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Abstract—In the wake of the COVID-19 pandemic, 
efficiently allocating ICU resources for critical patients has 
become crucial, especially for those with chronic conditions. 
This study harnesses machine learning (ML) to forecast ICU 
admissions among COVID-19 patients in Kuwait, analyzing a 
dataset of 4399 patients to identify pivotal predictors for ICU 
needs. Employing cross-validation and Synthetic Minority 
Over-sampling Technique (SMOTE) to tackle data imbalance, 
the predictive variables were refined using backward feature 
selection with logistic regression and evaluated model 
interpretability with Shapley additive explanations (SHAP). 
The Support Vector Machine (SVM) model outperformed 
other models with an area under the curve (AUC) of 0.91, and 
the Extra Tree (ET) model showed better performance with 
an accuracy of 96.42%. Critical predictors included 
demographics, clinical outcomes like shortness of breath, 
elevated d-dimer levels, and abnormal chest X-rays. This 
research not only underscores the potential of ML in critical 
healthcare decision-making during pandemics but also 
highlights its role in discovery science, suggesting broader 
applications in healthcare and other scientific domains. The 
study advances medical informatics by integrating ML with 
healthcare, offering insights into disease dynamics and 
improving resource allocation strategies. 
 

Index Terms— COVID-19, Cross-validation, Feature 
selection, Intensive care unit, Machine learning.  

I. INTRODUCTION 
HE COVID-19 pandemic has led to unprecedented 
levels of mortality, morbidity, and economic impact. By 
25th  July 2022, the number of reported cases of 

COVID-19 worldwide was 576.58 million, with 6.4 million 
deaths [1]. Given the scale of the problem and the variable 
clinical course, identifying and targeting individuals at the 
highest risk becomes important for efficiently allocating limited 
resources [2]. Even though the immediate crisis of COVID-19 
may have abated, the tools and insights garnered during its peak 
remain pivotal. Future health emergencies, such as infectious 
outbreaks or other challenges, will benefit from the strategic 
methodologies honed during COVID-19, ensuring their 
continued relevance. While occasionally predictable, 
contagious disease outbreaks always carry uncertainty 
regarding their exact character and scope. Research undertaken 
during the COVID-19 period fortifies the preparedness for such 
unpredictable challenges. Refined predictive models, 
innovative techniques, and strategic insights are invaluable 
assets for managing prospective health crises. 

The methodologies and ML models fine-tuned during the 
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pandemic are versatile and poised to be employed across a 
spectrum of healthcare domains. The strategic insights, 
predictive analytics, and data management skills cultivated 
during this period can be effectively repurposed for diverse 
diseases, conditions, and health emergencies. Age and medical 
conditions increase the likelihood of severe COVID-19 and its 
consequences [3]. Acute or chronic COVID-19 disease persists 
in people without vaccines or treatments and those with 
underlying conditions that decrease immunity to vaccinations 
[4]. 

An ICU is a specialized critical care ward dedicated to 
treating and caring for patients with serious diseases that 
substantially threaten their lives. An ICU admission policy for 
older people would consider their unique requirements and 
enhance admission options to improve their results and 
experiences [5, 6]. Critically ill emergency department patients 
require enhanced interaction and translation assistance, 
according to research by Olds et al. [7]. 

Medical organizations should monitor ICU treatment usage 
and ensure that ICU admission decisions are patient-focused 
while considering the resources and restrictions of each hospital 
[8]. The virus mutation with COVID-19 had severe changes in 
people, affecting individual treatments and vaccinations. 
Hence, data analysis provides essential information for future 
pandemics [9]. According to Ungar et al. [10], multiple medical 
conditions are substantially related to ICU admission among 
children diagnosed with COVID-19. 

The relationship between diabetes as a significant risk factor 
and COVID-19 disease severity was examined in the literature 
using both "classic" statistical analysis techniques [11-14] and 
ML techniques [15, 16]. The diabetes burden is incredibly high 
in Kuwait, with an overall adjusted prevalence of 19.1% for 
diabetes and 13.5% for prediabetes [17], making this especially 
relevant in the context of this study. 

ML significantly enhances the potential for strategic 
handling of clinical research [18, 19]. Several studies have 
examined the COVID-19-related ICU admission risk variables 
and employed Artificial Intelligence (AI) and ML techniques to 
develop models for predicting disease severity based on 
laboratory investigations, imaging, or clinical note data. A 
review of previous studies is mentioned in Table 1. 

 
TABLE  I 

REVIEW OF ML MODELS FOR PREDICTION IN THE FIELD OF HEALTH CARE. 
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Referenc
e and 
year 

Model Target type Dataset 
type Results 

[20] 2023 

LR, DT, RF, 
XGB, Light 

GB, 
ensemble 

In-hospital 
mortality of 
lung cancer 

patient 

1176 lung 
cancer 
patient 

Ensembl
e model 
with 89% 
accuracy 

[21] 2023 LR, RF, 
XGB 

ICU transfer 
prediction 

with 
dichotomou
s variables 

532 
COVID-19 
patients 

LR with 
AUC = 
0.748 

[22] 2022 DT, SVM, 
MLP, KNN 

Predicting 
intubation 

risk with 54 
variables 

1225 
COVID-19 
patients 

DT with 
93.8% 

accuracy 

[23] 2022 Different DT 
algorithms 

ICU 
prediction 

with 53 
variables 

512 
COVID-19 
patients 

J-48 with 
81.9% 

accuracy 

[24] 2022 14 ML 
classifiers 

Prediction 
of 

deterioratio
n with 33 
variables 

1079 
COVID-19 
patients 

AUROC 
of 

CatBoost 
= 0.84 

[25] 2022 Light GB, 
LR 

Prediction 
of mortality 

1571 
COVID-19 
patients 

Light 
GBM 

with AUC 
= 0.88 

[26] 2022 

log-binomial 
mixed-
effects 

regression 

Prediction 
of ICU 

admission 
and 

mortality 

793 
pregnant 

COVID-19 
patients 

AUROC 
= 0.73 

[27] 2022 LR, CART, 
C4.5, C5.0 

Prediction 
of ICU 

admission 

228 
Myastheni
a gravis 
patients 

C5.0 with 
AUC = 
0.814 

[28] 2021 
18 different 

ML 
algorithms 

Prediction 
of ICU 

admission 
and 

mortality 

5308 
COVID-19 
patients 

Ensembl
e models 
with F1-
score = 

0.81 

[14] 2021 LR 

Prediction 
of mortality 

with 57 
variables 

247 
COVID-19 

diabetic 
and 

prediabetic 
patients 

AUC = 
0.889 

[29] 2021 Multivariabl
e LR 

Prediction 
of ICU 

admission 
and 

mortality 

356 
COVID-19 
patients 

AUC = 
0.77 

[30] 2021 

RF, MLP, 
SVM, ET, 

GB, 
Adaboost 

Prediction 
of ICU and 
ventilation 

212 
COVID-19 
patients 

AUC = 
0.80 with 

RF 
model 

[31] 2021 
GB, LR, 

RF, SVM, 
DT 

Prediction 
of ICU with 
CBC data 

1218 
COVID-19 
patients 

AUC = 
0.88 with 
ensembl
e models 

[32] 2021 MLP, RF, 
XGB,  

Prediction 
of ICU 

admission 
with 165 
variables 

3623 
COVID-19 
patients 

AUC = 
0.83 with 

XGB 
model 

[16] 2020 

LR, RF, 
XGB, ANN, 

majority 
voting, CNN 

Prediction 
of mortality 

9954 
COVID-19 

diabetic 
patients 

with 

AUC = 
0.97 with 

CNN 

clinical 
notes 

Abbreviations: AUROC: area under the receiver operating 
characteristic curve, DT: Decision tree, SVM: Support vector 
machine, MLP: Multilayer perceptron, KNN: K-nearest neighbors, 
ANN: Artificial neural network, LR: Logistic regression, CatBoost: 
categorical boosting, GB: Gradient boosting, XGB: extreme gradient 
boosting, AUC: area under the curve, CART: classification and 
regression tree, RF: Random forest, CBC: complete blood count, ET: 
Extra Trees classifier 

 
An unbalanced classification issue has skewed instances 

across majority classes. Predictive modeling is complex with 
imbalanced classifications as most ML algorithms assume 
equal instances for each class, thereby making minority class 
models unreliable—a concern as the minority class is usually 
more significant than the majority class and particularly 
vulnerable to classification errors [33, 34]. The Synthetic 
Minority Over-sampling Technique (SMOTE) is a data 
augmentation approach employed in ML to overcome the class 
imbalance problem [35]. SMOTE creates a balanced dataset 
with equal numbers of majority and minority cases. It improves 
skewed data in ML models and is a common but simple and 
effective oversampling method [36]. 

This study explores the application of ML algorithms to 
develop prediction models for ICU admission using a rich set 
of clinical and laboratory parameters among COVID-19 
patients, distinguishing between those with and without 
diabetes. One major challenge faced in medical datasets is the 
issue of data imbalance, in which one class (e.g., patients 
requiring ICU) is significantly underrepresented. This 
imbalance can introduce a bias in the predictive model, often 
leading to inaccurate predictions, especially for the minority 
class. SMOTE is a standard imbalance solution. The model 
makes better, more impartial predictions by producing synthetic 
samples in the feature space to balance the minority class. 

While applying these techniques provides a robust 
foundation for this analysis, selecting the most informative 
variables is equally crucial. Not all variables might be essential 
for accurate predictions, prompting the need for effective 
feature selection methods. 

Detailed methodologies, including the application of 
SMOTE and feature selection procedures, are elaborated in the 
methods section. Based on the Population, Intervention, 
Comparison, And Outcome (PICO) approach, the research 
questions were framed as follows:  

• Research question 1 (RQ1): In patients diagnosed with 
COVID-19, how effectively do different ML models 
predict ICU admissions? 

• Research question 2 (RQ2): In patients diagnosed with 
COVID-19, which essential clinical and laboratory 
variables, when incorporated into this ML model, most 
significantly predict the need for ICU admission? 

• Research question 3 (RQ3): Among COVID-19 
patients known to have diabetes, how do the essential 
variables differentiate in their predictive power for ICU 
admission compared to the broader COVID-19 patient 
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population? 
The proposed study is motivated by the urgent need for a 

precise and efficient predictive model tailored for a specific 
demographic to inform healthcare responses. The main 
contributions of this paper are: 

1) A Comprehensive Dataset: By consolidating a broad 
spectrum of data, from demographic details to specific 
clinical findings, one of the most exhaustive datasets 
related to ICU requirements is offered amidst the 
COVID-19 pandemic in Kuwait. 

2) ML-based Approach with Feature Selection: 
Recognizing the potential pitfalls of using raw, 
unfiltered data, backward feature selection with logistic 
regression is employed, enhancing the accuracy and 
efficiency of the prediction models. Support vector 
machine (SVM), extra trees (ET), decision tree (DT), 
logistic regression (LR), and random forest (RF) were 
the ML algorithms used in this study. 

3) Addressing Data Imbalance: In medical datasets, data 
imbalances can often lead to skewed results. The 
adoption of SMOTE ensures a balanced and unbiased 
model prediction. 

4) Transparent Feature Importance with SHAP: This 
model does not just predict; it also informs. By 
integrating Shapley additive explanations (SHAP) 
values, the relative significance of each predictor is 
elucidated, bridging the gap between ML and clinical 
interpretation. 

II. MATERIALS AND METHODS 
 

A. Study Design 
A use-case scenario explains the context of the study, as 

depicted in Fig 1. The use-case diagram consists of actors or 
persons interacting with the system, its functioning, and the 
connection link or the relationship between them. The patient 
with COVID-19 is one of the actors. The patients were admitted 
to the hospital and consulted by the doctors. They were tested 
for COVID-19. The other two actors in the use case (doctors 
and nurses) recorded their symptoms and clinical records. All 
the medical records, including the ICU admission, were created 
in a database maintained by an admin (actor). The "include" 
parameter in the connection link requires another use case to 
perform the task. The patient was discharged from the hospital 
based on the doctor's decision. Once the dataset was ready, the 
ML model developer (actor) accessed the data and preprocessed 
it, including cleaning, imputing, and standardizing. The best 
medical record variables were selected using the backward 
variable selection method. The ML model parameters were 
tuned, and the best parameter was picked for training and 
validation to implement and deploy the model. The deployed 
model can then be employed in the clinical setting to predict 
new patient data. The model contained preprocessing steps and 
had the best variables with the best ML model parameters. 

 

 
Fig.  1. Use-case scenario of the study. 

 

B. Dataset 
Data were collected from patients admitted from Kuwait 

Hospitals between 4 May and 26 August 2020. The Permanent 
Committee for Coordination of Medical and Health Research at 
the Ministry of Health (MOH) obtained all the legal approvals 
for sample collection and patient surveys with consent forms. 
Patient data were collected retrospectively, and the inclusion 
criteria of the validation cohort were based on admission and 
discharge data availability. Patients who did not have this 
information were not included in the validation group. All 
patients were tested for COVID-19, and the polymerase chain 
reaction (PCR) result was positive. A total of 4555 patient data 
was collected. From this, 156 individuals were disqualified 
from the study because of excessive missing values. So, the 
total number of the complete cohort employed in this study was 
4399. The mean age of the patients was 42, and the first–third 
quartile (Q1–Q3) shows ages from 31–54. Table 2 represents 
the demographic information according to age, gender, and ICU 
admission requirements. 

TABLE  II 
THE STUDY COHORT ACCORDING TO AGE, GENDER, AND ICU ADMISSION 

 
Condition Age Male Female 

ICU 
admission-

required 

Up to 30 7 1 
Between 31 and 

50 97 6 

Between 51 and 
65 91 18 

Above 65 46 15 

ICU 
admission-

not 
required 

Up to 30 679 380 
Between 31 and 

50 1371 489 

Between 51 and 
65 569 302 

Above 65 173 155 
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The variables hypertension and diabetes mellitus (DM) were 
calculated based on the results of a few study parameters. 
Suppose a patient has systolic blood pressure greater than 140 
or diastolic blood pressure (DBP) greater than 90; in that case, 
they are said to have hypertension (value=1), otherwise not 
(value=0). The glucose parameter shows the random glucose 
level of hospital patients. Estimating glucose levels based on a 
random sample is called random glucose level. In all cases, it is 
not a fasting sample. The blood glucose level can be measured 
at any time of the day by using this test. A patient has DM 
(value=1) if the glucose ≥ 11.1mmol/L or Hba1c ≥ 6.5mmol/L; 
otherwise, non-diabetes (DM value=0). If the patient had less 
glucose value but had a positive DM history, that person was 
under medication [37]. 

The demographic predictors included age, gender, height, 
and nationality. Each patient's symptoms during COVID-19 
were marked here, including weakness, sore throat, headache, 
SOB, abdominal pain, fever, expectoration, diarrhea, asthma, 
cough, and history of bariatric surgery. The diabetes result 
considered at the hospital was the history of DM, glucose level, 
and hemoglobin A1c or glycated hemoglobin (HbA1cA) value. 
Specific clinical tests were also considered. These were 
temperature, chest x-ray (CXR), creatinine, phosphate, pulse, 
respiratory rate, oximeter, prothrombin time, potassium (K), 
sodium (Na), magnesium (Mg), estimated glomerular filtration 
rate (eGFR), c-reactive protein (CRP), urate, procalcitonin, 
total protein (T.Protein), total bilirubin (T.Bili), serum albumin 
(S.Albumin), carbon dioxide (CO2), chloride (Cl), blood urea 
nitrogen (BUN), calcium (Ca), activated partial thromboplastin 
clotting time (APTT), alanine transaminase (ALT), alkaline 
phosphatase (ALP), d-dimer, ferritin level, gamma-glutamyl 
transferase (GGT), and international normalized ratio (INR). 

Blood test results such as lactate dehydrogenase (LDH), 
platelet count, neutrophil%, lymphocyte%, monocyte%, 
basophil%, eosinophil%, hemoglobin (HB), White blood cell 
(WBC), red blood cell (RBC), hematocrit (HCT), mean 
corpuscular volume (MCV), mean corpuscular hemoglobin 
(MCH), mean cell hemoglobin concentration (MCHC), red cell 
distribution width (RDW), and mean platelet volume (MPV) 
were also considered. Table 3 provides the complete description 
of each variable used in this study. 

 
TABLE  III 

THE PARAMETERS OF THE COVID-19 DATASET 
 

Variables N Mean ± Std. 
Deviation 

Missing data 

Count Percent 

Age 4399 42.16 ± 16.73 0 0 

SBP 1389 129.94 ±18.17 3010 68.4 

DBP 1388 76.95 ± 10.97 3011 68.4 

Temp 1341 37.04 ± 0.63 3058 69.5 

eGFR 4043 97.17 ± 29.69 356 8.1 

CRP 2524 32.89 ± 74.84 1875 42.6 

Procalcitonin 1470 3.57 ± 28.46 2929 66.6 

Creatinin 3908 96.22 ± 108.81 491 11.2 

Phosphate 4258 1.28 ± 0.40 141 3.2 

Urate 4179 297.94 ± 109.26 220 5 

T.Protein 4288 65.12 ± 7.36 111 2.5 

T.Bili 4160 14.38 ± 22.74 239 5.4 

S.Albumin 4359 34.84 ± 7.41 40 0.9 
Respiratory 

rate 1280 21.96 ± 5.21 3119 70.9 

Pulserate 1435 87.77 ± 15.03 2964 67.4 
Pulse 

oximetry 1355 96.41 ± 4.95 3044 69.2 

Prothrombin 
Time 3233 14.14 ± 4.22 1166 26.5 

Na 4356 137.70 ± 3.98 43 1 

Mg 4209 0.83 ± 0.11 190 4.3 

LDH 3861 116.75 ± 406.87 538 12.2 

K 4353 4.27 ± 0.54 46 1 

INR 3234 1.05 ± 0.31 1165 26.5 

GGT 3975 45.13 ± 73.21 424 9.6 

Ferritin level 3805 102.52 ± 259.21 594 13.5 

DDimer 1223 539.07 ± 
1470.42 3176 72.2 

CO2 4362 25.46 ± 3.13 37 0.8 

CL 4363 102.77 ± 5.53 36 0.8 

Ca 4269 2.23 ± 0.19 130 3 

BUN 4362 5.87 ± 7.52 37 0.8 

APTT 3206 33.46 ± 12.91 1193 27.1 

ALT 4152 47.95 ± 216.65 247 5.6 

ALP 4321 82.87 ± 69.97 78 1.8 

WBCs 4395 8.03 ± 4.74 4 0.1 

Neutrophils 4398 57.24 ± 16.18 1 0 

Lymphocytes 4380 26.01 ± 17.64 19 0.4 

Monocytes 4384 8.79 ± 3.25 15 0.3 

Basophil 4384 0.44 ± 0.28 15 0.3 

Eosinophil 4398 2.27 ± 2.50 1 0 

RBCs 4398 4.78 ± 0.89 1 0 

HB 4398 129.08 ± 23.76 1 0 

HCT 4384 0.40 ± 0.07 15 0.3 

MCV 4384 83.60 ± 7.28 15 0.3 

MCHC 4384 324.20 ± 17.47 15 0.3 

MCH 4384 27.14 ± 2.78 15 0.3 

RDW 4383 13.79 ± 2.34 16 0.4 

MPV 4248 10.38 ± 1.77 151 3.4 
Platelets 

count 4398 287.35 ± 117.14 1 0 
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Glucose 4282 8.87 ± 5.10 117 2.7 

Hba1c 510 8.94 ± 2.44 3889 88.4 

Gender 4399 - 0 0 

Nationality 4399 - 0 0 

CXR 1462 - 2937 66.8 

Weakness 1513 - 2886 65.6 

Headache 1513 - 2886 65.6 

Sore throat 1513 - 2886 65.6 

SOB 1513 - 2886 65.6 
Abdominal 

pain 1513 - 2886 65.6 

Fever 1513 - 2886 65.6 

Expectoration 1513 - 2886 65.6 

Diarrhea 1513 - 2886 65.6 

Cough 1513 - 2886 65.6 

Asthma 1513 - 2886 65.6 
Bariatric 
Surgery 1513 - 2886 65.6 

Hypertension 1389 - 3010 68.4 

DM history 1513 - 2886 65.6 

DM 4299 - 100 2.3 
ICU 

admission 
(Target) 

4399 - 0 0 

Abbreviations: SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure, 
CXR: Chest X-Ray, DM: Diabetes Mellitus, SOB: Shortness of breath, WBC: 
White Blood cell, RBC: Red Blood cell, HB: Hemoglobin, HCT: Hematocrit, 
MCV: Mean corpuscular volume, MCHC: Mean cell hemoglobin 
concentration, MCH: Mean corpuscular hemoglobin, eGFR: Estimated 
Glomerular Filtration Rate, CRP: C-reactive protein, T.Protein: Total protein, 
T.Bili: Total bilirubin, S.Albumin: serum albumin, Na: Sodium, Mg: 
Magnesium, LDH: Lactate dehydrogenase, K: Potassium, Hba1c: Hemoglobin 
A1c, INR: International normalized ratio, GGT: Gamma-glutamyl transferase, 
CO2: Carbon dioxide, Cl: Chloride, Ca: Calcium, BUN: Blood urea nitrogen, 
APTT: Activated Partial Thromboplastin Clotting Time, ALT: Alanine 
transaminase, ALP: Alkaline phosphatase, RDW: Red cell distribution width, 
MPV: Mean platelet volume, ICU: Intensive Care unit 

 

C. Methodology 
This section outlines the comprehensive methodology 

employed in this study. The dataset is detailed in the beginning, 
encompassing 4399 COVID-19 patient records with 66 variable 
columns encapsulating diverse demographic and clinical 
details. The variables were selected after preliminary data 
preprocessing, which includes cleaning, imputation, and 
normalization. This step ensured the retention of only the most 
relevant and non-collinear variables, using techniques such as 
Pearson correlation and the chi-square test. The data underwent 
further processing with the selected variables to tackle class 
imbalances via the SMOTE method. Subsequently, ML models, 
including SVM, ET, DT, LR, and RF, were applied. A thorough 
evaluation followed using a 3-fold cross-validation (CV) and 
metrics such as precision, recall, and F1-score. This 

methodology ensures a robust and systematic analysis, as 
elucidated in the subsequent sections. 

Fig 2 depicts the methodology used in this work. The dataset 
consists of 4399 COVID-19 patient records and 66 variable 
columns that indicate demographic details such as age, gender, 
nationality, COVID-19 symptoms, chronic diseases, diabetes, 
blood culture results, pulse rate, oximeter, and other clinical 
results, as mentioned in Table 3. The data was preprocessed 
before moving it to the classification models. The best variables 
were chosen from the variables with the help of a wrapper 
variable selection method. The data was split into 60% for train 
validation using a 3-fold CV method, and the remaining 40% 
was set as unseen data for external validation. 
 

 
Fig.  2. Study methodology. 

 

D. Preprocessing 
The first stage was to clean the data before processing it into 

the model. In the next step, the missing values were replaced by 
an imputing method. The variables in Table 3 that showed more 
than 75% missing values were excluded from the study [23]. 
The KNN imputing (K-nearest neighbors) method was used for 
missing values [38]. It is the most straightforward algorithm for 
imputation and is based on Euclidean distance. The number of 
neighbors was set as 5 in this study, the default value in the 
package used. It meant that an average of five nearest neighbors 
replaced the missing value. The Euclidean distance was defined 
in equation (1) as  
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  �𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓   (1) 

Where f is the present feature, and weight is defined in equation 
(2) as 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 =  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

    (2)  

The missing and imputed data were analyzed to ensure 
robustness. After the cells were filled by the KNN method, the 
data was preprocessed to make all the data in a particular range.  
 

E. Variable Selection 
There were 65 independent variables (after removing 

missing values greater than 75%) and a target variable (ICU 
admission required-1, and ICU admission not required-0). ML 
models might be unable to make the required predictions, 
utilizing all the variables used in the dataset. The highly 
correlated independent variables were removed based on the 
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Pearson correlation for the continuous variables, as shown in 
Fig 3. The correlation coefficient value between 0.7 and 1 was 
said to have a strong relationship between the independent 
variables (either positive or negative) [39]. The positive 
correlation implies that both variables move in the same 
direction. In contrast, the negative value shows that the variable 
is in the opposite direction. A strong relation was identified in 
variables between eGFR-creatinine, prothrombin time-INR, 
RBC-HB, RBC-HCT, HB-HCT, and MCV-MCH. These 
variables provide the same information, potentially leading to 
overfitting in ML modeling. Therefore, the variables creatinine, 
INR, RBC, HB, and MCV were removed from the dataset to 
mitigate this.  

 
Fig.  3. Correlation between each continuous variable. 

 
The chi-square test for independence determines the 

association and significance of binary variables (mentioned in 
Table 3). The association was checked on the independent 
variables. The chi-square test null hypothesis states no 
statistical difference between the variables observed. It is 
accepted when the p-value is greater than 0.05. The chi-square 
p-value for all the independent variables is depicted in 
Appendix A, Table A1. The weakness, history of bariatric 
surgery, headache, abdominal pain, diarrhea, and expectoration 
were deleted from the dataset as they have a p-value greater 
than 0.05 (accepted null hypothesis); thus, it shows no 
difference between the observed variables. 

A backward elimination wrapper method determines the 
relevant predictors with continuous data [40, 41]. Logistic 
Regression (LR) was used as a statistical method to find the p-
value [42]. It determines how likely a variable will contribute 
to a target variable under a particular hypothesis. The null 
hypothesis is that there is no effect on the target variable based 
on the other selected variables, which is accepted when the p-
value is greater than 0.05. The variables are removed when the 
null hypothesis is accepted. Suppose the variable age has a p-
value of 0.001; age is confirmed to contribute to the target 
variable ICU admission prediction and selected for the 
classification model. The variable selection procedure is shown 

in the flowchart (Fig 4). These selected variables are used for 
the external validation test model. The complete details of LR 
results are depicted in Appendix A Table A2. 

 
Fig.  4. Flowchart showing the variable selection procedure. 

 

F. Machine Learning Algorithms and Evaluation 
The data with selected variables is considered for the train-

test-split method. The data is highly imbalanced, and the 
SMOTE method was employed to solve the issue. It creates 
more labels for the minority class by over-sampling, thus 
increasing model performance. It generates new instances in the 
minority class (ICU admission required) based on the variable 
space by interpolating positive samples lying next to each other. 
It was performed only on the CV model in this study. The 
performance of an ML model was evaluated using a 3-fold CV 
with a grid-search technique, which also helps determine the 
ideal combination of hyperparameters to utilize. It does this by 
first dividing the dataset into three folds, then training the model 
on two of those folds, and then testing it on the one-fold that is 
left over. This procedure was performed three times, and the 
findings were determined to be optimum after each fold was 
considered for assessing the model's performance. The ML 
algorithms used in this research were SVM with linear and 
radial basis function (RBF) kernels, RF, DT, LR, and ET 
models [43]. The best parameter was picked based on accuracy 
and then used to evaluate the dataset with a stratified 3-fold CV 
to prevent the over-fitting problem. The bias and variance of the 
model were also assessed to ensure the model does not overfit. 
Python with the Scikit-Learn library was used in this work [44]. 

Metrics such as precision or positive predictive rate, recall or 
sensitivity, specificity, accuracy, and F1-score were used to 
evaluate the predicted model. The accuracy shows how well the 
model performs across classes. However, class distribution 
imbalances may make it a poor metric. Suppose the number of 
non-ICU admissions far outnumbers the number of ICU 
admissions. In that case, the model may overlook the ICU 
admission instances by forecasting everything as non-ICU. In 
unbalanced class distributions, accuracy, recall, specificity, and 
F1-score may give more essential insights into the model's 
performance. The evaluation was based on the equation 
provided below. 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
    (3) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

    (1) 
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𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
   (2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

  (3) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

      (4) 
where trPs is true positive, faPs is false positive, faNg is false 

negative, and trNg is true negative. Precision measures how 
well the model can predict who will be admitted to the ICU. A 
model with high precision is good at reducing false positives, 
which means that it correctly predicts ICU admission, the 
positive class. Recall measures how well the model can catch 
all important ICU entry cases. A high recall implies that the 
model predicts most ICU patient cases well. Specificity 
measures its ability to prevent false negatives. High specificity 
means the model can reliably detect non-ICU admissions by 
limiting false positives for negative instances. The F1-score is 
a harmonic means of the precision and recall of values of the 
model.  

The receiver operating characteristic (ROC) curve is a 
practical approach for binary classification assessment. The 
performance of each model was examined for each threshold by 
plotting the true positive rate and the false positive rate. The 
model's performance improves when the area under the curve 
(AUC) metric approaches one [45]. Then, SHAP is used to find 
the contribution of each variable toward the prediction [46]. 
The SHAP library, specifically, supports most ML libraries, 
including Scikit-Learn, TensorFlow, and PyTorch. 

III. RESULTS 

A. Data Analysis 
The total data collected was 4399, of which 31% (1366) were 

female, and 69% (3033) were male. The total number of ICU 
admissions required is 281 (6%), whereas 4118 (94%) did not 
require admission. The missing values were identified and 
updated using KNN imputing. The imputed and missing data 
sets were analyzed using the Hosmer and Lemeshow Test in 
logistic regression analysis. If the p-value exceeds 0.05, the null 
hypothesis can be accepted; thus, the model fits the data. Table 
4 shows the study of missing and imputed data. The Hosmer-
Lemeshow test indicates that the model fits the missing and 
imputed data well regarding the specified goodness-of-fit test. 

 
TABLE  IV 

HOSMER-LEMESHOW TESTS FOR GOODNESS-OF-FIT TEST WITH MISSING 
AND IMPUTED DATA 

Dataset Chi-square df Sig. (p-value) 

With missing 6.086 8 0.638 
With imputed 2.583 8 0.958 

 
Using the min-max function in Scikit-Learn, the data was 

standardized according to the mean and variance of 60% of the 
data (2639 patient data). The data count for the target label was 
ICU admission required=172 and ICU not required=2467. 
Here, under-sampling was not preferred as it would lose some 
relevant information. So, by using the SMOTE method, over-
sampling was performed. The minority class was ICU-required 

and over-sampled to the majority class's size (ICU admission 
not required). The GridSearchCV was used to tune the 
parameters, and the best parameter was saved for each model. 
Afterward, the dataset was evaluated in a stratified 3-fold CV 
manner with the best parameter for each classifier.  

B. Model Performance with Variable Selection 
The model was implemented based on selected variables in 

60% of the data. The highly correlated variables were removed, 
and the backward elimination method using the logistic 
regression was employed, as shown in Fig 4. Variables were 
reduced to 20 from 65 according to the significant value (less 
than 0.05). Fig 5 depicts the selected predictors and their 
distribution. Gender, age, nationality, DBP, CXR, sore throat, 
SOB, fever, T.Protein, T.Bili, S.Albumin, respiratory rate, 
pulse rate, pulse oximeter, LDH, D-dimer, WBCs, HCT, 
MCHC, and DM history were the selected variables. 

 

Fig.  5. Distribution plot of the selected variables. 
 

The models were tuned with Grid search 3-fold CV, and the 
best parameter was chosen for fitting each classifier based on 
accuracy scoring. The tuned parameter is depicted in Table 5. 
The best parameter for the DT model was max depth=20 and 
alpha=0.001. The parameters C with 24 and gamma with values 
2-2 showed the best accuracy for SVM with RBF kernel. The 
number of estimators for the ET classifier was 100, and the RF 
classifier was 350 and used max feature as log2. Similarly, the 
attributes were adjusted for LR classifiers, with the 
regularization parameter C=2 and the tolerance value (tol) 
0.001. The SVM was also trained according to the Linear 
kernel, and the tuned parameters were C=2 and tolerance value 
(tol) 0.0001. 

TABLE  V 
ML MODELS PARAMETERS FOR GRID-SEARCH WITH 3-FOLD CROSS-

VALIDATION 
Model Tuning parameters Range 

DT 
Max-depth From 2 to 22 

Alpha From 0.1 to 0.0001 

SVM-Linear 
C From 2-1 to 24 
tol From 0.1 to 0.0001 

RF N-estimator From 100 to 500 
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Max-features Auto, sqrt, log2 

LR 
C 0.01, 0.1, 1, 2 
tol From 0.1 to 0.00001 

SVM-RBF 
C From 20 to 24 

Gamma From 2-2 to 2-5 

ET 
N-estimator From 100 to 500 

Max-features Auto, sqrt, log2 
 
The evaluation results with all metrics for each ML model 

are shown in Table 6. The model was trained and evaluated 
based on the best-tuned parameters for each model. The ET 
classifier achieved the highest accuracy, with 98.09%, and 
showed better precision (0.9816), recall or sensitivity (0.9809), 
F1-score (0.9813), and specificity (0.9809). 

 
TABLE  VI 

FULL EVALUATION METRICS OF ALL MODELS IN THE CROSS-VALIDATION 
OF 3-FOLD 

Model Acc ± 
std. 

Pre ± 
std. 

Rec ± 
std. F1 ± std. Spe ± 

std. 

DT 0.956 ± 
0.014 

0.957 ± 
0.019 

0.956 ± 
0.019 

0.956 ± 
0.019 

0.956 ± 
0.019 

LR 0.901 ± 
0.022 

0.901 ± 
0.018 

0.901 ± 
0.022 

0.901 ± 
0.020 

0.901 ± 
0.022 

SVM-
Linear 

0.913 ± 
0.001 

0.914 ± 
0.021 

0.913 ± 
0.026 

0.913 ± 
0.023 

0.913 ± 
0.026 

SVM-
RBF 

0.959 ± 
0.001 

0.961 ± 
0.024 

0.959 ± 
0.026 

0.959 ± 
0.025 

0.959 ± 
0.026 

ET 0.981 ± 
0.003 

0.982 ± 
0.017 

0.981 ± 
0.018 

0.981 ± 
0.018 

0.981 ± 
0.018 

RF 0.974 ± 
0.003 

0.974 ± 
0.016 

0.974 ± 
0.017 

0.974 ± 
0.016 

0.974 ± 
0.017 

 
The bias and variance of the CV models are depicted in Fig 

6. Using a low-bias model will lead to overfitting, indicating 
that new data predictions will not be accurate. A model with a 
high bias will underfit the data, causing it to make consistently 
bad predictions. The RF and ET are ensemble models with the 
lowest variance compared to other models. The SVM model fits 
more complex data distribution. The LR and SVM-Linear had 
high bias; hence, they are less sensitive to noise in the dataset 
but less accurate on training data. The learning curve of the 
model with misclassification error or loss is shown in Fig 7. 

 
Fig.  6. Training and validation error of models using cross-validation. 

 
Fig.  7. The learning curve of a good fit model. 

The models were tested externally with new unseen data 
(40% of actual data). The selected variables using the variable 
selection method were applied to the latest test data with 
preprocessing. The SMOTE method was not applied to the 
unseen data because a real dataset cannot guarantee that the data 
is balanced; hence, the unseen data was unbalanced. The unseen 
data has an unbalanced target variable with 1651 patient data 
for ICU admission not required, and 109 patient counts for ICU 
admission required. As the external test data was imbalanced, 
the recall or sensitivity, precision, F1-score, and specificity 
values were measured. The ET has better accuracy with 
96.42%, whereas LR and SVM show high precision values with 
0.99. The complete evaluation results are displayed in Table 7. 

 
TABLE  VII 

EXTERNAL VALIDATION OF THE TESTED MODELS ON 40% UNSEEN 
IMBALANCED DATA 

Model Accuracy Precision Recall F1-
score Specificity 

DT 0.9290 0.9769 0.9467 0.9616 0.6606 
LR 0.8972 0.9940 0.8958 0.9423 0.9174 

SVM-
Linear 0.8989 0.9913 0.9001 0.9435 0.8807 

SVM-
RBF 0.9449 0.9905 0.9503 0.9700 0.8624 

ET 0.9642 0.9853 0.9764 0.9808 0.7798 
RF 0.9574 0.9864 0.9679 0.9771 0.7982 
 
With varying classification thresholds, the ROC curve shows 

the trade-off between true (sensitivity) and false positives. The 
greater the AUC, the better the model can distinguish between 
the two classes. Fig 8 shows the AUC score of all ML models 
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based on unseen test data. The SVM-RBF and LR show better 
AUC scores, with 0.91 each. 

 

 
Fig.  8. The receiver operating characteristic curve with AUC score 

for unseen test data. 

IV. DISCUSSION 
The main goal of this study was to predict ICU admission 

requirements based on some clinical parameters of COVID-19  
patients. The variables were selected based on LR with a 
backward selection method. Removing unnecessary or 
redundant variables allows variable selection approaches to 
decrease the number of independent variables. The list of 
variables is then reduced to those most essential to the ML 
models, helping to train the model faster, improve its 
performance, and reduce the chance of overfitting the data [47, 
48]. Gender, age, nationality, DBP, CXR, sore throat, SOB, 
fever, T.Protein, T.Bili, S.Albumin, respiratory rate, pulse rate, 
pulse oximeter, LDH, D-dimer, WBCs, HCT, MCHC, and DM 
history were the selected variables. 

When predicting ICU admissions, it is important to include 
the AUC-ROC score as a crucial assessment parameter, along 
with recall, accuracy, F1-score, and other metrics. The AUC 
score quantifies the discriminatory power of a model in 
distinguishing between patients who require ICU admission and 
those who do not, using all feasible categorization levels. A 
greater AUC value implies that the model is better at accurately 
distinguishing between different categories. In contrast to 
accuracy, recall, or specificity, which are influenced by a 
particular decision threshold, the AUC-ROC score assesses the 
performance of a model over all potential thresholds. This is 
especially valuable in medical scenarios such as predicting ICU 
admissions, where the ideal threshold may require adjustment 
depending on the clinical circumstances or the availability of 
ICU resources. 

The ET model has superior performance in predicting ICU 
admissions, achieving the greatest accuracy of 97.64% and the 
highest F1-score of 0.9808. The SVM-RBF model has higher 
precision and specificity in comparison to the ET model, 
indicating a more cautious approach in forecasting ICU 
admissions. Consequently, it yields fewer false positives but 
may potentially overlook more real positives than the ET 
model. 

The SVM-RBF model had the greatest AUC score of 0.91, 
suggesting its superior ability to differentiate between patients 
who require ICU admission and those who do not, regardless of 
the threshold used. These findings indicate that the SVM-RBF 
model, though not having the highest accuracy (but shows good 
performance with 94.49% accuracy), achieves the optimal 
trade-off between sensitivity (true positive rate) and specificity 
(true negative rate) among the studied models. 

SVM is the most popularly used ML model [49]. If the classes 
are separated, SVM performs well and is not subject to 
overfitting. It can also handle more high-dimensional data than 
other ML models [50]. The model predicts the best hyperplane 
between the classes. The selection of ML models such as DT, 
RF, ET, SVM, and others varied according to the data size, 
problems, and variable sets [51]. The complete details of the 
previous work related to ML algorithms are mentioned in Table 
8. 

TABLE  VIII 
COMPARISON OF ML MODELS FOR PREDICTING ICU ADMISSION 

 
Reference 
and year Model Dataset type Results 

[21] 2023 LR 

532 COVID-19 
patients with 
dichotomous 

variables 

AUC = 0.748 

[52] 2023 ANN 
248 COVID-19 

patients with five 
variables 

95.97% 
accuracy 

[23] 2022 DT algorithm 
J-48  

512 COVID-19 
patients with 53 

variables 
81.9% accuracy 

[28] 2021 Ensemble 
model 

5308 COVID-19 
patients F1-score = 0.81 

[29] 2021 Multivariable 
LR 

356 COVID-19 
patients AUC = 0.77 

[30] 2021 RF 212 COVID-19 
patients AUC = 0.80 

[31] 2021 Ensemble 
model 

1218 COVID-19 
patients with 

CBC data 
AUC = 0.88 

[32] 2021 XGB 
3623 COVID-19 
patients with 165 

variables 
AUC = 0.83 

Proposed 
Study SVM-RBF 

4399 COVID-19 
patients with 20 

variables 
AUC=0.91 

 
The world health sector has faced difficulties due to the 

COVID-19 epidemic, creating a lack of ICU resources and 
health workers. Creating AI programs to identify whether a 
patient needs ICU admission helps the health workers arrange 
the resources. Many studies predicted ICU admission. Most are 
based on demographic details, blood results, albumin, oxygen 
tests, chronic diseases, and CXR to evaluate intensive care [29-
31, 53]. Even the dataset was updated during the 
hospitalization, which helps predict early risk detection [24]. 
The mortality or survival prediction studies specify that 
variables such as potassium, chloride, oxygen level, blood 
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count test, D-dimer, and age are significant predictors [25, 28, 
54, 55]. 

A study was done by Famiglini et al. [31] using SMOTE, but 
the predictors were based only on blood count data. The model 
used an ensemble algorithm with a combination of extreme GB 
(XGB), RF, and LR classifiers and achieved a score of 0.88 area 
under the curve (AUC) [31]. The paper by Shanbehzadeh et al. 
shows the prediction with the DT algorithm with AUC 0.822 
[23]. The chi-square test predicts the relevant variables and 
found that the top predictors are thromboplastin time, age, and 
diabetes. Another study by the authors in the paper (9) indicates 
that absolute eosinophil counts from the CBC results are the 
best predictors. Age, pH, oxygen saturation, and chloride were 
significant predictors of ICU admission [54]. The AUC score 
achieved 0.917 using an artificial neural network (ANN). In the 
cases of pregnant women, the variable body mass index (BMI), 
CRP, neutrophil %, and respiratory level help the model predict 
the necessity of ICU admission [26]. Using a graphical 
calculating device, a nomogram, the authors in the paper [56] 
described that the model efficiently predicts the ICU 
requirement based on five predictors: CRP, AST, LDH, and 
platelet count.  

Subudhi et al. [28] made the prediction model with an RF 
classifier with important markers such as CRP, most clinical 
blood results, oxygen level, chloride, D-dimer, and 
procalcitonin. According to the papers [32, 57], the XGB 
algorithm predicts better and has an AUC of 0.98 and 0.83, 
respectively. High albumin present in the body can also factor 
in ICU admittance [58]. Additionally, DM history, age, gender, 
congestive heart failure (CHF), and stroke also help in 
prediction [59]. The LR model shows a better forecast with an 
AUC of 0.74, according to the paper [60], and the significant 
markers are oxygen level, procalcitonin, lymphocyte count, and 
LDH. In addition to these factors, CRP and ferritin are also 
included using the deep learning model [61]. Rather than using 
clinical variables, the paper [62] used the National Early 
Warning Score and Rapid Emergency Medicine Score to 
predict ICU admittance. 

The variable contribution for prediction is identified using the 
SHAP plot. The plot is shown in Fig 9. The 20 selected 
variables are evaluated to determine their contribution to the 
target prediction. The SHAP plot also shows the variable 
importance and the impact on the prediction variable. A 
variable showing the positive side of the SHAP value positively 
contributes to the ICU admission requirement. The blue (low 
value) and red (high value) indicate how the variables 
contribute to predicting ICU admission concerning their values. 
The plot is based on the forecast that ICU admission is required. 
The variables are arranged as most important from top to 
bottom. The top three predictors are CXR, d-dimer, and SOB. 
The low and high CXR values positively and negatively 
contribute to ICU prediction, respectively. Thus, having a 
normal X-ray reduces the need for ICU admission because a 
normal CXR is coded as one and abnormal as zero. The d-dimer 
and SOB have a highly positive prediction when they have high 
values. For example, suppose a patient has a high d-dimer; in 
that case, he can be considered for ICU admission by looking 
into other variables. A high value of S.Albumin, pulse oximeter, 
HCT, T.Protein, sore throat, LDH, gender, DBP, and MCHC 

have a high negative contribution. Hence, it contributes much 
towards unrequired ICU admissions. On the other hand, fever, 
respiratory rate, age, WBC, nationality, T.Bili, pulse rate, and 
DM history have a high positive contribution when the values 
are high; hence, they show that the high value of these variables 
positively contributes to ICU admission. 

 

 
Fig.  9. SHAP value summary plot of 20 important variables for ICU 

admission required prediction. 

Certain illnesses and treatments need gender information. For 
example, men have cardiac problems in common, whereas 
women have autoimmune illnesses. Age has a significant role 
in the occurrence of many illnesses. When thinking about 
specific diseases or treatments, knowing a patient's nationality 
might be a vital piece of information. Having high blood 
pressure raises the likelihood of developing heart disease. CXR 
helps identify pneumonia and other disorders. Fever, sore 
throat, and SOB might indicate viruses, infections, or allergies. 
When red blood cells (RBCs) die, they release bilirubin. 
Albumin maintains blood volume and pressure. Low albumin, 
total protein levels, and a high bilirubin level can be signs of 
kidney failure or liver disease. ICU admission is necessary if 
the patient has high respiratory and pulse rates and low pulse 
oximeters. Elevated d-dimer readings might indicate a blood 
clot. When cells are injured, they produce an enzyme called 
LDH. Elevated LDH levels have been linked to cardiac arrest 
and stroke. Patients with high diabetes are also at higher risk for 
various diseases. Low levels of HCT and MCHC in the blood 
can indicate anemia. In contrast, a high WBC count indicates a 
sign of infection. 

The SHAP plot (Fig 9) shows that non-Kuwaitis are likelier 
to be admitted to ICU, probably due to economic, cultural, or 
other factors. Race and ethnicity vary among non-Kuwaitis, and 
they have health disparities due to heat and air pollution [63]. 
This study supports the findings of Lat et al. [64] that men are 
more likely to be admitted to the ICU than women are. In this 
study, gender and nationality significantly affect ICU 
admission (p<0.001). Larger-scale experiments are still needed 
to verify these results, which can be considered a future 
enhancement. 

The dataset was again divided according to the random 
glucose level to check how the model predicts ICU admission 
for diabetic patients. It analyses how patients with and without 
diabetes require the ICU. Out of the COVID-19 patient's 
random glucose levels, 61% were low, and 39% had a high 
value and belonged to the diabetic group. For the dataset with 
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diabetic patients, the target variable (ICU prediction) achieved 
98.60% with the SVM-RBF model and 97.83% with the non-
diabetic dataset. The variable contribution based on diabetic 
patients' prediction of ICU admission is depicted in Fig 10. The 
top 10 variables for diabetic patients that contribute to the 
prediction of ICU admission required are a low value of CXR, 
high value of SOB, d-dimer, lymphocytes, age, respiratory rate, 
CRP, low value of T.Protein, and platelet count. 

 

 
Fig.  10. Variable importance for the prediction of ICU admission based 

on the diabetic patient dataset. 

The proposed study has certain strengths. One is the 
methodology used. The CV solves the overfitting problem, and 
SMOTE resolves the imbalance problem. Hence, the majority 
and minority class problems are not misclassified. The second 
is that the study uses almost all specific health results, including 
demographic details, for prediction. For the variable importance 
and contribution, the SHAP plot is analyzed. For missing data, 
the study employs the KNN imputation method. Not all 
variables are necessary for the final prediction. So, backward 
variable elimination determines the relevant variables. The 
developed SVM model could help notify the health workers in 
preparing ICU resources at the proper time for patients with 
COVID-19. As a result, the resources can be utilized 
appropriately. 

V. CONCLUSION 
In this study, the data is leveraged from Kuwaiti hospitals to 

predict ICU admissions for COVID-19 patients, employing 
preprocessing techniques, class distribution balancing via 
SMOTE, variable selection through backward selection with 
logistic regression, and missing value imputation with KNN. 
The findings, validated by the Hosmer-Lemeshow test, 
demonstrate the superior performance of the SVM classifier, 
achieving 94.49% accuracy, AUC of 0.91, and an F1-score of 
0.97. This research not only elucidates the critical predictors for 
ICU admission but also showcases the model's decision-making 
process, aligning with the discovery science's goal of enhancing 
interpretability in machine learning models. The model's ability 
to effectively allocate ICU resources during disease outbreaks 
exemplifies the potential of ML in improving healthcare 
responses and resource optimization, contributing significantly 
to the fields of computational scientific discovery and 
intelligent data analysis. By identifying patients at higher risk 
for ICU admission, the approach assists healthcare 
professionals in resource allocation, emphasizing the broader 

applicability of such ML-based models in discovery science 
across various scientific domains. This work underscores the 
importance of machine learning in facilitating scientific 
discoveries and enhancing healthcare strategies, promising 
substantial advancements in both discovery science and applied 
healthcare. 

A. Limitations and Future Works 
The few hospitals from which the data is collected form one 
of the limitations of this work. Collecting more data from 
different Gulf Cooperation Council hospitals is a future 
enhancement, thereby implementing the model with the deep 
learning concept. Many variable selection methods exist, 
such as filter, wrapper, and embedded. So, implementing and 
comparing the proposed model with different variable 
selection methods is another future work. Another future 
enhancement is to generate a model based on data from 
Kuwaiti diabetes patients and check whether it is clinically 
significant.   

APPENDIX A 
TABLE A.I 

 CHI-SQUARE P-VALUE FOR THE ASSOCIATION OF INDEPENDENT 
CATEGORICAL VARIABLE 

Variables Gender Nation
ality CXR Weak

ness 
Heada
che 

Sore 
throat 

Gender -      
Nationalit
y <0.001 -     

CXR 0.006 <0.001 -    
Weaknes
s 0.126 0.087 <0.001 -   

Headache 0.016 0.275 <0.001 <0.001 -  
Sore 
throat <0.001 <0.001 <0.001 <0.001 <0.001 - 

SOB <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Abdomin
al pain 0.016 0.351 <0.001 <0.001 <0.001 0.255 

Fever <0.001 0.002 <0.001 <0.001 <0.001 <0.001 
Expectora
tion 0.037 0.076 <0.001 <0.001 <0.001 <0.001 

Diarrhea <0.001 0.006 <0.001 <0.001 <0.001 <0.001 
Cough <0.001 0.002 <0.001 <0.001 <0.001 <0.001 
Asthma <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Bariatric 
Surgery 0.015 0.122 0.316 <0.001 <0.001 <0.001 

Hyperten
sion 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 

DM 
history <0.001 0.004 <0.001 <0.001 0.151 <0.001 

DM <0.001 <0.001 <0.001 <0.001 0.032 <0.001 

TABLE A.I (continued) 
 CHI-SQUARE P-VALUE FOR THE ASSOCIATION OF INDEPENDENT 

CATEGORICAL VARIABLE 

Variables SOB 
Abdo
minal 
pain 

Fever Expect
oration 

Diarrh
ea 

Coug
h 

Gender             
Nationalit
y             

CXR         
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Weaknes
s         

Headache         
Sore 
throat         

SOB -      
Abdomin
al pain <0.001 -     

Fever <0.001 <0.001 -    
Expectora
tion <0.001 0.601 <0.001 -   

Diarrhea <0.001 <0.001 <0.001 0.001 -  
Cough <0.001 <0.001 <0.001 <0.001 <0.001 - 
Asthma <0.001 0.279 <0.001 0.001 <0.001 <0.001 
Bariatric 
Surgery 0.172 <0.001 <0.001 0.856 0.177 <0.001 

Hyperten
sion <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

DM 
history <0.001 0.843 <0.001 <0.001 0.107 <0.001 

DM <0.001 0.026 <0.001 <0.001 0.269 <0.001 

TABLE A.I (continued) 
 CHI-SQUARE P-VALUE FOR THE ASSOCIATION OF INDEPENDENT 

CATEGORICAL VARIABLE 

Variables Asthma Bariatric 
Surgery 

Hyperte
nsion 

DM 
history 

Gender         
Nationality         
CXR       
Weakness       
Headache       
Sore throat       
SOB     
Abdominal pain     
Fever     
Expectoration     
Diarrhea     
Cough     
Asthma -    
Bariatric Surgery 0.004 -   
Hypertension <0.001 0.033 -  
DM history <0.001 0.991 <0.001 - 
DM <0.001 0.992 <0.001 <0.001 

TABLE A.II 
 THE LOGISTIC REGRESSION RESULTS ON THE BACKWARD FEATURE 

ELIMINATION METHOD 

Variable Coef Std err p-value 97% CI 
Lower Upper 

Gender -0.887 0.235 0.000 -1.347 -0.428 
Age 2.528 0.617 0.000 1.319 3.737 

Nationalit
y 0.820 0.200 0.000 0.429 1.212 

DBP -2.161 0.841 0.010 -3.811 -0.513 
CXR -3.277 0.430 0.000 -4.120 -2.434 
Sore 

throat -1.331 0.426 0.002 -2.165 -0.497 

SOB 1.594 0.213 0.000 1.178 2.011 
Fever 0.441 0.221 0.045 0.009 0.874 

T.Protein -2.509 0.690 0.000 -3.861 -1.158 
T.Bili 5.794 2.729 0.034 0.446 11.143 

S.Albumi
n -2.050 0.503 0.000 -3.036 -1.065 

Respirato 6.185 1.703 0.000 2.847 9.524 

ry rate 
Pulse rate 2.426 0.829 0.003 0.801 4.052 

Pulse 
oximeter 3.216 0.798 0.000 1.653 4.781 

LDH -47.636 12.031 0.000 -71.216 -24.055 
D-Dimer 4.441 1.160 0.000 2.168 6.714 
WBCs 2.425 0.862 0.005 0.735 4.116 
HCT -1.778 0.789 0.024 -3.325 -0.233 

MCHC -3.739 1.261 0.003 -6.212 -1.267 
DM 

history 2.171 0.466 0.000 1.257 3.085 
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