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Abstract—The traditional approaches in material research
and hardware design are insufficient to address the evolving
Operation and Maintenance (O&M) demands in contemporary
power electronics. Overengineering and data acquisition practices
lead to unsustainable costs and reduced profit margins. Digital
Twins (DTs), defined as real-time simulation models of physical
systems, emerge as promising solutions to meet stringent O&M
requirements. In power electronics, DTs offer significant potential
in thermal management, crucial for control performance, safety,
and system lifespan. This paper aims to analyze the development of
computationally efficient and high-fidelity DTs tailored for power
electronics applications, emphasizing their predictive reliability.
To achieve this goal, the proposed physics-based approach is
enhanced by integrating Data-Driven Artificial Intelligence (AI)-
based techniques. The predictive reliability of the DTs produced
through this workflow is then experimentally validated against
a power electronic converter designed for induction heating
applications. Additionally, the feasibility of real-time execution
is demonstrated, affirming the practical applicability of the
developed DTs.

Index Terms—Digital Twins, Power Converters, Real-Time,
Physics-Based, Data-Driven, Artificial Intelligence.

I. INTRODUCTION

RADITIONAL approaches in material research and hard-

ware design are no longer sufficient to meet the evolving
Operation and Maintenance (O&M) requirements of contem-
porary power electronics products and systems. The prevailing
industrial practice involves overengineering components and
acquiring extensive data, leading to unsustainable costs and
diminished profit margins.

The emergence of Digital Twins (DTs), characterized as
mathematical models capable of real-time simulation of a
system’s physical behavior, stands out as the most promising
solution to address the increasingly stringent O&M demands in
the power electronics market [1]]. The maturation of enabling
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technologies that unify hardware and software has ushered
in a new era, focusing on two key performance indicators
(KPIs): enhancing maximum functionality through control
performance [2] and enabling more precise and effective
predictive maintenance through increased information [3|.

Specifically within the domain of power electronics, the
most promising area for DT technology lies in thermal
management [4]. Temperature, particularly junction temperature
(T}), significantly influences control performance, safety, costs,
efficiency, and system lifespan [5], [6]]. While manufacturers
invest in advanced materials (e.g., SiC, GaN) to maximize
power density and minimize losses, a critical challenge remains
in the thermal management of these increasingly efficient
modules [[7]-[9].

Current thermal management relies on sensors like Negative-
Temperature-Coefficient (NTC) ones placed away from the
die junctions for engineering reasons, resulting in significant
latency and imprecise observations of junction temperature
dynamics [10], [11]]. This complicates the implementation
of high-performance thermal management control by system
manufacturers, who are forced to adopt oversized safety
margins, thereby flattening the added value and competitive
advantage of utilizing, for example, SiC Mosfet-based modules
over Si Mosfet-based ones.

Another critical reason for the importance of junction tem-
perature is aging models, coveted by power electronics system
manufacturers for providing predictive maintenance services,
enhancing product safety, and optimizing warranty periods [12].
Currently, the most accurate and reliable aging models are in
the hands of semiconductor module manufacturers, performing
power cycles (PC) and temperature cycles (TC) to extract
empirical and physics of failure aging models [13]. These
models estimate the remaining useful life (RUL) of modules,
classify major fault types (e.g., solder junction wear, wire
liftt bonding, etc.), and depend on the junction temperature
variation in a cycle (AT}) [13]. Various methods exist for
measuring junction temperature, but none are implemented in
production for obvious reasons [5]. Despite module suppliers
providing valuable aging models, system builders struggle
to utilize them due to the inability to estimate junction
temperature. Hence, real-time estimation of 7'j becomes crucial.
While literature explores various real-time junction temperature
estimation methods for power modules [14], [15], there lacks
a structured and unified methodology poised to become an
industry standard, a fundamental piece in constructing a DT
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for thermal management and predictive maintenance of power
electronics systems.

The current state-of-the-art for junction temperature estima-
tion remains thermal network models [[12f], with limitations,
especially for complex systems. Designing a thermal network
model without knowledge of the component geometry, i.e.,
without reverse engineering the power module, is challenging.
Some power module manufacturers provide thermal models for
T} estimation, but coupling them to the entire system and the
heat exchange model proves difficult. Thermal networks lose
physicality since the heat equation is not well represented
by an equivalent lumped circuit. High-resolution thermal
networks compromise real-time implementation, rendering
them computationally burdensome. Designing them is mostly a
manual process, requiring expertise that few engineers possess
in companies. Certain simulation software companies (e.g.,
Ansys, Siemens, Newtwen) are investing in tools capable of
reducing complex models like finite element models (FEM)
into Reduced Order Models (ROM) [16]. These ROMs can
be implemented on third-party hardware platforms for real-
time execution, striking a balance between accuracy and
computational complexity [17].

A DT transcends a real-time model estimating junction
temperature. It must adapt to changes such as material aging,
different operating conditions, manufacturing errors, exchange
data bidirectionally with the system through sensors and
control actions, predict scenarios, optimize control actions,
identify anomalies and hazardous conditions, and generate a
wealth of information to enhance future design and predictive
maintenance models [18]]. In this paper, we intend to analyze
the entire workflow for constructing a digital twin capable
of providing the functionalities necessary to improve control
performance and predictive maintenance capabilities—KPIs
essential to meeting the current O&M requirements in the new
generation of power electronics systems.

II. DIGITAL TWIN LIFE-CYCLE FOR POWER ELECTRONICS
COMPONENTS

In this section, a thorough discussion is conducted on the
principal constituents of a DT, encompassing its structure,
implementation methodologies, and operational paradigms.
Initially, the DT is founded solely upon the physics information
about the constituent entity, comprising geometric specifica-
tions, material characteristics, and mathematical models delin-
eating its physics dynamics. Subsequent phases necessitate the
compression of this informational reservoir to allow real-time
execution of the model on a designated microcontroller. To this
end, the judicious application of Model Order Reduction (MOR)
techniques is imperative, ensuring an optimal equilibrium
between model fidelity and computational exigency, particularly
concerning memory allocation and computational complexity
inherent to the microcontroller environment [19]].

Following the reduction process, incorporating a stochastic
element rooted in empirical data becomes imperative to
reduce unavoidable discrepancies between the physics model
and real-world phenomena. These discrepancies typically
stem from uncertainties in parameters, dynamic and time-
evolving boundary conditions, and approximations introduced

by the reduction strategies. Given the stochastic nature of
electronic component production processes, the integration of
data-driven models alongside physics formulations emerges
as a robust strategy, affording a hybrid model architecture
that maximizes the generalization and accuracy of power
electronic device representations [20], [21]. Upon deployment
within a microcontroller framework, the resultant hybrid
model furnishes real-time insights of both quantitative and
qualitative nature, informing control strategies with critical
information such as the identification of temperature hot spots,
often situated within inaccessible points like die junctions,
thermal exchange dynamics with cooling system, and temporal
temperature prognostications. This real-time information is
thereby a powerful feedback to be used by thermal management
processes, transcending the limitations so far due to lack of
adequate sensing. Finally, the expansive repository of real-time
insights thus unlocked can be seamlessly disseminated across an
entire network of interconnected systems, facilitated by cloud
infrastructure integration. This integration engenders enhanced
analytical capabilities, particularly concerning degradation
and aging metrics, thereby expediting the acquisition of a
dependable predictive maintenance model, which is a requisite
in contemporary market exigencies aiming to curtail operational
costs and minimize downtime.

A. High Fidelity Models

The model of a Power Converter module has an intrinsically
multi-physics nature since, in general, electric, thermal, and
fluid dynamic effects must be considered to define the overall
behavior of the device. With the final objective of generating
an embeddable and thus computationally cheap DT of the
device for the real-time monitoring of critical quantities (e.g.,
temperature), dedicated modeling strategies must be used to
consider these three physics and the coupling between them.

1) Electric (Loss) Model: The Electric Loss model of the
power converter relies on either datasheet specifications or
experimental measurements. The methodology, as explicated in
[22], delineates a systematic approach to asses both switching
and conduction losses.

Conduction power losses are computed by directly multi-
plying the collector current (I¢) by the corresponding voltage
(Ucg) from the datasheet, thereby determining Py.conp
depending on the current. Furthermore, the method’s advantage
lies in accurately approximating the loss function with second
order polynomial fitting.

Junction temperature dependency becomes paramount in
estimating losses dynamically varying with the component’s
temperature and, so, temperature-dependent coefficients can be
incorporated into the polynomials:

Pvconp(Ic,Tj) =c-Ic +d- I3, (1)

where ¢ and d are, in case of a 2nd order polynomial fitting:
. C(Tj) =co+C 'Tj+CQ'Tj2
o d(T}) =d0+d1~Tj+d2-Tf

with ¢; and d; to be defined, see [22].
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The accuracy of this approximation increases with a greater
number of recorded operating temperatures, allowing for a
higher-order approximation.

Switching losses in power electronics are dependent on
variables such as current, junction temperature, operating
voltage, and switching frequency. An effective evaluation
procedure begins by extracting the total switching energy
(Btot = Eon + Eofr) from referenced datasheets, and sub-
sequently, the power loss expression is derived from this
data. Then, these losses are systematically correlated with
the respective variables, employing a method similar to that
utilized for conduction losses. [22]]

2) Thermal Model: The thermal model of a Power Converter
must be capable of providing the dynamic evolution of the
temperature in critical points of interest, e.g., the junction
temperature. The thermal model is described by the following
well-known advection—diffusion equation, i.e.,

oT
Pep 7 +pcpv - VT =V - kVT = g, 2)

where p is the density, ¢, is the heat capacity at constant
pressure, 7' is the temperature, k is the thermal conductivity, g
is the power density, and v is the velocity field (which is not
zero only in the fluid region). Power losses, i.e., ¢, are obtained
from the Electric (Loss) Model described in Section |[I-A1|and
the velocity field v of the coolant (if any) is provided by the
Fluid Dynamic Model described in Section

In (@), the dependence w.r.t. the position has been omitted
for simplicity. Equation (2) is then complemented by boundary
conditions valid on the border of the model (012), e.g., Dirichlet,
Neumann, or, more frequently used, convective condition, i.e.,

n-kVT = h(Top — T), 3)

where n is the unit normal vector of the boundary of
the motor, h is the convective coefficient, and T,.,; is the
external/ambient temperature. Depending on the case, radiation
boundary conditions can be included too. However, considering
them makes the problem non-linear, and this is in general
avoided. The interested reader can refer to [23]] for more details.

To generate a numeric dynamic model of (including
boundary conditions), Finite Element Method (FEM) is the
most widely used approach. Thus, a computational model of
the Power Converter is generated and a mesh is constructed.
The discretized model can be finally written as [24]

dx

ME + (K +A+ H)X = Qpp + QcTexts “)

where M is the mass matrix, while K, A, and H are
the stiffness matrices related to conductive, advective, and
convection terms, respectively. p is the power loss array of
dimension N, storing the losses (in [W]) for each domain (see
Section [[I-AT)), Qp, is the N x NN, matrix which maps p into
the rhs of the thermal model, and Q. is the array mapping the
external temperature 7,.,; into the rhs of the thermal model
related to the convective boundary condition.

When the device is liquid-cooled and therefore the advection
term is included, it is well known that advection-dominated
computational models such as the one in () are particularly
challenging from the numerical point of view: even fine meshes

lead to Peclet number Pe > 1, which results in large node
to node oscillations. To remove such oscillations, standard
stabilization techniques can be adopted (e.g., based on Stream-
line Upwind Petrov Galerkin (SUPG) [25]]). Alternatively, one
can eliminate the advective term from the thermal model and
replace it with equivalent boundary conditions, specifically
convective boundary conditions featuring a substantially high
convective coefficient [26]]. While this approach streamlines
the computational complexity of the model, it concurrently
compromises the model’s physics accuracy.

Finally, @) is discretized in time by applying, e.g., a
backward Euler scheme, and it is written in state space form ,
ie.,

X = Axp_1 + Bug_y

yi = Cxg ’ ©)
where k indicates the time-step related to the kAt instant, At
is the time step, and y is the vector storing the temperature of
interest. It is worth noting that more advanced time-stepping
techniques may be applied to discretize (@). However, advanced
time-stepping techniques may not be compatible with the final
on-chip implementation of the DT. The backward Euler scheme
is instead simple enough to be implemented in a standard
microprocessor and, by choosing a small enough value of At,
a good level of accuracy can be guaranteed.

3) Fluid Dynamic Model: Often, Power Converters for
high-power applications such as automotive ones have active
cooling systems to dissipate the heat generated, e.g., based on
forced fluid or air flows. Fluids allow to reach higher power
densities but generally require a more expensive and complex
system (pumps, filters, radiators), thus, when possible, the
forced-air solution is preferred. A computational fluid dynamics
(CFD) simulation is required to study the velocity and pressure
distribution in the fluid domain. Time domain simulations at
different flow rates generally can be carried out under the
following assumptions:

« in-compressible fluid flow: this simplification is true for
fluids and could be adopted also for gases when there are
mild pressure changes and temperature variations;

o turbulent flow: k£ — w Reynolds-averaged (RANS) turbu-
lence model;

o wall functions with quadrangular fluid boundary mesh;

o P1 + P1 discretization of velocity and pressure;

e Streamline + crosswind diffusion numerical stabilization;

For instance, the £ — w formulation based on turbulent kinetic
energy k and specific dissipation rate w can be used:

p% +p(u-Vk) = P, — pB*kw + V- (uo*urVk)
p%‘; + p(u-Vw) = a2 P, — ppw? + V - (poprVw)
(6)

For the full definition of symbols, the reader is referred to [27].
It is worth mentioning that such simulations can result in high
computational effort since the formulation is nonlinear and
fine meshes are needed to achieve convergence. Because of
these complexities, a common simplified approach is to entirely
avoid the CFD simulation by substituting the coolant/wall heat
exchange with an equivalent condition as previously mentioned
[26]].
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B. Model Order Reduction

The main property that differentiates a DT from a high-
fidelity model is the possibility of implementing the DT in-
cloud or on-the-edge hardware for the real-time (or more than
real-time) execution of the model, allowing a mutual exchange
of information between the physical asset (i.e., the Power
Converter) and the corresponding DT. Since, in this paper, DTs
are aimed at the real-time monitoring of critical quantities,
in-cloud implementations alone may not be a reliable solution,
due to unavoidable communication delays. Fortunately, the
recent advancements in microprocessor technology pave the
way for on-chip DTs, where the digital replicas are directly
embedded in the onboard available hardware.

Obviously, due to their large dimension, the high-fidelity
models described in the previous section are not directly
compatible with the on-chip implementation. To solve this
problem, MOR techniques can be used. Indeed, MOR is an
enabling technology well known in literature and ripe for the
industrial ecosystem with new commercial tools.

While the Electric (Loss) model is already compatible
with the on-chip implementation, for the real-time monitoring
of critical quantities such as the junction temperature, the
discretized state-space thermal model, i.e., , must be solved
in real-time. A thermal model of a realistic Power Converter
module resulting from FEM discretization may have thousands
or even millions of unknowns. Thus, its dimensionality must
be reduced to allow on-chip implementation. To do that,
MOR strategies based, e.g., on Balanced Truncation, Moment
Matching, or Proper Orthogonal Decomposition can be used.
The interested reader is referred to, e.g., [28] for more details
about different MOR strategies, which can be applied to both
continuous or discrete models. Regardless of the adopted
technique, MOR allows for projecting the original Full Order
Model (FOM) into a reduced order space, i.e.,

R 1}?1;—1 + Buk—1’ o

yi = CXy
where A, B, and C have been obtained by projecting the
corresponding FOM matrices into the reduced order space,
while X is the reduced order state, i.e., x ~ VX, where V is
the projection basis function constructed by the adopted MOR
strategy.

Concerning the fluid dynamic model, it is worth noting that
the computational effort for this kind of simulation is high,
which poses challenges to obtaining a reduced CFD model
that can be computed in real-time. Fortunately, in industrial
applications, the flow rate is kept constant, or it varies in a pre-
scribed limited range. Thus, the velocity field v (which is used
for the advection term of the thermal model) can be evaluated
offline for a set of prescribed conditions and the thermal model
can be parameterized to consider different cooling conditions.
Of course, this may introduce an unavoidable approximation
but allows for avoiding solving in real-time the CFD problem,
which may be unfeasible for on-chip implementation. It is worth
noting that the literature about MOR for CFD problems is vast
and constantly growing [29]. However, due to the complex
nature of the CFD problems, incorporating fluid-dynamics

N Yk .
Uy ( Xk = AXk-1 + BUg
yi = CXi Xk
UIC(OI'I" J
Xk-1
|—p] II Zilll

corr

Yi

Fig. 1: Hybrid Model Architecture.

ROMs in standard microprocessors for real-time solutions is
still a challenge.

C. From Model as Designed to Model as Manufactored

This section elucidates a pivotal aspect of the research,
pivotal in clarifying the essence of the digital twin concept
within power electronics. Initially, a model, no matter how
complex it is, remains an approximation of reality, encountering
several challenges in representing the complete dynamics
of power electronic systems [30]]. These challenges include
geometric approximations, limitations of numerical methods
in solving partial differential equations governing thermal and
electric phenomena, uncertainties in material properties, and
the approximations introduced by MOR techniques. Moreover,
manufacturing processes introduce unique characteristics into
each electronic component, further complicating model fidelity.
Additionally, aging, wear, and operational conditions make
material parameters time-varying, posing additional modeling
challenges. To address these complexities, a comprehensive
methodology is proposed, adopting physics-based and data-
driven approaches. This hybrid model architecture aims to
enhance accuracy and robustness in monitoring and controlling
power electronic systems, particularly when integrated within
the control and management units.

The proposed hybrid model architecture integrates a reduced
physics-based model with two Feed Forward Neural Networks
(FFNNSs). The first FENN serves to correct uncertainties in
model inputs, while the second FFNN corrects the model’s
output, effectively mitigating errors in the physics-based model.
Notably, the architecture is calibrated based on a substantially
reduced experimental dataset, leveraging intrinsic information
from the physics-based model to streamline training and reduce
computational complexity suitable for real-time integration on
a microcontroller or embedded platform.

Training FFNNSs involves optimizing model parameters and
employing techniques such as gradient-based optimization,
regularization methods, and dropout to prevent overfitting.
Widely-used frameworks such as PyTorch and TensorFlow
provide a robust ecosystem for FFNN development, offering
flexibility, extensive support, and efficient computation. Careful
selection and application of optimization algorithms, regular-
ization techniques, and appropriate libraries are essential for
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Fig. 2: Test Bench.

effective training and calibration of FFNNSs tailored to power
electronic applications.

Ensuring the generalization capability of the final model
architecture is paramount for robust performance in real-
world power electronic applications. Integrating physics-based
models with FENN architectures enhances interpretability and
promotes better generalization to unseen data by incorporating
domain knowledge and fundamental principles. Maintaining
physical constraints within the model architecture prevents
overfitting and increases reliability, enhancing confidence in
the model’s performance across diverse operating scenarios
and environmental conditions.

D. On Chip Implementation

The last step, which is crucial to defining the digital twin as
such, involves real-time implementation on a microcontroller,
specifically on the hardware platform controlling the actual
converter. Once this step is achieved, the digital twin and its
corresponding real counterpart have the ability to exchange
data and information in a bidirectional flow through sensor
readings and control actions. Therefore, it is important to ensure
the following functionalities: synchronization of feedback and
control actions with the integration time step of the digital
twin, which partly consists of a state-space system to be
integrated over time; stability properties of the final digital twin
architecture, e.g., checking the eigenvalues of the state matrix
A: and finally, numerical conditioning of the model matrices
to avoid truncation and rounding errors when implementing
the model in a fixed-point 32-bit architecture, for example.

III. CASE STUDY: POWER CONVERTER FOR INDUCTION
HEATING APPLICATIONS

A. Test Case Description

In this section, we describe the experiments conducted to
test and validate the effectiveness of the DT in representing the
physical behavior of a power electronic converter for induction
heating applications in the home appliance sector. The converter
consists of a diode rectifier and two single-phase half-bridge

Fig. 3: IR Camera.

inverters connected to different coils. To verify accuracy, the
adopted measurement system utilized an infrared (IR) thermal
camera on the open device, as depicted in Fig[2] Specifically,
the IR camera was used to observe temperature hotspots on
the IGBT cases, output pins, and heatsink near the soldering
points, providing a granular temperature map around the point
of interest, i.e., the junction temperature which cannot be
directly measured Fig[3]

Today, particularly given the shortage issues faced by indus-
tries, it is crucial to have multiple semiconductor component
suppliers. However, this increases the variability of device
performance, making monitoring and control increasingly
challenging. In this study, three different suppliers of discrete
power modules were adopted. However, validating and certi-
fying firmware with three different DT systems, each tailored
to a different semiconductor module supplier, proves to be
cumbersome. Therefore, developing a single integrated model
that accurately and reliably represents a power electronic system
potentially employing components from various suppliers
in serial production poses a technological challenge. In the
following, it is described how this is accounted for.

B. Applied Approach

For the specific application, a nominal conduction and
switching loss model, which averages the behaviors of different
datasheets of the components, has been designed as described
in the previous section. The outputs of the loss model constitute
part of the inputs of the thermal model, specifically the heat
sources. The thermal model comprises a 3D finite element
thermal model that solves the heat equation neglecting the
radiation component, making MOR techniques more effective.

To reduce the finite element model, commercial software
produced by Newtwen® has been adopted, implementing MOR
techniques, as mentioned in the previous section, optimized
for finite element matrices, which are typically large, sparse,
and numerically ill-conditioned.

The initial high-fidelity model comprises approximately 10°
Degrees of Freedom (DoF), see FigH] while the final reduced
order model (ROM) (obtained by using the Moment Matching
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Fig. 4: Full Order Model. Temperature distribution in °C.

technique [31]], [32] with a convergence tolerance of 1073 on
the relative residual of the rhs of the problem) comprises only
20 DoF and is capable of describing the temperature at each
node of the full order model (FOM) mesh with a maximum
error of 2.5 Kelvin.

However, a single thermal model is not sufficient to define
a DT capable of accurately estimating the behavior of the
real device, which can incorporate different components and
operate under various load and boundary conditions, including
varying cooling and environmental conditions over time. To
address this issue, the physical model has been augmented
with a data-driven model consisting of two feedforward neural
networks (FFNNs) with distinct functions. As depicted in Fig[T}
the first neural network takes as input the outputs of the loss
model and the thermal dynamics of temperature estimated by
the thermal model at over 10 nodes of the mesh. Its output is
the correction of the input vector for the thermal model, aiming
to mitigate the errors of the loss model and uncertainties of
boundary conditions, such as cooling fan speed and external
temperature for convective heat exchange. In addition, the
second neural network serves to correct the final estimates of
the thermal model-FFNN1 architecture, mitigating model errors
stemming from material parameter uncertainties such as thermal
capacity and conductivity, as well as variance due to multiple
suppliers of power modules. Therefore, FFNN2 acts as the
data-driven discrepancy model that enhances the generalization
of the DT, maximizing its capability to represent the system
under study and analysis. This hybrid model architecture allows
for training the neural networks on a reduced dataset and,
importantly, designing them with a limited number of layers
and neurons, making them suitable for real-time implementation
on microcontrollers.

C. Model Accuracy and Computational Effort

The calibration dataset was generated from six different
tests at various current levels and load conditions for each type
of discrete power module supplier. In Figs. [5] - [I0] one can
observe the results of the calibration. The loss function used
is the Euclidean norm of the error between measurement and
estimation at each moment of acquisition during the heating
transient at three different geometric points corresponding to
the temperature hot spots on the IGBT cases and the positioning
of NTC sensors in the system. This allows for appropriately
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modeling the thermal gradient in the area of interest to make
the estimation of junction temperature as reliable as possible,
which is engineering-wise impossible to measure in the case
of discrete power modules.

Maintaining a certain degree of generalization in the model
architecture is essential to prevent overfitting and increase
reliability. Overfitting occurs when the model learns to mem-
orize training data rather than capturing underlying patterns,
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leading to poor generalization. By incorporating physics-based
constraints, the model is less likely to extrapolate erroneously
and more capable of making accurate predictions in diverse
operating scenarios. To evaluate the generalization capability of
the final model architecture, it is crucial to test its performance
in operating scenarios never seen during the training phase.
This ensures that the model can effectively extrapolate beyond
the training data and provides confidence in its reliability for
real-world applications. For this purpose, in Fig. [I1]and Fig. [[T]
one can observe the two validation tests at different operating
conditions that have been used to check the generality of the
approach, which is crucial for the reliability of the final model
architecture to be implemented in the production firmware.
The total of the FFNNs parameters is 237 adopting Leaky
Rectified Linear Unit (ReLU) activation functions, suitable
for embedded implementation, while the reduced state space
model is described by the following matrices: A = [20X 20],
B = [20X5], C = [10X20]. Further, the entire model
architecture is executed on an STM32-based evaluation board
with an execution time of about 100 us (65% of the overall
time is required for the computation of the ROM and the
remaining 35% for the data-driven part, i.e., FFNNs) and 5
kB memory footprint in total.

Figs. H12] show the high accuracy of the developed physics-
based data-driven augmented DT w.r.t. the measurements
collected from three power converters, each one equipped
with one of the three discrete power modules. Moreover, it
is worth noting that, because using three different IGBTs,
the temperature measured in the three power converters is
very different, discrepancies of about 20 K can be spotted by
comparing results of, e.g., Fig. 5} Fig. 8] and Fig. 9] However,
for all of these conditions, the physics-based data-driven
augmented DT is in very good agreement with measurements.
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D. Discussion and Added Value

The real-time feasibility, accuracy, and level of generalization
achieved thus allow for the implementation of a virtual
temperature sensor system in production, which can be utilized
for the following strategies:

« Enhancing power derating performance by finely modu-
lating switching frequency and current to maximize the
product’s state of function, i.e., increasing the functional
burden of components by reducing safety margins through
continuous monitoring of junction temperature;

« Increasing the quantity and quality of relevant information
through virtual sensors, e.g., estimates in inaccessible
points, spatial temperature gradients, cross-play of data
between virtual and real sensors, to develop aging and
degradation models and identify reliable patterns with
reduced costs and time.

Moreover, exploiting in real-time a computationally efficient
and high-fidelity DT allows for unlocking advanced control
strategies and predictive maintenance as shortly discussed in
the following.

1) Thermal Management Control: Real-time monitoring of
junction temperatures in semiconductor power modules offers
a paradigm shift in power electronics control strategies by
minimizing reliance on traditional safety margins. Conven-
tionally, control strategies incorporate wide safety margins to
accommodate uncertainties, relying on measurements from
Negative Temperature Coefficient (NTC) sensors, which often
lack precision and dynamic responsiveness regarding junction
temperatures. By contrast, real-time junction temperature moni-
toring provides accurate and dynamic insights into the thermal
behavior of critical components. This enables precise control
of derating mechanisms, allowing for proactive adjustments
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in operating parameters such as switching frequency and
maximum currents. With reliable real-time junction temperature
estimation, control loops can be implemented to dynamically
optimize system performance while ensuring safe thermal
operation. By reducing reliance on conservative safety margins
and leveraging real-time temperature data, power electronic
systems can operate more efficiently and reliably. This approach
not only maximizes performance but also minimizes downtime
and maintenance costs associated with overheating issues. Thus,
real-time junction temperature monitoring represents a pivotal
advancement in power electronics control strategies, enabling
high efficiency, reliability, and performance optimization [33].
2) Predictive Maintenance: The physical modeling of
failures involves analyzing and modeling actual failure mech-
anisms, such as semiconductor aging under thermal cycling.
Typically, calibrating physics-based lifetime models requires
only a few power cycling tests. Consequently, the Physics-of-
Failure (PoF) approach is emerging as a novel methodology
that enhances lifetime estimation and allows for the integration
of reliability engineering into the development and research
cycles of the overall design process [34]. This approach has the
potential to significantly enhance the understanding of failure
processes and contribute to the overall robustness of power
electronics converters. It is crucial to note that both empirical
and PoF aging and degradation models are intricately linked to
the junction temperature swing—the critical state variable that
profoundly affects aging phenomena such as solder degradation
and wire bond lifting [13]]. The integration of DTs directly into
the products themselves, facilitating bidirectional data exchange
through sensors and control actions, represents a significant
advancement in predictive maintenance strategies [34]]. Real-
time monitoring of the junction temperature swing introduces
a pivotal element by enabling the utilization of specific aging
models, thereby augmenting the quality and quantity of data
access. This enhanced data granularity and accuracy empower
ML/AI algorithms to discern intricate degradation patterns and
anticipate impending failures more precisely. Consequently,
this technological synergy fosters the development of more
robust and effective predictive maintenance strategies, elevating
the reliability and longevity of power electronics converters.

IV. CONCLUSIONS

In this paper, a comprehensive approach to constructing
highly accurate and computationally efficient Digital Twins
(DTs) of power electronics applications for the real-time
monitoring of critical temperature has been proposed. Physics-
based models are the starting point of the proposed work-
flow, that are then reduced by using Model Order Reduction
techniques to make the DT compatible with real-time execution
on microprocessors. Finally, the real-time DT model is aug-
mented by using Data-Driven Artificial Intelligence (AI)-based
technique to improve its predictive reliability.

The effectiveness of the approach is verified using real-world
power electronic converters intended for induction heating
home appliance applications. These converters incorporate
IGBTs sourced from various suppliers. Due to industry-wide
supply shortages, it is common for manufacturers to utilize

components from different suppliers, resulting in potential vari-
ability between otherwise equivalent products. Consequently,
model-based monitoring becomes more complex. Nevertheless,
the physics-based Al-augmented DT developed through the
proposed approach exhibits excellent predictive reliability even
in such realistic scenarios. This underscores the maturity
and practical applicability of the proposed methodology in
addressing challenges encountered in industrial settings.
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