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Abstract

Methodologies inspired by physics-informed neural networks (PINNs) were used to forecast observations recorded by stationary

ocean buoys. We combined buoy observations with numerical models to train surrogate deep learning networks that performed

better than with either data alone. Numerical model outputs were collected from two sources for training and regularization:

the hybrid circulation ocean model and the fifth ECMWF reanalysis experiment. A hyperparameter determines the ratio of

observational and modeled data to be used in the training procedure, so we conducted a grid search to find the most performant

ratio. Overall, the technique improved the general forecast performance compared with nonregularized models. Under specific

circumstances, the regularization mechanism enabled the PINN models to be more accurate than the numerical models. This

demonstrates the utility of combining various climate models and sensor observations to improve surrogate modeling.
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I. INTRODUCTION25

OCEAN parameter forecasting is studied for various applications, like climate modeling,26

marine life population surveying, and water quality monitoring. There is a clear need27

across industries to have fast and far-reaching forecasts. As such, research and improvements in28

ocean and climate modeling tools have continued to be interesting and necessary in literature.29

Well-studied numerical solutions for this task include Navier-Stokes and advection-diffusion,30

which are formulated as sets of partial differential equations (PDEs) for modeling flow systems.31

Building primitive equations into a more complex model yields global ocean and climate models32

for accurate, full-coverage simulations [1] [2] [3]. The initial values and boundary conditions33

of the modeled system are important for accurately modeling physical behaviors in this way34

[4]. Initial values are recorded as sparse observations across the world’s oceans using different35

methods. These methods include free-floating buoys that record data by following ocean currents,36

stationary buoys for monitoring fixed locations, and satellites for collecting global imagery [5].37

As the viability of the modeled forecasts greatly depends on accurate estimations of the initial38

values, data assimilative systems have been a point of research, and assimilating observations39

with numerical models has shown improved results [6]. In the case of the United States Navy, re-40

searchers have developed the global coupled atmosphere-ocean-sea ice forecasting system called41

the Navy Earth System Prediction Capability (Navy-ESPC) where modeled data is assimilated42

with observations for an improved result [7]. However, observations can be missing such that43

there is no data availability. In this situation, the data assimilation scheme cannot be taken44

advantage of. Therefore, there exists some motivation to generate discrete observation forecasts45

for their integration into an assimilation pipeline. To this end, we investigate a generalized46

procedure to predict sparse ocean observation values.47

Surrogate deep learning models are trained using available historical data to model a system48

given prior input values. The main benefit of this technique is that forecasts are generated more49

quickly than when evolving a numerical model. Recurrent network architectures like long short-50

term memory (LSTM) networks and Transformers are used to propagate information forward51

when making long-term predictions, making them popular choices for modeling ocean parameters52

as surrogate models [5]. When surrogate modeling ocean parameters, data is required from53

recorded observations, numerical model outputs, or both. In this work, we take particular interest54

in two data assimilated numerical models which provide training and regularization data. The55
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Hybrid Circulation Ocean Model (HYCOM) is a hybrid isopycnic model which sees improvement56

over its predecessor in shallow water and unstratified ocean regions. [1]. ERA5 is the fifth57

reanalysis experiment of the European Centre for Medium-Range Weather Forecasts (ECMWF)58

model for global climate and weather features. [2].59

By combining the numerical models with buoy-collected observation data, we show how a60

physics-regularized approach can be used to improve observation forecasting. Thus, we consider61

physics-informed neural networks (PINNs) for approximating numerical models to accurately62

forecast a single discrete point (i.e., an observation). A PINN is a neural network which is63

regularized at training time by applying penalties in the loss function. The penalties are scored64

by comparing adherence to a PDE-based numerical model [4]. We investigate if the forecasting65

result of real-world sensor data collected by stationary ocean buoys can be more accurately66

forecasted when regularized by the prior mentioned numerical models. Since reanalysis data67

exists for many ocean and climate features, we use the high-quality numerical model outputs to68

regularize our PINN model.69

As far as we know, we are the first to integrate HYCOM and ERA5 data as a regularizing70

source in a PINN-inspired network. We show that the physical models may be used with71

recorded buoy data to provide more stable long-term predictions due to the regularization support.72

Our methodology differs from other PINN research by modeling only observations and, more73

importantly, by the way in which we implement the loss function. These differences will be74

discussed further in the upcoming Related Works section. To assess our models, sea surface75

temperature (SST), gust strength, and air pressure are sparsely forecasted using our technique.76

The main contributions of this paper are as follows. We train deep learning models to recursively77

forecast physical parameters as recorded by free-floating ocean buoys. We define a custom78

loss function to use numerically modeled data and observation data as sources for training79

physics regularized models. The methodology is capable of handling situations where a physical80

parameter is available from both sources or a single source. When both sources of data are81

available for a feature, we show how the surrogate may be trained using a ratio of the training82

errors from each source. The most performant surrogate for the test data is found through a grid83

search of the static regularization term, λ, which controls the ratio of errors. We demonstrate84

the flexibility of PINNs to combine different numerical models using a surrogate deep learning85

model, which outperforms the non-regularized deep learning models. We discuss the numerical86

models and their effect on the rolling forecast ability of our surrogate model for up to 24 hours.87
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The rest of this paper is formatted as follows: II. Related Works; III. Methods; IV. Results; and88

V. Conclusions.89

II. RELATED WORKS90

Ocean surrogate models have been advancing with the advent of deep learning, and more91

refined machine learning approaches [5][8]. Research into deep learning surrogate modeling of92

SST shows promising results as SST can be forecasted as discrete points [9], as a field [10], or93

as a super-resolution field [11]. Instead of directly solving intractable formulations like Naiver-94

Stokes or other prognostic equations for ocean modeling, a data-driven surrogate model is trained95

using the substantial amounts of historical training data available via numerical models or raw96

observations [12]. The use of observation assimilated models to train deep learning surrogates97

has been seen multiple times using both HYCOM [13][14] and ERA5 [15][16][17] models.98

Through back propagation a deep learning model learns a parameterized representation of the99

underlying physical phenomenon which are otherwise modeled numerically. Surrogate models100

may be preferred over traditional models due to faster outputs once the model has been trained101

[8]. For example, in [18], approaching hurricane parameters are forecasted in seconds. Machine102

learning surrogate models will generally have more numerical instability when compared to103

numerical models in forecasting experiments. This speed and accuracy trade-off is seen in104

the conclusions of surrogate modelling studies for data assimilation in dynamic subsurface105

flow [12] and regional wind/wave forecasting [19]. In both papers, the forecast accuracy was106

similar or lower than numerical models, but the computational speed was greatly improved.107

One keynote on numerical stability and model accuracy is that the generalization of machine108

learning surrogate modeling is not assured for all cases. Authors observe the stability difference109

in operational planning with dynamic constraints where the forecasting stability is very good for110

some deep learning surrogate models but unstable when using other machine learning techniques111

[20]. This forecasting stability problem is also considered in [21] where outputs of physics-112

based numerical models are combined and used as supervised learning training sets to promote113

more accurate forecasts than when used independently. Furthermore, the surrogate modeling114

task can be used with data assimilation to correct numerical model error in an online fashion115

[22]. As such, surrogate models have a place among the more carefully calculated simulation-116

based numerical models, like HYCOM and ERA5. This is especially true in applications where117
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numerical solutions are too complex or computationally intensive for real time analysis and the118

acceptable error threshold is high.119

Physics-informed neural networks are referred to as such because they leverage physical120

constraints within the model’s loss function during training to enforce convergence to governing121

physical laws. This type of network was popularized in the deep learning community by Raissi122

et al. in 2017 and 2019 [23]. The introduction of differential equations that define physical phe-123

nomenon to the training procedure is found to improve the model’s resilience to noise [24]. PINNs124

are regularized in training by comparing model performance to the adherence of the introduced125

PDEs while also fitting data points to unique solutions [25]. The result of these forecasting126

models is that we can incorporate noisy data into existing algorithms, ignore complex mesh127

generation, and tackle high-dimensional problems governed by parameterized PDEs. Originally,128

research has focused on surrogate modeling with PINNs for solving systems governed by the129

Burgers’ and Navier-Stokes equations [26]. PINNs have recently been investigated in industry130

informatics settings such as modeling flow equations for ocean models [24], modeling crack131

propagation [27][28], modeling leakage [29], modeling faults [30], and modeling electric loads132

[31]. Forecasting SST is commonly found as a full-coverage modeling problem combining either133

generative models [32][33] or convolutional neural networks [34] with various PDEs. Continual134

discussion on PINNs and the types of equations usually solved can be reviewed in [4] and [35].135

We have not seen any other works that use a ratio of numerical model data and observations to136

train and regularize a deep neural network for surrogate modeling. Our methods share similarities137

with [21], who utilizes numerical models as training data for surrogate models. However, we138

employ our PINN-inspired approach to regularize models by combining both observations and139

numerical outputs. Furthermore, our work differs methodologically from the prior mentioned140

PINN research in two significant ways. First, there is no differentiation or simulation step to solve141

selected PDEs within the surrogate training procedure. This is the case because the numerical142

model pipeline is too computationally intensive for this to be feasible. Instead, the selected143

climate and oceanography models, HYCOM and ERA5, have already undergone comprehensive144

modeling and data assimilation processes which provide high quality, historical simulation data.145

Using the pre-computed data instead of directly solving PDEs means the numerical model can be146

arbitrarily complex and we do not need to implement the formulation for use in our framework.147

The second divergence is the role of the hyperparameter λ within the PINN loss function. The148

traditional PINN training loss function sums the performance of the surrogate model and the149
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divergence when compared to the numerical solution of selected PDEs. In that case, λ is used150

as the multiplicative weighting term to determine how much of a contribution the divergence151

from the numerical solution has on the final loss output. Instead, we use λ as a mechanism152

to control a weighted ratio of observation versus modeled data in training. This ratio of loss153

from multiple sources improves the training process when numerical data, observational data, or154

both are noisy. The proposed buoy forecasting task is inspired by [36], but we forecast multiple155

buoy parameters, test additional numerical models (ERA5 and HYCOM), and apply our physics-156

regularized training methodology, as main differences. So, we show, in an experimental approach,157

that we may use complex solutions calculated by numerical climatology and ocean flow models158

as a means of regularizing surrogate PINN models. We aim to demonstrate that a PINN can159

internalize the simulated outputs of ocean and climate models to be more capable of forecasting160

unseen buoy values.161

III. METHODS162

In this section, we discuss the methodologies utilized in investigating our PINN-inspired163

surrogate models. The models are trained to forecast ocean observations at fixed locations given164

prior conditions. The numerical models, HYCOM and ERA5, regularize the model at training165

time and offer additional input features. The section is organized as follows: A. Numerical166

Models Overview; B. Data and Feature Processing; C. Deep Learning Models; and D. Metrics167

and Testing Strategy.168

A. Numerical Models Overview169

The Hybrid Circulation Ocean Model (HYCOM) system is a primitive equation model for170

general ocean circulation that evolved from the Miami Isopycnic-Coordinate Ocean Model171

(MICOM) system developed by Rainer Bleck and associates [1] [3]. HYCOM, like MICOM,172

is a primitive-equation model containing five prognostic equations. Two equations for the hor-173

izontal velocity components, a mass continuity or layer thickness tendency equation, and two174

conservation equations for a pair of thermodynamic variables, such as salt and temperature or175

salt and density. The authors also define several diagnostic equations to control the spacing and176

movement of layer interfaces. This includes the hydrostatic equation which links temperature,177

salinity, and pressure, alongside an equation prescribing the vertical mass flux through a surface.178

A hybrid grid-generating technique determines whether isopycnal or inflated non-isopycnal layers179
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are specified [1]. Beyond the general governing equations and gridding algorithm, HYCOM has180

specialized mixing processes, many of which are shared with the MICOM implementation.181

Temperature and salinity profiles are assimilated into the ocean flow model to improve initial182

analysis. The specific HYCOM implementation we use for data is the 41-layer HYCOM +183

NCODA Global 1/12° Reanalysis experiment.184

ERA5 is the fifth ECMWF reanalysis for global climate and weather features. The atmospheric185

global reanalysis (HRES) includes the period from January 1950 to the present year. ERA5186

reanalysis is produced using the 4D-Var data assimilation technique and model forecasts with187

137 hybrid vertical sigma/pressure levels [2]. The data assimilation of ERA5 also contains an188

ensemble system (EDA) of ten members for providing background error estimates. The model189

assimilates as many observations as possible in the upper air and near-surface regions. This190

forecasting system includes over a decade of research and development for all components: at-191

mosphere, land, and ocean waves. The integrated forecast system (IFS) implemented by ECMWF192

has its equations expertly discussed in the documentation manual [37] and is more generally193

discussed in [2]. We specifically use the ERA5 hourly data on single levels from 1959 to the194

present [38], which is a data assimilative reanalysis that uses the 2016 version of the ECMWF195

numerical weather prediction model and data assimilation system (IFS Cy41r2). The ERA5196

implementation is modeled at 1/4° latitude/longitude increments. Thus, the resolution of ERA5197

is lower than that of HYCOM.198

Given these arbitrarily complex numerical models, which are pre-computed, we do not need199

to implement the PDEs which govern the models directly. Instead, we will use the outputs from200

both models as training and regularization data within our deep learning models. To yield discrete201

value forecasting in a generic manner, we only need the values which are geographically closest202

to the latitude and longitude of the buoy observations. Likewise, we collect the discrete time203

step temporally closest to the observations we are interested in. Therefore, we consider a generic204

method for retrieving data from full-coverage numerical models in (1).205

(1)fm(t, x, y) = v

For a sufficiently complex model fm, we input the desired period t and the closest possible206

latitude and longitude, x and y. This yields whichever set of scalar features v are desired from the207

numerical model. These values can then be used as regularization data, training data, or both for208

a deep learning PINN model. This formulation is useful in our methodology where we want to209

train a neural network on the observations themselves while regularizing with numerical model210
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data. This differs to similar PINNs that provide full-coverage modeling of ocean and climate211

features, where the training data is limited to full-coverage reanalysis and the regularizing PDEs212

are formulated from simpler equations as seen in [32] [33] [34].213

B. Data and Feature Processing214

Both buoy observations and numerical model outputs are publicly available and have decades215

worth of data. In this study, we select dates from January 1st, 2011, to December 31st, 2011. The216

buoy data, which comprises the observation data for this study, comes from three-meter discus217

Self-Contained Ocean Observations Payload (SCOOP) sensor package buoys and Waverider218

buoys. We select 124 candidate buoys from around the United States East and West Coasts,219

the Caribbean, and the Gulf of Mexico. The buoy data is collected from the National Oceanic220

and Atmospheric Administration (NOAA) public data center. NOAA arranges individual buoys221

systematically by assigning each one a distinct ID number. The specific ID corresponding to each222

buoy selected for analysis is found in the Appendix. Water temperature, air pressure, and gust223

strength are extracted from the buoy feature set to provide the real-world recorded result. Since224

HYCOM and ERA5 are both gridded datasets, we select the data points which match the latitude225

and longitude as closely as possible to each buoy position. HYCOM snapshots are taken every226

three hours, and most buoys are recorded at the 50th minute of each hour. Therefore, we forecast227

buoy features in three-hour increments. To facilitate the coupling of the numerical models and228

buoy data, we select buoy features that have matching modeled numerical features. Out of the229

eighteen selected features, water temperature, gust strength, and air pressure are shared by the230

numerical models and the buoys, so they will be coupled in training time, as described by the231

loss function. We display all features recorded from the buoys and numerical models in Table I232

along with their original units.233

It is possible that data is missing from our data sources in two separate ways. A value may234

be missing temporally such that no data is recorded at all for a particular time step. This is235

most common in the NOAA buoy data where, for example, a buoy faces mechanical failure and236

cannot record observations for days to months at a time. Therefore, our training and testing data237

is limited by the amount of available buoy-recorded data. The numerical models do not leave238

a time step without data except in one case, a 24 hour gap found within the HYCOM dataset.239

Since this represents only eight data points, we cover the temporal gap by replacing the missing240

time steps with the previous 24 hour period. Otherwise, for a given time step, features may be241
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TABLE I

DATA FEATURES AND THEIR SOURCES. IN BOLD ARE NUMERICAL MODEL FEATURES TO BE COUPLED AS A

REGULARIZATION MECHANISM WHEN FORECASTING BUOY OBSERVATIONS.

Feature Name Feature Units Feature Source

Water Temperature °C Buoy

Gust Strength m/s Buoy

Air Pressure hPa Buoy

Water Temperature °C HYCOM
Salinity psu HYCOM

Surf Elevation m HYCOM

Water Eastern Flow (U) m/s HYCOM

Water Northern Flow (V) m/s HYCOM

Wind Eastern Flow (U) m/s ERA5

Wind Northern Flow (V) m/s ERA5

Evaporation m of w.e. ERA5

Gust Strength m/s ERA5
Mean evaporation Rate kg/(m−2s−1) ERA5

Mean Runoff Rate kg/(m−2s−1) ERA5

Sea-Ice Cover (%) [0-1] ERA5

Air Pressure hPa ERA5
Cloud Cover [0-1] ERA5

Precipitation m ERA5

missing data and are replaced with fill values of 99, 999, 9999, or -32767, depending on the242

data source and feature. Each of our sources of data exhibits at least some fill data, depending243

on the geographical region or time of year. We remove all fill values from the data and, in244

their place, linearly interpolate the missing values forwards and backwards for that individual245

buoy or numerical model. If any numerical model data source is composed of more than 20% fill246

values, we disregard that corresponding buoy from the training and testing pipeline. No buoys are247

discarded for having too many fill values for the purpose of preserving as much data for training248

and testing as possible. It is important to note that the retention of buoys with interpolated values249

can have an impact on model accuracy.250

The processed data is split into three datasets for training, validation, and testing. As each251

buoy is missing various days, we select the train, test, and validation splits by date. Therefore,252

all members of the training data are chosen from January 1st to September 13th. The validation253
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data is from September 13th to October 20th. The testing data includes the remainder of the254

year. Since the buoys are missing data at separate times of the year, a buoy may occasionally255

contribute to one dataset but not another. We specify the buoy selection in Table VI where we256

display the number of buoys allowed into each dataset. There are 148,365 training instances,257

23,118 validation instances, and 48,039 testing instances. Among the original 124 buoys selected258

for processing, only 86 buoys had training, validation, and testing data available. Each feature259

is independently normalized between −1 to 1 before training, using the training data minimum260

and maximum values. This approach is essential in deep learning to prevent data with varying261

scales from dominating the network’s performance. As our network is trained on scaled data,262

we transform the network’s output to its original scale for meaningful result comparison.263

To understand the impact of first-order differenced data on our regularizing technique, we264

studied two separate setups. In the first, we train the models using the original values recorded265

by the data sources. Subsequently, we take the first-order difference to train the model on the266

differences between time steps. Training with differenced values to make the data stationary267

is seen for non-regularized RNNs [39] and physics regularized RNNs [40] when forecasting268

time series. Stationarity means that a time series has been stabilized such that it has consistent269

statistical properties, like mean and variance [41]. Non-stationary data contains trends and270

seasonality that may introduce bias to the surrogate models. Taking the first-order difference271

of our data removes trends in the training data and makes the analysis problem more forgiving.272

The result is that modeling using the differenced data will result in higher accuracy and a more273

stable forecast. The more consistent statistics also imply more accurate scaling when normalizing274

the test data. Non-stationary data is still useful for models with longer context windows or275

the addition of features which are embedded in time, so testing both data representations is276

worthwhile. In our experiments, we will clearly denote the data used when training or evaluating277

a surrogate model as either original data or differenced data. When comparing models which278

forecast the differences in data rather than the original data, we need to transform the resulting279

forecast back to the original scale. This transformation is computed by summing the forecast280

ft with the initial conditions xt−1, then that value is summed iteratively with each following281

difference forecast in the horizon window.282
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C. Deep Learning Models283

A PINN is made up of any general network architecture. Since we are forecasting time284

series, we experiment on architectures that utilize GRU units, LSTM units, and Transformer285

units. Layers of these units are accompanied by dense fully connected layers, normalization286

layers, and training dropout layers. Each layer includes a non-linear activation function except287

for some dense layers, which are linear in the Transformer architecture. Between the layers,288

we add dropout layers with 5% dropout rate during training for the Transformer and 10% for289

the LSTM. Similarly, we apply a normalization layer in between dense and LSTM layers to290

prevent exploding or vanishing gradients. The Transformer block is made of ten attention heads.291

The exact summary of the LSTM-based and Transformer-based models can be seen in Tables292

II and III. The GRU-based model architecture is the same as the LSTM model. The number of293

trainable parameters is lesser for the GRU compared to the LSTM but is otherwise the same294

structure. The GRU and LSTM models have much fewer weights than the Transformer based295

model, which takes longer to train. We include each layer of the model, the number of trainable296

parameters, and the activation at that layer, if any. The GRU and LSTM models are trained for297

100 epochs while the Transformer model is trained for 200 epochs, due to the increased number298

of trainable weights. A data batch size of 256 was used in all cases. To optimize the value in299

each epoch of back-propagation, the Adam optimizer is selected for the Transformer model and300

RMSProp for the LSTM and GRU networks. The models are always trained using the same301

random seed to ensure experiments are as uniform as possible.302

Each model, once initialized, is trained to accept the 18 specified features as input and produce303

the predicted next step for each feature as output. Since each model is trained to produce the304

same outputs it requires as inputs, this is considered a rolling forecast model. In this approach,305

to forecast further into the future, we may use the model’s own outputs from time t as inputs for306

forecasting time t + 1. This forecasting technique depends on accurate initial values. Only the307

first forecast in a period, t0, is provided with initial conditions, and as time progresses, inherent308

chaos or model error will compound within forecasts. This method yields models which are309

not constrained to a single forecast horizon. Instead, the models are more flexible, and can310

generically forecast any number of desired periods, once provided initial values. Using the311

numerical model data as inputs to our deep learning models may be considered self-fulfilling312

because reanalysis data includes high-quality features assimilated with ground truths not yet313
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TABLE II

LSTM MODEL ARCHITECTURE. THERE ARE 24 TOTAL LAYERS WITH 2,348,546 TRAINABLE PARAMETERS. N REPRESENTS

A VARIABLE BATCH SIZE.

Layer Type Output Shape Param # Activation

Input Layer (N, 18, 1) 0 None

Reshape (N, 1, 18) 0 None

Dense (N, 1, 256) 4864 Tanh

Batch Normalization (N, 1, 256) 1024 None

Dropout (N, 1, 256) 0 None

LSTM (N, 1, 256) 525312 Tanh

Dropout (N, 1, 256) 0 None

LSTM (N, 1, 256) 525312 Tanh

Dense (N, 1, 256) 65792 Tanh

Batch Normalization (N, 1, 256) 1024 None

Dropout (N, 1, 256) 0 None

LSTM (N, 1, 256) 525312 Tanh

Dropout (N, 1, 256) 0 None

LSTM (N, 256) 525312 Tanh

Dropout (N, 256) 0 None

Dense (N, 200) 51400 Tanh

Dropout (N, 200) 0 None

Dense (N, 200) 40200 Tanh

Dropout (N, 200) 0 None

Dense (N, 200) 40200 Tanh

Dropout (N, 200) 0 None

Dense (N, 200) 40200 Tanh

Dropout (N, 200) 0 None

Dense (N, 18) 3618 Tanh

observed. We point out that the assimilated data and observations are only used in training time314

and when seeding initial values into the model. The subsequent predictions use the results from315

the previous prediction cycle. All else is kept equal among the models, so we may measure the316

effects of our methodology across multiple experiments.317

To train the models, the loss function for our PINN is designed such that the outputs from318

numerical models are coupled with buoy-extracted real-world values. To do this, a weighted ratio319

term is used to determine how much of the calculated error comes from the residual of buoy320

observations versus the residual of the HYCOM and ERA5 modeled features. This combination321
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TABLE III

TRANSFORMER MODEL ARCHITECTURE. THERE ARE 21 TOTAL LAYERS WITH 13,619,190 TOTAL TRAINABLE

PARAMETERS. N REPRESENTS A VARIABLE BATCH SIZE.

Layer Type Output Shape Param # Activation

Input Layer (N, 18, 1) 0 None

Reshape (N, 1, 18) 0 None

Dense (N, 1, 512) 9728 Linear

Batch Normalization (N, 1, 512) 2048 None

Transformer Block (N, 1, 512) 11016692 Selu

Dropout (N, 1, 512) 0 None

LSTM (N, 1, 512) 2099200 Tanh

Dropout (N, 1, 512) 0 None

Dense (N, 1, 512) 262656 Linear

Dropout (N, 1, 512) 0 None

Batch Normalization (N, 1, 512) 992 None

Dense (N, 1, 200) 2048 Linear

Dropout (N, 1, 200) 0 None

Dense (N, 1, 200) 102600 Linear

Dropout (N, 1, 200) 0 None

Dense (N, 1, 200) 40200 Linear

Dropout (N, 1, 200) 0 None

Dense (N, 1, 200) 40200 Linear

Dropout (N, 1, 200) 0 None

Flatten Layer (N, 200) 0 None

Dense (N, 18) 3618 Linear

is completed for all coupled buoy features, i.e., water temperature, gust strength, and surface air322

pressure. Thus, the piece-wise cost can be calculated as follows in Equations (2)-(7).323

∆1 = |ŷobs − yobs| (2)
324

∆2 = |ŷobs − fm(t, x, y)| (3)
325

Ωcoupled feature loss = λ ∗∆1 + (1− λ) ∗∆2 (4)

The two ∆ terms defined in (2) and (3) represent the absolute error between the predicted326

observation and the observation ground truth followed by the absolute error of the predicted327

observation and the numerical model output as defined in (1). The two error terms are weighted328
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by λ, as seen in (4). The selected λ value represents a ratio to determine how much weight is329

provided to each ground truth. This coupled feature loss is only calculated for those features330

which have both an observational and modeled collection of data available. Through additional331

feature collection, the technique can be extended to couple any number of observation features332

to numeric models.333

Ωmodeled feature loss = |ŷmodel − fm(t, x, y)| (5)
334

Ωobserved feature loss = |ŷobs − yobs| (6)

The remaining uncoupled features, as seen in (5) and (6), are used to collect loss in a more335

traditional way. Excluding the coupled features from the calculation, numerical feature forecasts336

are measured against numerical model values only and forecasted observational data are measured337

against observational ground truth only. We include additional numerical features in our setup,338

which were identified in Table I. There do not exist any non-coupled observational features, so339

Ωobservation forecast loss = 0, in this experiment. There is no λ controlling the coupling ratio in the340

case of (5) and (6). The final loss function which combines the disparate loss calculations can341

be summarized in (7).342

Ωtotal loss = Ωcoupled forecast loss + Ωnumeric forecast loss + Ωobservation forecast loss (7)

The addition of a coupled loss component is rationalized by considering that as the λ value343

approach 0.0, we are training our model to behave more like the numerical model, fm(t, x, y).344

Conversely, as the λ values approach 1.0, we are promoting forecasts which more closely345

resemble the observations, yobs. Expanding the example, when λ = 0.5, the model balances346

agreement between both sources equally. In our experiments, the ground truth is measured using347

yobs, so when λ = 1.0, we are essentially training a model while using no regularization strategy.348

D. Metrics and Testing Strategy349

For the original data and differenced data setups the SST, gust strength, and air pressure350

are forecasted over the reserved testing data for final evaluations of each model. Test horizon351

windows are conducted from one period to eight periods, where an individual period measures352

data collected every three hours. Therefore, this manifests as a one-step three hour forecast353

through an eight-step 24 hour forecast since each forecast step is three hours apart. Using354
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the rolling forecast property mentioned, we record the mean absolute error (MAE) and root355

mean square error (RMSE) for each forecast period. The MAE is calculated as follows for an356

individual buoy 1
N

∑N
i=1(|Y

p
i − Y t

i |), where N is the total number of time steps forecasted, Y p
357

is the collection of predicted ocean features, and Y t is the collection of ground truth ocean358

observations. Similarly, the RMSE is computed as
√

1
N

∑N
i=1((Y

p
i − Y t

i )
2). In analysis, the total359

MAE and RMSE from our test results are collected from each buoy and then averaged to find360

the global mean metrics. The best possible model will provide low value metrics for all forecast361

periods and features. To verify whether the coupled loss component works as a regularization362

mechanism, we evaluate for λ values between 0.0 and 1.0 with 0.1 step intervals. Next, we363

evaluate around the best scoring λ values using 0.02 step intervals. The results gathered in this364

way may be contrasted with the numerical model outputs from HYCOM and ERA5, which are365

scored using the same metrics. Using this grid search technique, we are not guaranteed to find366

the λ value which yields global minimal error, so we aim to highlight two behaviors instead. The367

first is that there exists a value of λ, where the RMSE, MAE, or both are lesser than λ = 1.0368

(no regularization), for at least one feature per model. The second is that the selection of best369

λ is influenced by inconsistencies in the observation data, misalignment in the numerical model370

data, and the PINN architecture.371

IV. RESULTS372

We consider which experiments yield the lowest error metrics given various PINN model373

setups, our three physical features of interest, and whether the data has been differenced or not.374

Beyond providing an accurate forecast, we are primarily interested in the regularization ability of375

the PINN’s specialized loss function. As such, we begin by considering which values of λ yield376

the lowest error metrics. Then, the general forecasting ability of our highest performing models377

will be considered for further context. Finally, we will examine the buoy accuracy given its378

geographical region to consider where our method may struggle to provide high-quality outputs.379

In the Appendix, we supply Tables VII-XII to display the RMSE results gathered from our PINN380

models trained on various λ values. In the Tables, each feature from horizons starting with three381

hours (one period) and up to 24 hours (eight periods) are given to see the evolution of error382

over time.383
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A. Selection of Best λ Values384

We present the best value for λ given variations in our PINN models and the selected coupled385

feature. A series of Figures display each λ value and corresponding error metrics per model and386

feature. We consider the original data best λ results for the GRU model in Figure 1, the LSTM387

model in Figure 2, and the Transformer model in Figure 3. The λ-based ratio regularization388

successfully managed to reduce the MAE and RMSE of 24 hour forecasts when compared to389

λ = 1.0 (no regularization). For the GRU and LSTM figures, each evaluated feature displays at390

least one value for λ which yielded more performant metrics. Using the Transformer model, the391

PINN-style regularization yields explicitly worse forecasts for SST and Gust, but air pressure392

has a reduced error when λ = 0.9. In this sense, each model has displayed the property of MAE393

and RMSE reduction for at least one feature, using the regularization technique. The reason394

that the Transformer model performs well in the λ = 1.0 case is because the architecture is395

sufficiently complex enough to generalize the observations when trained using large amounts396

of data. However, the results of the air pressure forecasts imply some features benefit from the397

coupled loss function regardless of model complexity. The LSTM and GRU models are less398

complex and achieve worse test results overall, so the regularization has a larger effect on error399

reduction. For this reason, there exists a best performing model when λ < 1.0 in all features.400

We highlight that the best λ values are unique for each experiment. This is true when401

comparing the separate features in the same model and when comparing the same feature from402

each model. For example, the best λ values found in the GRU features are 0.9, 0.84, and 0.96,403

for SST, gust strength, and air pressure, respectively. When comparing by model, the best λ404

for SST is largely separated at 0.9, 0.68, and 1.0 for GRU, LSTM, and Transformer models,405

respectively. The uniqueness of each λ selection is problematic in situations where the best λ406

value significantly differs between features. Each feature is coupled using the same λ value,407

although an optimal choice for one feature may not be optimal for all features. A multiple λ408

setup could allow more flexibility towards this problem.409

In observing the change between λ values and their error metrics, we see some trends in each410

feature. The SST feature in GRU and LSTM models is inconsistent with many local minima411

observed. The gust strength feature displays error that is mostly consistent regardless of the412

selection of λ. However, there is a noticeable decrease in error as λ approaches the discovered413

minimal value. The most obvious trend that occurs in all PINN models is the sharp decrease414
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in error of the air pressure feature as λ increases. This is the sole case where a regularized415

Transformer model outperforms the λ = 1.0 case. This is likely caused by misalignment in the416

ERA5 model when compared to the ground truth. Extremely divergent outliers in ERA5 mean417

that training the surrogate model using numerical model data is a poor choice compared to the418

observations. So, error decreases when λ > 0.5 and the PINN produces forecasts more aligned419

with the observations. Still, the ERA5 data is well-fitted outside of outlier conditions, so λ < 1.0420

promotes a regularizing effect on the model. This is an example of how our methodology can421

combine multiple data sources to improve results when each has their own biases.422
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GRU λ Values Per Parameter When Forecasting Original Data

Fig. 1. MAE and RMSE for GRU forecasts from λ = 0.0 to λ = 1.0 (no regularization). The lowest scoring λ value is

displayed in green while the highest is red. Forecasts are given as the original values.

Comparing the experimental results of the original data scheme to the results of the differenced423

data scheme shows varying results. We present the differenced data best λ results for the GRU424

model in Figure 4, the LSTM model in Figure 5, and the Transformer model in Figure 6. The425

λ-based ratio regularization scheme reduces MAE and RMSE in all but one case. As before, the426

Transformer yields strictly better results when λ = 1.0 for SST. However, the ERA5 features427

show strictly best results when λ = 0.0, achieving lowest scores when the model is only trained428

on numerical data. Considering the GRU and LSTM figures, each feature displays a minimizing λ429

that yields lower error metrics than the λ = 1.0 case. The best λ values found overall are typically430

closer to λ = 0.0. This is the exact opposite behavior when compared to the original results, and431

the trend is most obvious when considering the air pressure feature. Lower values of λ yield432
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LSTM λ Values Per Parameter When Forecasting Original Data

Fig. 2. MAE and RMSE for LSTM forecasts from λ = 0.0 to λ = 1.0 (no regularization). The lowest scoring λ value is

displayed in green while the highest is red. Forecasts are given as the original values.
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Transformer λ Values Per Parameter When Forecasting Original Data

Fig. 3. MAE and RMSE for Transformer forecasts from λ = 0.0 to λ = 1.0 (no regularization). The lowest scoring λ value

is displayed in green while the highest is red. Forecasts are given as the original values.

more performant results, although the absolute difference in error is small. Most importantly,433

each model has shown error reduction for at least two features using the regularization technique.434

The λ values for SST are chaotic, like before, and the best value varies greatly per model.435

Conversely, the error metrics are much lower overall due to the differenced data representation.436

The behavior of λ regarding the gust strength feature is similar to the original data figures for the437
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GRU and LSTM models. In all, the selection of a wider variety of lower λ values suggests that438

the rate of change in both datasets are alike. The numerical models also have less interpolated439

data which promotes more stable training. Once again, we find that most results display best440

λ values which are different between features and models. The one outlier comes from the441

Transformer model, where SST maintains a best result at λ = 1.0. Wind gust strength and air442

pressure both display similar values of λ between the GRU and LSTM models, but the SST443

varies drastically between each. This discussion underpins the idea that both the feature, the444

model, and the data representation influence the selection of best λ.445
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GRU λ Values Per Parameter When Forecasting Differenced Data

Fig. 4. MAE and RMSE for GRU forecasts from λ = 0.0 to λ = 1.0 (no regularization). The lowest scoring λ value is

displayed in green while the highest is red. Forecasts are given as first-order differenced values.

In this section we considered how the selection of the best λ differs as the parameters of our446

experiments change. The Transformer model received the least benefit from λ < 1.0 overall.447

For the Transformer, the SST feature never benefits from the coupled loss, air pressure is448

always improved, and gust speed depends on whether the data is differenced or not. Both449

other models benefit at least somewhat from the regularization in all cases. We learned the450

benefit of the regularization and the corresponding selection of best λ are tied to the complexity451

of the model, where models with fewer weights benefit more when using this methodology.452

Another observation is that values approaching 0.0 for λ tend to yield worse results unless we453

are considering the differenced data representation. This is due to the way each model is trained to454

forecast the change between time steps. When taking a first-order difference of the data, a larger455
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Fig. 5. MAE and RMSE for LSTM forecasts from λ = 0.0 to λ = 1.0 (no regularization). The lowest scoring λ value is

displayed in green while the highest is red. Forecasts are given as first-order differenced values.
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Fig. 6. MAE and RMSE for Transformer forecasts from λ = 0.0 to λ = 1.0 (no regularization). The lowest scoring λ value

is displayed in green while the highest is red. Forecasts are given as first-order differenced values.

number of interpolated buoy observation values produces an uninformative training environment456

for differenced data. The numerical models, have fewer interpolated values and more accurately457

reflect change from one time to another. Therefore, PINNs which act more like the numerical458

model are more performant in this case. Finally, by examining the way the best λ changes in459

each experiment, we find that the feature, the model, and the data representation all influence460
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the selection of best λ. Otherwise, the best λ selections would be more homogeneous overall.461

B. General Forecast Accuracy462

By examining the general forecast accuracy of our models, we gain additional insights into463

the coupled loss technique used and the stability of our PINN models. To begin, we consider464

the measured RMSE for the best found λ per feature. We compare this error to those derived465

from the λ = 1.0 case and from the numerical models for additional context. To facilitate this466

comparison, we introduce Tables IV for the original value forecasts and V for the differenced467

value forecasts. In these tables, we compare the percent change in RMSE between the best λ468

value and λ = 1.0 in the fourth column. In the final column, we compare the best lambda469

value to the numerical models. These values are calculated using the RMSE as found in the470

eight-step forecast from the Appendix Tables VII-XII. Negative values indicate a reduced error471

when comparing the best λ value to the λ = 1.0 case or the numerical models. Positive values472

show when the best λ results are worse than the compared source of error. When the percentage473

is zero, the best value of λ for that experiment was λ = 1.0.474

Examining the original value forecast results in Table IV shows that this method is rarely more475

performant than the numerical models. The feature SST is worse than the numerical model by476

at least 100%, which implies the HYCOM model is well-calibrated to local conditions. When477

comparing the lower resolution ERA5 model, air pressure and gust strength are less aligned with478

the recorded observations. As a result, the feature gust speed is up to 37% less accurate when479

using the PINN models and results are more accurate using all architectures for air pressure.480

This is encouraging and suggests that our surrogate modeling technique can produce permissible481

forecasts depending on the feature. The comparison of the best surrogate model to the non-482

regularized surrogate when λ = 1.0 is more favorable. From the Table, we show that there483

is a percent decrease in error for most cases. The GRU and LSTM models are more accurate484

when compared to the non-regularized versions. The air pressure results show that the surrogate485

outperforms the numerical model only after finding the best λ value. That is, we only outperform486

the numerical model due to the coupled loss function. The Transformer models showed improved487

forecasts for air pressure alone. This indicates that a large network with many trainable parameters488

can still benefit from our technique, but the reduction in error will be less, if there is any at all.489

Continuing, we consider the percent change in RMSE when experimenting with the differenced490

data representation in Table V. Overall, when comparing the PINN models to the numeric491
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TABLE IV

ORIGINAL VALUE FORECAST % CHANGE IN RMSE WHEN COMPARING THE BEST FOUND λ AGAINST λ = 1.0

(NO REGULARIZATION) AND THE NUMERICAL MODEL (HYCOM/ERA5)

Model Best λ Feature λ = 1.00 Numerical Model

GRU 0.90 SST (°C) -18.44% +141.47%

0.96 Pressure (hPa) -14.83% -3.08%

0.84 Gust (m/s) -3.98% +33.11%

LSTM 0.68 SST (°C) -15.42% +145.45%

0.82 Pressure (hPa) -4.48% -0.78%

0.72 Gust (m/s) -7.62% +37.25%

Transformer 1.00 SST (°C) 0.0% +102.02%

0.90 Pressure (hPa) -3.06% -7.58%

1.00 Gust (m/s) 0.0% +26.44%

model, we see improvement when using this data representation. The only comparison which is492

still worse than the numerical models is when forecasting the gust speed feature, although the493

percentage of error is slightly decreased. Almost all the features show decrease in error when494

comparing the best λ to the model trained when λ = 1.0. The spread of the decrease in error495

is lesser than when forecasting the original data, with the highest at about 8% and the lowest496

at 1.6%. There is no situation for this data where the best λ directly causes improvement over497

the numerical model, but we find an increased performance gap between the deep learning and498

numerical models in most cases.499

We also consider the stability of the forecasts, given a single example buoy. In Figure 7 and500

Figure 8 we show how the error of our PINNs evolves over the forecast period of 24 hours given501

chaotic features, model architectures, and data representations. These figures capture a subset502

of 10 forecast periods, from time step 40 to time step 120, for a single buoy. The ground truth503

values are reinitialized into the model every eighth time step, hence the ten forecast periods.504

To select the λ value to represent in the figures, we use the best λ value found for SST. When505

SST does not have a best λ < 1.0 then the best value for gust strength or air pressure was506

chosen. This highlights the limiting factor of our technique in its current form, as it cannot507

utilize multiple values for λ. Future explorations into this technique might consider a multiple508

λ setup for more flexibility.509
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TABLE V

DIFFERENCED VALUE FORECAST % CHANGE IN RMSE WHEN COMPARING THE BEST FOUND λ AGAINST

λ = 1.0 (NO REGULARIZATION) AND THE NUMERICAL MODEL (HYCOM/ERA5)

Model Best λ Feature λ = 1.00 Numerical Model

GRU 0.42 SST (°C) -1.64% -23.43%

0.40 Pressure (hPa) -6.30% -20.10%

0.58 Gust (m/s) -2.89% +29.73%

LSTM 0.80 SST (°C) -7.45% -23.19%

0.30 Pressure (hPa) -7.18% -19.66%

0.76 Gust (m/s) -2.18% +31.46%

Transformer 1.00 SST (°C) 0.0% -25.63%

0.00 Pressure (hPa) -7.93% -20.72%

0.00 Gust (m/s) -4.80% +24.45%

When examining the original data forecast results for buoy 42002 in Figure 7, it is expected510

for error to increase over the period. Ideally, the error of the best found λ will increase more511

slowly than when λ = 0.0 or λ = 1.0, for each feature. From this figure, we can observe that512

error increases until the model is realigned with fresh initial values. We see that the forecasts513

are often worse than the numerical model. They are typically most performant around time steps514

one or two, when the initial values are still relatively recent. Comparing models and features515

shows a wide variety of behaviors. The most similar forecasts are found when considering the516

Transformer, when each of the PINN models performs almost identically. The GRU models tend517

to disagree the most between each of the specific experiments, which makes sense considering518

it achieves the highest reduction in forecast error overall. PINNs are traditionally used to reduce519

numerical instability, and this behavior can be seen when forecasting air pressure using the GRU520

model. Between time steps 56 and 64, the best-selected λ shows significantly reduced error when521

comparing to the λ = 1.0 case. The same temporal region in the Transformer forecast displays522

the opposite behavior where the non-regularized model performs better than any regularized523

version. This is due to the complexity of the Transformer-based architecture which causes the524

model to generalize underlying behaviors more effectively than the GRU or LSTM architectures.525

Finally, we compare the differenced value forecast MAE scores for buoy 42002 from the526

Figure 8. In the case of the Transformer model, we show λ = 0.5 because each feature’s best λ527
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lies on the extreme end of either λ = 0.0 or λ = 1.0. The main benefit of using the differenced528

data representation is displayed by the reduction in overall error across all models. The Figure529

demonstrates how the λ forces the PINN to behave more like one data source or the other,530

evidenced by the fact that the MAE found tends to be bound by the other error sources. Overall,531

error increases more slowly in regions where the forecasted feature remains highly stable over532

time. Once again, we see that refreshing the initial values reduces error significantly, which is533

the expected behavior. The error spread between the PINN is much more similar in this case534

because the models rely more on autocorrelation between forecast periods. Error reduction is535

significant enough to suggest the regularized models make more informed forecasts on average.536

It is significant to note that individual plots of forecasts from the best λ model may be less537

accurate than other setups in specific instances, but error is reduced overall when considering538

all buoys.539

In this section, we analyzed the forecasting ability of our models by considering percent540

reduction in errors and the forecast of a single buoy via different experimental permutations.541

The selection of λ and total amount of error reduction was shown to depend on the model,542

the features examined, and the data representation used. When compared to models where λ =543

1.0, percentage reductions in error were as low as 1.6% and as high as 18.4%. When using544

the Transformer model, the feature SST never showed improvement over the λ = 1.0 case.545

The surrogate models always outperform the numerical model for the air pressure feature and546

outperform in SST forecasting depending on the data representation. We never outperform the547

numerical model when forecasting gust strength. In the case of feature air pressure, the error548

reduction from selecting λ through a grid search allows the surrogate PINN model to out-perform549

the numerical model. It is important to restate that the interpolated values in the ground truth550

provide some bias in the test by penalizing the numerical models when comparing to those551

interpolated values. In addition, inference based on differenced inputs produces more stable552

estimates of local conditions, i.e., the observations. Our surrogate models benefit from both553

points which explains the general improvement when compared to the numerical model. More554

importantly, selecting the best regularization parameter, λ, yields models that achieve higher555

accuracy, and this is consistent across both data representations. We showed how the error in556

forecasts are reduced on average by training the surrogate model using the selected λ value. This557

revealed the way model selection and data representation affects the numerical stability over the558

forecast period. The differenced data representation simplifies the problem for the surrogate559
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Fig. 7. The numerical and surrogate model MAE for each feature over ten 24-hour forecast periods is displayed. We include

each PINN with λ = 0.0, λ = 1.0 (no regularization), and the best found λ. The PINNs are reinitialized with new starting

values every eighth period.
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Fig. 8. The numerical and surrogate model MAE for each feature over ten 24-hour forecast periods is displayed. Differenced

value forecasts have been transformed back to the original scale before finding the error. We include each PINN with λ = 0.0,

λ = 1.0 (no regularization), and the best found λ. The PINNs are reinitialized with new starting values every eighth period.
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models, so the forecast stability remains similar between models and features. The opposite is560

true in the original data forecasts, which is more chaotic and showed disagreements. In all, the561

analysis of these results suggest that our model is relatively stable over 24 hour periods, but562

error is often worse than the reanalysis models when they are well-fitted to the observation data.563

C. Geographical Error Analysis564

Our final method for comparing the numerical models with our PINNs involves an analysis of565

buoy RMSE per their geographical position. To this end, we provide two figures which represent566

a grid of our models as rows with the forecasted feature as columns. Positional markers reference567

the latitude and longitude of each buoy, and there is overlap due to the number of buoys. The568

color bar represents the amount of RMSE calculated for a buoy and is normalized column-wise569

by the minimum and maximum error generated for the feature by each model. In Figure 9 we570

show the results from the original data forecast and in Figure 10 we show the results from the571

differenced dataset. One caveat to these figures is that we cap the error of the air pressure feature572

in both figures to a max value of 10. This is because the ERA5 has an extreme misalignment573

in outlier areas, which dominates the color interpolation. We cap the error derived from SST to574

a max value of one in the differenced Figure 10 for the same reason.575

The original values forecast results in Figure 9 show there are some trends among the models.576

First, the best performing region for all features are the forecasts of buoys clustered around the577

Caribbean. The Gulf of Mexico region performs similarly but can be slightly less accurate de-578

pending on the experiment. The least performant regions tend to be along the North Atlantic East-579

Coast and various regions around the Pacific West-Coast. The numerical models are, on average,580

are extremely well fitted to real-world observations. Although, there are cases, possibly due to581

resolution constraints of grid data, where massive influxes of error are found. This misalignment582

shows the benefit of local condition forecasting. For example, the numerically modeled outliers583

for air pressure are along the West-Coast. These same regions perform well using our technique584

because we model the forecast based on local observed conditions. Geographic regions which585

are poorly forecasted by a PINN model tend to cluster among similarly performing regions. We586

do not observe alternating high and low error regions, which would imply random forecasts.587

Instead, we very consistently see gradients of low to high error regions. This may be explained588

by considering that some regions may pose a modeling challenge due to geography, river runoff,589

human operations, lack of data, and so on.590



IEEE OCEANIC ENGINEERING SOCIETY, VOL. XX, NO. XX, MARCH 202X 28

GR
U 
M
od
el
 

(λ
=
0.
90

)

SST (°C) Gust Strength (m/s) Air Pressure (hPa)
LS
TM

 M
od
el
 

(λ
=
0.
68

)
Tr
an
sf
or
m
er
 M
od
el
 

(λ
=
0.
90

)
Nu

m
er
ica

l M
od
el
s

1

2

3

4

2

4

6

8

2

4

6

8

10

1

2

3

4

2

4

6

8

2

4

6

8

10

1

2

3

4

2

4

6

8

2

4

6

8

10

1

2

3

4

2

4

6

8

2

4

6

8

10

Fig. 9. Analyzed original features (columns) compared to the generating model (rows) by RMSE given at the geographical

buoy location. Error is capped for SST and air pressure for visualization purposes. Color maps are normalized by each feature

for comparative evaluation.

Next, we analyze the difference valued forecast results in Figure 10. The results are more591

homogeneous and more accurate across all models and features. Compared to the original592

forecast, similar geographical zones display relatively high errors, showing these are likely593

regions of high change. Each of the PINN models yields similar error scores which suggests that594

they rely on low-change forecasts to accurately describe the true value. Therefore, the models595

produce more similar results and are more sensitive to chaotic regions. From the Figure, we can596

pick out an instance of an outlier buoy in the center of the Caribbean region, when forecasting597

the SST parameter. There, error from HYCOM is high while the error from each PINN model598

is low. In this case, the numerical model represents real world conditions and error is calculated599

through interpolated initial values, causing inflated metrics. However, this is not the reason for600

all outliers. In the case of air pressure, most high-error regions are a case of misalignment in601

the numerical model.602
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Fig. 10. Analyzed differenced features (columns) compared to the generating model (rows) by RMSE given at the geographical

buoy location. Error is capped for SST and air pressure for visualization purposes. Color maps are normalized by each feature

for comparative evaluation.

By examining the individual buoy error, we learned which geographic regions are most difficult603

to model. We also revealed patterns in the similarities between our PINN experiments and the604

numerical models. The figures revealed that the numerical models have some regions with high605

error. The error is mainly found when there is misalignment in the numerical models. Some606

error was introduced through our interpolation scheme, such as the SST outlier in the Gulf of607

Mexico. Buoys which received low accuracy forecasts tend to be surrounded by buoys with608

similar metrics, which implies they are within difficult-to-model geographical regions. Although609

the error for the differenced data representation is lower than when forecasting the original610

values, the buoys with the highest error come from similar regions. When comparing our sparse611

forecasting technique to a full-coverage model, our method is not constrained to a grid region,612

and any arbitrary point may be modeled. Therefore, error may be reduced when forecasting613

regions between vertices, without relying on interpolation techniques. The drawback of using614



IEEE OCEANIC ENGINEERING SOCIETY, VOL. XX, NO. XX, MARCH 202X 30

this sparse forecasting technique is that greater spatial conditions cannot be deciphered by the615

observations alone. In this way, we trade off providing regional context to the PINN model for616

increased forecasting flexibility. The PINN architecture bases the forecast off current conditions617

alone and is independent of the buoy’s geography.618

V. CONCLUSIONS619

We investigated the ability of the ocean flow model HYCOM and the climate model ERA5620

to be used as regularization data for PINN-inspired deep learning models. A special formulation621

of the loss function yielded comprehensive models for forecasting any number of physical622

parameters in a sequence-to-sequence model. The techniques demonstrated how multiple ocean623

and climate features may be forecasted and combined using deep LSTM, GRU, and Transformer624

physics-informed networks. Our sparse feature forecasting approach yielded more flexible, gener-625

alized models, which are less constrained to predefined regions. In contrast to other PINN models,626

we train the models using observation data while regularizing with pre-computed numerical627

models. The significance of this is that we do not need to implement the numerical formulation for628

use in our framework. In most cases, we improved the surrogate model performance by combining629

the observation data and numerical models. To assess the models, we set up experimental sparse630

sequential forecasting procedures for SST, air pressure, and gust strength as observed by free631

floating buoys. Two separate data representations were investigated which included the original632

observed/modeled data and first order differenced versions of the data. Over these experiments,633

the hyperparameter λ was fine-tuned between 0.0 and 1.0 to find the best possible data ratio. We634

found that models which have a less complex architecture improved the most from the inclusion635

of the numerical model regularization. This was shown explicitly by comparing the results of the636

least complex and most complex architectures of the GRU and Transformer models. The GRU637

and LSTM models showed improvements after tuning for λ in every case while the Transformer638

models showed improvement for fewer features. Further, the selection of λ significantly altered639

the behavior of the PINN models. As the λ value approaches 0.0, the trained model produced640

results more like the numerical models, while the opposite is true when λ approaches 1.0.641

Depending on the experiment, we saw improvements over the numerical model in forecast error.642

In favor of our method, the PINN forecasting of air pressure showed improvement over the643

numerical models when the best selection of λ was chosen. Overall, our method improved644

the numerical stability of the forecasts on average over the horizon period. In the case of the645
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differenced data representation, we saw the stability of each PINN model was similar. Lower646

valued λ values were most performant in this case, which suggests the numerical model data647

was more informative overall. This is likely due to fewer interpolated values from the numerical648

models when compared to the buoy observations. The differenced data forecasts are the most649

accurate overall, but the amount of error reduction found when using this data representation was650

less. Exploring the error geographically showed us that modeling high-change areas of interest is651

difficult for both the numerical models and our PINNs. This methodology can be used to forecast652

observations between the vertices of grid-based numerical models. The trade-off of the increased653

flexibility is the loss of context of spatial conditions beyond the immediate forecast region.654

Ongoing work on this methodology continues in several ways. Because the selection of λ changes655

on a feature-by-feature basis, we should investigate an approach to allow an independent selection656

of λ values on a per-feature case. Using a grid search for selecting the best λ value is currently657

inefficient. Future improvements to our technique will revolve around fine-tuning the λ selection658

approach to reduce computational overhead of the models. Moreover, since we formulate new659

models that combine numerical models with observations, our framework leaves room to explore660

integration into a data assimilation scheme. The methodology should be expanded to combine661

multiple numerical models with relevant PDEs to see if similar improvements can be found when662

forecasting full-coverage models also. Different domain problems and experimental setups will663

yield further insight into this procedure for combining multiple sources of data when each has664

inherent limitations.665
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818

APPENDIX819

124 selected buoy observations from the NOAA archive for potential inclusion into train,820

validation, and test datasets. The numbers selected into each set are displayed in VI.821

• 51001, 41002, 41004, 41008, 41009, 41010, 41013, 41025, 41040, 41041, 41043, 41044, 41046, 41047, 41048, 41049,822

42001, 42002, 42003, 42012, 42019, 42020, 42035, 42036, 42039, 42040, 42055, 42056, 42057, 42058, 42059, 42060,823

44005, 44007, 44008, 44009, 44011, 44013, 44014, 44017, 44018, 44020, 44025, 44027, 44065, 44066, 45001, 45002,824

45003, 45004, 45005, 55039, 45006, 45007, 45008, 45012, 46001, 46002, 46005, 46006, 46011, 46012, 46013, 46014,825

46015, 46022, 46025, 46026, 46027, 46028, 46029, 46035, 46041, 46042, 46047, 46050, 46053, 46054, 46059, 46060,826

46061, 46066, 46069, 46070, 46071, 46072, 46073, 46075, 46076, 46077, 46078, 46080, 46081, 46082, 46083, 46084,827

46085, 46086, 46087, 46088, 46089, 51000, 51001, 51002, 51003, 51004, 51101, 46221, 46214, 46211, 46224, 46215,828

46222, 46213, 46235. 46239, 46240, 46243, 46244, 46232, 44095, 44100, 42099, and 44024.829
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TABLE VI

NUMBER OF BUOYS DISTRIBUTED INTO EACH DATASET. THERE ARE 127 BUOYS SORTED IN TOTAL.

Subset Contributions by Buoy Total Number

Total Buoys 124

Train Only 3

Val Only 0

Test Only 1

Train and Test Only 2

Val and Test Only 1

Train/Test/Val Included 86

Not Included At All 31
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TABLE VII

GRU ORIGINAL FORECASTS PER λ ∈ [0, 1]

RMSE RESULTS OVER 8 FORECAST PERIODS (24 HOURS)

Feature λ 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

SST (°C) 0.00 1.117 1.327 1.507 1.663 1.800 1.923 2.035 2.138

0.10 1.029 1.216 1.370 1.503 1.619 1.724 1.818 1.907

0.20 1.006 1.178 1.324 1.452 1.567 1.670 1.764 1.850

0.30 0.986 1.195 1.372 1.529 1.670 1.798 1.918 2.029

0.40 0.978 1.198 1.387 1.552 1.697 1.826 1.941 2.045

0.50 0.855 1.038 1.194 1.329 1.449 1.558 1.660 1.757

0.60 0.828 1.030 1.197 1.342 1.471 1.587 1.691 1.785

0.70 0.882 1.143 1.370 1.574 1.761 1.932 2.091 2.238

0.80 0.851 1.067 1.239 1.384 1.508 1.618 1.714 1.801

0.90 0.781 0.977 1.134 1.262 1.369 1.460 1.539 1.607

1.00 0.887 1.133 1.332 1.497 1.640 1.763 1.872 1.970

Pressure (hPa) 0.00 6.223 6.663 7.011 7.306 7.569 7.805 8.016 8.202

0.10 6.240 6.702 7.054 7.344 7.593 7.812 8.004 8.175

0.20 6.393 7.038 7.536 7.947 8.297 8.599 8.858 9.081

0.30 6.072 6.643 7.077 7.432 7.736 7.999 8.224 8.419

0.40 5.746 6.424 6.972 7.437 7.837 8.179 8.467 8.713

0.50 4.446 5.194 5.753 6.202 6.579 6.898 7.169 7.402

0.60 2.896 3.632 4.252 4.798 5.285 5.711 6.079 6.401

0.70 2.343 2.968 3.507 4.013 4.508 4.971 5.383 5.754

0.80 2.302 2.882 3.378 3.831 4.273 4.692 5.073 5.420

0.96 2.072 2.657 3.148 3.598 4.037 4.447 4.817 5.154

1.00 2.119 2.832 3.452 4.034 4.600 5.136 5.617 6.051

Gust (m/s) 0.00 3.044 3.399 3.709 3.975 4.205 4.405 4.580 4.738

0.10 2.917 3.256 3.554 3.811 4.029 4.212 4.366 4.501

0.20 2.957 3.312 3.616 3.873 4.090 4.271 4.425 4.560

0.30 2.809 3.124 3.388 3.606 3.787 3.938 4.065 4.176

0.40 2.789 3.138 3.438 3.691 3.903 4.077 4.223 4.348

0.50 2.683 3.076 3.404 3.678 3.906 4.094 4.251 4.387

0.60 2.538 2.963 3.285 3.541 3.747 3.916 4.059 4.182

0.70 2.412 2.806 3.107 3.347 3.541 3.700 3.833 3.947

0.84 2.396 2.782 3.077 3.309 3.497 3.650 3.781 3.894

0.90 2.415 2.841 3.167 3.429 3.640 3.813 3.958 4.081

1.00 2.378 2.778 3.102 3.368 3.587 3.768 3.923 4.055
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TABLE VIII

LSTM ORIGINAL FORECASTS PER λ ∈ [0, 1]

RMSE RESULTS OVER 8 FORECAST PERIODS (24 HOURS)

Feature λ 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

SST (°C) 0.00 1.089 1.282 1.459 1.616 1.754 1.875 1.983 2.080

0.10 1.031 1.237 1.418 1.583 1.733 1.867 1.989 2.102

0.20 1.052 1.241 1.408 1.551 1.672 1.776 1.865 1.943

0.30 1.120 1.344 1.533 1.694 1.833 1.954 2.060 2.153

0.40 0.900 1.101 1.272 1.418 1.545 1.658 1.760 1.856

0.50 0.813 1.005 1.165 1.298 1.415 1.519 1.613 1.700

0.60 0.788 1.015 1.201 1.360 1.497 1.617 1.723 1.817

0.68 0.756 0.962 1.127 1.263 1.377 1.475 1.560 1.633

0.80 0.773 1.001 1.186 1.342 1.478 1.597 1.705 1.805

0.90 0.798 1.033 1.226 1.388 1.527 1.648 1.753 1.848

1.00 0.850 1.097 1.296 1.462 1.603 1.727 1.835 1.931

Pressure (hPa) 0.00 6.706 7.270 7.691 8.020 8.288 8.510 8.698 8.858

0.10 6.371 6.854 7.220 7.517 7.770 7.987 8.176 8.343

0.20 6.493 7.150 7.666 8.079 8.418 8.700 8.938 9.140

0.30 6.334 7.070 7.646 8.117 8.517 8.862 9.162 9.424

0.40 5.788 6.556 7.155 7.653 8.083 8.460 8.791 9.084

0.50 4.557 5.382 6.017 6.532 6.960 7.316 7.613 7.865

0.60 2.675 3.410 4.037 4.596 5.101 5.546 5.932 6.269

0.70 2.472 3.119 3.670 4.163 4.617 5.026 5.385 5.703

0.82 2.241 2.832 3.319 3.762 4.190 4.594 4.954 5.276

0.90 2.215 2.817 3.315 3.767 4.205 4.616 4.983 5.310

1.00 2.038 2.656 3.186 3.682 4.183 4.672 5.120 5.524

Gust (m/s) 0.00 2.944 3.240 3.499 3.717 3.904 4.062 4.197 4.315

0.10 2.991 3.323 3.602 3.831 4.021 4.179 4.310 4.422

0.20 2.931 3.260 3.536 3.767 3.962 4.128 4.273 4.402

0.30 2.836 3.169 3.455 3.697 3.902 4.075 4.225 4.355

0.40 2.768 3.107 3.399 3.647 3.857 4.034 4.185 4.319

0.50 2.666 3.018 3.314 3.557 3.756 3.919 4.054 4.168

0.60 2.535 2.976 3.315 3.584 3.805 3.986 4.136 4.264

0.72 2.440 2.840 3.148 3.397 3.598 3.762 3.898 4.015

0.80 2.458 2.914 3.270 3.559 3.798 3.998 4.169 4.318

0.90 2.413 2.842 3.191 3.478 3.714 3.911 4.077 4.217

1.00 2.386 2.834 3.202 3.514 3.776 3.998 4.186 4.346
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TABLE IX

TRANSFORMER ORIGINAL FORECASTS PER λ ∈ [0, 1]

RMSE RESULTS OVER 8 FORECAST PERIODS (24 HOURS)

Feature λ 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

SST (°C) 0.00 0.918 1.027 1.134 1.240 1.345 1.448 1.547 1.644

0.10 0.893 1.008 1.121 1.233 1.344 1.451 1.556 1.658

0.20 0.863 0.985 1.102 1.219 1.334 1.446 1.554 1.659

0.30 0.829 0.957 1.081 1.204 1.324 1.441 1.555 1.664

0.40 0.784 0.916 1.044 1.171 1.296 1.418 1.537 1.652

0.50 0.722 0.852 0.982 1.114 1.244 1.372 1.498 1.620

0.60 0.668 0.808 0.943 1.078 1.211 1.340 1.464 1.583

0.70 0.615 0.753 0.885 1.017 1.147 1.273 1.395 1.512

0.80 0.587 0.724 0.853 0.981 1.107 1.230 1.348 1.463

0.90 0.572 0.699 0.818 0.936 1.052 1.166 1.276 1.383

1.00 0.568 0.691 0.805 0.918 1.030 1.138 1.243 1.344

Pressure (hPa) 0.00 6.204 6.447 6.663 6.872 7.076 7.269 7.448 7.613

0.10 6.060 6.334 6.565 6.783 6.995 7.195 7.379 7.548

0.20 5.878 6.192 6.441 6.671 6.893 7.100 7.290 7.464

0.30 5.628 6.005 6.284 6.533 6.767 6.984 7.180 7.358

0.40 5.240 5.735 6.070 6.353 6.611 6.845 7.053 7.242

0.50 4.050 4.817 5.326 5.718 6.051 6.338 6.587 6.807

0.60 2.684 3.421 3.995 4.490 4.934 5.325 5.666 5.966

0.70 2.231 2.877 3.397 3.865 4.306 4.709 5.063 5.379

0.80 2.003 2.592 3.069 3.512 3.947 4.354 4.716 5.040

0.90 1.885 2.446 2.904 3.336 3.775 4.196 4.574 4.914

1.00 1.824 2.391 2.867 3.324 3.799 4.263 4.685 5.070

Gust (m/s) 0.00 2.901 3.145 3.367 3.567 3.745 3.902 4.042 4.169

0.10 2.844 3.102 3.332 3.537 3.721 3.882 4.027 4.158

0.20 2.778 3.052 3.292 3.505 3.696 3.864 4.014 4.150

0.30 2.699 2.992 3.240 3.459 3.653 3.823 3.974 4.111

0.40 2.595 2.916 3.177 3.403 3.601 3.774 3.927 4.064

0.50 2.466 2.827 3.107 3.342 3.545 3.720 3.873 4.009

0.60 2.321 2.707 3.005 3.251 3.459 3.637 3.791 3.927

0.70 2.229 2.615 2.917 3.165 3.374 3.551 3.704 3.840

0.80 2.175 2.555 2.855 3.103 3.311 3.488 3.641 3.777

0.90 2.150 2.522 2.818 3.064 3.270 3.445 3.596 3.730

1.00 2.138 2.505 2.798 3.042 3.246 3.418 3.567 3.698
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TABLE X

GRU DIFFERENCED FORECASTS PER λ ∈ [0, 1]

RMSE RESULTS OVER 8 FORECAST PERIODS (24 HOURS)

Feature λ 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

SST (°C) 0.00 0.220 0.339 0.400 0.451 0.493 0.525 0.549 0.569

0.10 0.221 0.342 0.410 0.467 0.513 0.549 0.575 0.595

0.20 0.211 0.330 0.384 0.424 0.455 0.479 0.498 0.515

0.30 0.225 0.349 0.414 0.463 0.501 0.529 0.551 0.569

0.40 0.218 0.341 0.402 0.448 0.486 0.517 0.543 0.566

0.50 0.211 0.330 0.382 0.421 0.453 0.480 0.502 0.523

0.60 0.219 0.339 0.392 0.430 0.458 0.480 0.496 0.510

0.70 0.218 0.339 0.393 0.432 0.462 0.486 0.505 0.522

0.80 0.216 0.336 0.389 0.426 0.455 0.479 0.499 0.517

0.90 0.218 0.337 0.391 0.430 0.461 0.487 0.510 0.532

1.00 0.222 0.340 0.391 0.427 0.455 0.478 0.499 0.518

Pressure (hPa) 0.00 1.044 1.498 2.003 2.516 3.028 3.504 3.923 4.304

0.10 1.043 1.474 1.970 2.490 3.010 3.491 3.911 4.291

0.20 1.059 1.496 1.994 2.514 3.052 3.571 4.049 4.496

0.30 1.101 1.582 2.094 2.620 3.153 3.635 4.048 4.422

0.40 1.085 1.536 2.021 2.517 3.016 3.474 3.878 4.249

0.50 1.149 1.631 2.132 2.647 3.167 3.646 4.069 4.464

0.58 1.151 1.697 2.214 2.705 3.183 3.622 4.015 4.377

0.70 1.183 1.699 2.198 2.678 3.162 3.622 4.037 4.429

0.80 1.224 1.801 2.316 2.796 3.262 3.695 4.078 4.433

0.90 1.231 1.797 2.297 2.754 3.195 3.613 3.996 4.360

1.00 1.276 1.864 2.365 2.808 3.257 3.720 4.151 4.534

Gust (m/s) 0.00 2.089 2.668 3.176 3.623 4.006 4.343 4.637 4.901

0.10 2.122 2.645 3.095 3.481 3.803 4.073 4.298 4.496

0.20 2.032 2.489 2.880 3.219 3.517 3.786 4.035 4.273

0.30 2.052 2.511 2.903 3.244 3.535 3.786 4.005 4.201

0.40 2.101 2.539 2.914 3.228 3.492 3.718 3.912 4.082

0.50 2.120 2.532 2.883 3.188 3.454 3.687 3.895 4.081

0.60 2.154 2.541 2.870 3.143 3.369 3.556 3.716 3.856

0.70 2.222 2.579 2.891 3.158 3.385 3.578 3.747 3.897

0.80 2.318 2.650 2.947 3.204 3.422 3.605 3.763 3.900

0.90 2.434 2.759 3.048 3.297 3.508 3.682 3.832 3.962

1.00 2.446 2.756 3.032 3.269 3.470 3.639 3.782 3.908
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TABLE XI

LSTM DIFFERENCED FORECASTS PER λ ∈ [0, 1]

RMSE RESULTS OVER 8 FORECAST PERIODS (24 HOURS)

Feature λ 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

SST (°C) 0.00 0.214 0.330 0.384 0.424 0.456 0.481 0.501 0.518

0.10 0.222 0.341 0.405 0.454 0.493 0.525 0.551 0.574

0.20 0.225 0.356 0.431 0.493 0.546 0.587 0.621 0.652

0.30 0.220 0.344 0.409 0.458 0.498 0.530 0.557 0.581

0.40 0.211 0.332 0.389 0.433 0.470 0.501 0.528 0.553

0.50 0.216 0.336 0.392 0.435 0.474 0.509 0.541 0.570

0.60 0.222 0.348 0.412 0.459 0.497 0.529 0.557 0.583

0.70 0.218 0.341 0.397 0.439 0.474 0.505 0.533 0.559

0.80 0.218 0.338 0.389 0.425 0.452 0.475 0.494 0.511

0.90 0.215 0.336 0.388 0.424 0.452 0.476 0.495 0.512

1.00 0.230 0.352 0.408 0.448 0.480 0.507 0.531 0.552

Pressure (hPa) 0.00 1.027 1.463 1.974 2.502 3.035 3.548 4.022 4.461

0.10 1.065 1.526 2.058 2.612 3.152 3.634 4.038 4.400

0.20 1.067 1.553 2.068 2.587 3.102 3.567 3.968 4.331

0.30 1.104 1.579 2.087 2.592 3.085 3.525 3.912 4.272

0.40 1.097 1.542 2.030 2.542 3.064 3.557 4.015 4.456

0.50 1.160 1.655 2.147 2.629 3.117 3.576 3.993 4.386

0.60 1.176 1.710 2.219 2.711 3.195 3.639 4.026 4.387

0.70 1.180 1.706 2.199 2.666 3.144 3.628 4.088 4.518

0.76 1.219 1.759 2.262 2.737 3.200 3.635 4.037 4.418

0.90 1.246 1.795 2.271 2.708 3.159 3.620 4.045 4.434

1.00 1.320 1.913 2.415 2.865 3.322 3.788 4.215 4.603

Gust (m/s) 0.00 2.059 2.590 3.056 3.469 3.834 4.161 4.463 4.758

0.10 2.067 2.584 3.023 3.392 3.701 3.957 4.170 4.349

0.20 2.073 2.561 2.982 3.338 3.633 3.887 4.112 4.313

0.30 2.077 2.539 2.922 3.240 3.502 3.720 3.906 4.067

0.40 2.106 2.557 2.968 3.344 3.683 3.993 4.280 4.536

0.50 2.133 2.584 3.000 3.383 3.729 4.050 4.354 4.638

0.60 2.197 2.580 2.911 3.198 3.443 3.653 3.840 4.009

0.70 2.267 2.635 2.955 3.229 3.463 3.660 3.831 3.982

0.80 2.369 2.703 3.003 3.267 3.492 3.683 3.850 3.998

0.90 2.393 2.713 3.006 3.260 3.473 3.652 3.806 3.939

1.00 2.470 2.782 3.061 3.299 3.498 3.664 3.806 3.931



IEEE OCEANIC ENGINEERING SOCIETY, VOL. XX, NO. XX, MARCH 202X 43

TABLE XII

TRANSFORMER DIFFERENCED FORECASTS PER λ ∈ [0, 1]

RMSE RESULTS OVER 8 FORECAST PERIODS (24 HOURS)

Feature λ 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000

SST (°C) 0.00 0.206 0.322 0.380 0.426 0.463 0.494 0.522 0.549

0.10 0.205 0.321 0.378 0.421 0.456 0.486 0.512 0.539

0.20 0.204 0.321 0.376 0.417 0.450 0.479 0.504 0.530

0.30 0.204 0.320 0.374 0.413 0.445 0.472 0.497 0.522

0.40 0.203 0.320 0.373 0.410 0.441 0.468 0.492 0.516

0.50 0.202 0.320 0.371 0.408 0.438 0.464 0.488 0.511

0.60 0.202 0.320 0.370 0.406 0.435 0.461 0.485 0.507

0.70 0.201 0.319 0.370 0.404 0.433 0.458 0.482 0.504

0.80 0.201 0.320 0.369 0.404 0.432 0.457 0.479 0.500

0.90 0.201 0.320 0.369 0.403 0.431 0.456 0.477 0.497

1.00 0.201 0.320 0.370 0.404 0.431 0.455 0.476 0.495

Pressure (hPa) 0.00 0.933 1.410 1.940 2.470 2.980 3.440 3.847 4.216

0.10 0.950 1.438 1.966 2.494 3.005 3.463 3.865 4.231

0.20 0.965 1.465 1.993 2.519 3.029 3.484 3.883 4.246

0.30 0.984 1.501 2.031 2.553 3.060 3.511 3.904 4.265

0.40 1.007 1.544 2.079 2.596 3.095 3.541 3.931 4.289

0.50 1.032 1.594 2.134 2.646 3.136 3.575 3.964 4.320

0.60 1.059 1.649 2.197 2.700 3.178 3.614 4.003 4.357

0.70 1.091 1.712 2.269 2.761 3.227 3.662 4.054 4.404

0.80 1.125 1.783 2.348 2.826 3.281 3.723 4.119 4.461

0.90 1.160 1.855 2.426 2.889 3.335 3.787 4.184 4.517

1.00 1.197 1.933 2.511 2.958 3.396 3.859 4.256 4.578

Gust (m/s) 0.00 1.820 2.225 2.573 2.869 3.115 3.319 3.491 3.640

0.10 1.852 2.251 2.592 2.883 3.125 3.326 3.495 3.642

0.20 1.885 2.278 2.614 2.901 3.139 3.336 3.503 3.649

0.30 1.923 2.312 2.643 2.924 3.157 3.351 3.515 3.658

0.40 1.966 2.351 2.676 2.952 3.181 3.372 3.533 3.673

0.50 2.012 2.393 2.713 2.984 3.209 3.396 3.554 3.692

0.60 2.061 2.437 2.751 3.017 3.239 3.422 3.578 3.713

0.70 2.114 2.484 2.794 3.055 3.272 3.453 3.605 3.738

0.80 2.171 2.532 2.836 3.093 3.307 3.485 3.635 3.765

0.90 2.230 2.581 2.880 3.133 3.343 3.518 3.665 3.794

1.00 2.290 2.630 2.923 3.172 3.379 3.552 3.697 3.824
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