike
shapes might cause mix-ups. The second category includes
digit pairs ’7-8’, ’2-3’ and ’2-8’, characterized by the fact that
the trajectory of one digit is part of another. If only the sEMG
signals corresponding to the initial part of the trajectory drawn
for the digit ’8’ are acquired, it becomes easy to recognize the
drawing as the digit ’7’ or ’2’ (after all, based on the acquired
data, the subject indeed only drew a trajectory resembling the
digit ’7’ or ’2’). The same logic applies to the digit pairs ’2-
3’. Given the variability in the timing when subjects start the
action, there is a certain possibility of such incomplete data
acquisition occurring.

The identified misclassifications, mainly between digit pairs
with similarities or trajectory overlaps, are exactly extreme
cases in this task. Therefore, these mistakes can be considered
acceptable within the context of this study.

E. Inter-lead Correlation in the Final Layer GCN
Dynamic Adjacency Matrix

The duplication of STFEN’s dynamic adjacency matrix
from the final layer GCN during the learning process with
the ADSE dataset is shown in Fig. 7. Analysis of matrices
from 10 subjects reveals patterns of self-learned dynamic ad-
jacency, showing consistent yet unique inter-lead correlations,
highlighting three main observations:

a) Upper Arm Muscle Group Correlation: A significant cor-
relation is observed among five leads linked to the deltoid,
biceps, triceps, flexor carpi radialis, and extensor carpi radialis
muscles, highlighted within the red-boxed area a. This group,
particularly the four muscles excluding the deltoid, shows a
marked correlation across nine of ten subjects, suggesting their
combined action during digit drawing tasks.

b) Core Muscle Group Correlation: Leads linked to the lats
and pecs, highlighted within the orange-boxed area b, show
strong correlations across 9 of 10 subjects, pointing to a
coordinated activation pattern within core muscles during digit
drawing tasks.
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Fig. 7. Dynamic Adjacency Matrices of the Last Layer GCN for 10 Subjects: The red box denotes the upper arm muscles, encompassing the
deltoid middle fiber, biceps, triceps, flexor carpi radialis, and extensor carpi radialis; the orange box denotes the torso muscles, including the pecs
and lats; meanwhile, the purple box identifies a deeper interrelation between the pecs and triceps. The muscles corresponding to the leads of the
three boxes all show strong correlation inside.

Fig. 8. (a) Relationship between Sequential Temporal Features after Knowledge Transfer and Their Corresponding Trajectories in Space: Based
on the hand position probabilities identified from sEMG atom by the static sEMG model, the spatial position corresponding to each sEMG atom can
be calculated. By connecting these spatial positions in sequential order, the trajectory in space can be obtained. (b) Hand Position Probability Matrix
Obtained through Knowledge Transfer of Ten Digits. (c) The Visualization of Spatial Trajectories Corresponding to These Probability Matrices.

c) Deep Pattern Association between Triceps and Pecs: De-
spite the physical distance between their respective leads, the
triceps and pecs, highlighted within the purple-boxed area c,
exhibit a notable synergistic correlation across 8 of 10 subjects,
suggesting a deep interaction pattern that goes beyond simple
proximity of lead placement.

These insights confirm the dynamic graph structure of
STFEN’s ability to reveal spatial interactions between sEMG

signal sources, with correlations in upper arm and core mus-
cle groups reflecting anatomical and functional partnerships.
Moreover, the unexpected correlation between triceps and pecs
highlights STFEN’s ability to uncover complex spatial rela-
tionships, enhancing its classification accuracy. This analysis
highlights the model’s success in using dynamic inter-lead
connections to interpret sequential sEMG data accurately.

Unlike other subjects, Subject s8 exhibited no pronounced
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Fig. 9. (a) Dynamic Adjacency Matrices of Stroke Patients: The muscle synergy patterns in stroke patients are similar to those of healthy
individuals, showing significant internal correlation between muscles. (b) Visual Trajectories of Stroke Patients Drawing 10 Digits: Compared to
healthy individuals, stroke patients exhibit disorganized spatial trajectories, making it difficult to identify the digits they have drawn.

spatial adjacency characteristics between different electrodes.
Instead, all leads showed a strong adjacency relationship. We
believe this might be because this subject engages more mus-
cles in coordination during the process of drawing numbers, as
reflected by the dynamic adjacency matrix reflects. Therefore,
we conclude that Subject s8 does not impact the overall
effectiveness of STFEN in capturing spatial features.

F. Visualization of the Sequential Temporal Features

The process of extracting sequential features includes aver-
aging the predictions for hand positions from the static sEMG
model for each digit, as shown in Fig. 8(b). In this sequence
matrix, each column represents the predicted positions of a
sEMG atom, while the rows show the probability of the hand
being in center, up, down, left, or right. To make these results
clearer, we develop a new way to visualize them.

For each recognition result of an sEMG atom (pcenter, pup,
pdown, pleft, pright), we come up with a method to calculate
as:

x =
pright − pleft

pleft + pcenter + pright
(10)

y =
pup − pdown

pup + pcenter + pdown
(11)

where x and y are the coordinates of the position in space
corresponding to the sequential features.

These calculations help map the position of each sEMG
atom to a detailed spatial path by linking sequential points, as
illustrated in Fig. 8(a), leading to the trajectory visualization
of 10 digits in Fig. 8(c). This method calculates the x and
y coordinates separately, allowing the spatial distribution to
cover the full (−1,−1) to (1, 1) area, greatly improving the
clarity of trajectory visualization.

The trajectory visualizations clearly display the path char-
acteristics for each digit as interpreted by the static sEMG
network. This visualization validates the sequential feature
extraction capability of STFEN’s designed sequential feature
extraction module based on knowledge transfer.

VI. DISCUSSION

A. Comprehensive Review of STFEN
STFEN stands out from other sEMG feature extraction

models with its specialized focus on sequential sEMG signals.
It introduces a method for extracting sequential features that
benefits from transferring knowledge from static to sequential
sEMG signals, proving its effectiveness in identifying sequen-
tial features through different tests.

Additionally, STFEN specifically targets the gathering of
spatial data found in the connections between leads during data
acquisition. It develops a spatial feature extraction approach
using GCN, which utilizes both static and dynamic adjacency
matrices to represent physical distances between leads and
their signal similarity correlation. Experimental validations
highlight the enriched perspective these matrices bring to
sequential feature extraction.

Furthermore, STFEN’s implementation of GCNs and
knowledge transfer mechanisms enhances its interpretability.
The capacity to show intermediate results, such as sequential
features and changing spatial connections, sheds light on how
STFEN processes data, providing a clearer understanding of
its functionality. This attribute stands as one of STFEN’s
advantages over other sEMG models.

B. Prospects of STFEN in Rehabilitation Medicine
Using the STFEN framework, we carry out a study with

sEMG data from a subset of stroke patients, focusing on
sequential action tasks at a partner medical center. Taking
the data from one patient as an example, when analyzing
the dynamic adjacency matrix of the patient, as shown in
Fig. 9(a), we find that there is a muscle synergy relationship
in the adjacency matrix that is similar to that of healthy
people, which shows that the muscles of stroke patients can
still function normally. However, action trajectories derived
from sequential temporal features, as shown in Fig. 9(b),
reveal irregularities in the patient’s actions, and highlight the
difficulties the patient experienced in performing the sequential
action tasks.
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Rehabilitation medicine increasingly recognizes the value
of sEMG signal analysis in aiding recovery for patients, par-
ticularly those recuperating from strokes. The STFEN model’s
capability to detail muscle action features opens up valuable
possibilities for real-time monitoring and assessing rehabili-
tation progress. Furthermore, sequential sEMG signals could
control rehabilitative devices such as electrical stimulators,
enhancing patient engagement in their recovery process.
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