
P
os
te
d
on

18
A
p
r
20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
36
22
7/
te
ch
rx
iv
.1
71
34
09
7
9.
91
18
31
91
/v

1
—

e-
P
ri
n
ts

p
os
te
d
on

T
ec
h
R
x
iv

ar
e
p
re
li
m
in
ar
y
re
p
or
ts

th
at

ar
e
n
ot

p
ee
r
re
v
ie
w
ed
.
T
h
ey

sh
ou

ld
n
o
t
b
..
.

Are data streaming platforms ready for a mission critical world?

Md. Monzurul Amin Ifath1, Miguel Neves1, Brandon Bremner2, Jeff White2, Tomas
Szeredi2, and Israat Haque1

1Dalhousie University
2General Dynamics Mission Systems Canada (GDMSC)

April 18, 2024

Abstract

Commodity-of-the-shelf (COTS) data streaming platforms, e.g., Apache Kafka, RabbitMQ, have been powering companies from

several sectors to move and extract further insights from their data. Yet, little is known about the suitability of these platforms

for mission critical applications such as disaster recovery, first-aid response and military coordination. This paper provides a

provocative discussion on how prepared current data streaming platforms are for mission critical scenarios. We argue that,

despite their intrinsic reliability and security features, these platforms are still hard to test/operate which ultimately hinders

trust on their safety and security conditions. Moreover, they commonly assume a powerful underlying infrastructure, which

makes it tough to keep a high performance in resource-constrained environments (e.g., satellite networks). We conclude by

identifying relevant research directions to ameliorate the performance and suitability of data streaming platforms for mission-

critical applications.

1



Are data streaming platforms ready for a mission
critical world?

Md. Monzurul Amin Ifath⋆, Miguel Neves⋆, Brandon Bremner⋄, Jeff White⋄, Tomas Szeredi⋄, Israat Haque⋆
⋆Dalhousie University

⋄General Dynamics Mission Systems Canada (GDMSC)

Abstract—Commodity-of-the-shelf (COTS) data streaming
platforms, e.g., Apache Kafka, RabbitMQ, have been powering
companies from several sectors to move and extract further
insights from their data. Yet, little is known about the suitability
of these platforms for mission critical applications such as dis-
aster recovery, first-aid response and military coordination. This
paper provides a provocative discussion on how prepared current
data streaming platforms are for mission critical scenarios. We
argue that, despite their intrinsic reliability and security features,
these platforms are still hard to test/operate which ultimately
hinders trust on their safety and security conditions. Moreover,
they commonly assume a powerful underlying infrastructure,
which makes it tough to keep a high performance in resource-
constrained environments (e.g., satellite networks). We conclude
by identifying relevant research directions to ameliorate the
performance and suitability of data streaming platforms for
mission-critical applications.

I. INTRODUCTION

Data streaming platforms are software tools that enable
the efficient and reliable transmission of data among nodes
in distributed applications. These platforms can be mostly
classified into four families: distributed logs, message queues,
in-memory data stores, and data distribution services. Accord-
ing to a recent survey, more than 80% of the Fortune 100
companies use one or more of these platforms. Depending
on the performance, scalability, availability, and security re-
quirements, different platforms may be suitable for different
scenarios. However, despite their wide adoption, it is not
clear whether current data streaming platforms can fulfill the
stringent requirements of mission-critical applications such as
those powering the healthcare, defence, transport and energy
sectors.

The literature on the use of data streaming platforms in
mission-critical contexts is scarce. Some works (e.g., [1], [2])
focus on benchmarking different data streaming platforms,
but they do not consider any mission-critical application.
Other efforts (e.g., [3], [4]) apply data streaming platforms to
solve problems in mission-critical domains such as shipping,
avionics, and smart grids, but they are mostly limited to a
single platform. To the best of our knowledge, our paper is
the first to present a comprehensive analysis of various data
streaming platforms for mission-critical scenarios.

In this paper, we compare the performance, reliability, and
security of different data streaming platforms in a realistic
mission-critical setup. We use a military coordination sce-
nario as a case study and evaluate a couple of representative
platforms. We identify the main challenges and trade-offs of

using those platforms in a highly constrained network with
low bandwidth, high latency, and high churn. In addition,
we provide a few guidelines and suggestions for improving
the design and configuration of data streaming platforms for
mission-critical applications.

II. BACKGROUND AND MOTIVATION

A. Mission-critical applications

In this paper, we consider mission-critical application any
application that either poses a hazard to human lives or can
involve large and catastrophic losses. Sometimes these applica-
tions are also called safety-critical applications [5]. Examples
of mission-critical applications include aircraft control, smart
grid management, first-aid responding, and tactical coordina-
tion in military search and rescue operations. Modern mission-
critical applications rely on complex systems for performing
their tasks, normally combining several modules that exchange
data through networked communication channels in a “system
of systems” architecture.

Application requirements. Current mission-critical appli-
cations can have quite distinct requirements. Table I shows
three representative examples that reflect customer demands
from our industry partner. The examples also illustrate existing
design trade-offs regarding performance, fault tolerance, and
the capacity of the underlying infrastructure. The first appli-
cation (business intelligence) depicts a comparison with the
standard usage of current commodity data streaming platforms.
Unlike mission-critical systems, business intelligence ones
have plenty of resources (beyond 100 Gbps Ethernet links),
soft latency constraints (up to hours for the processing of big
data sets), and usually no lives at risk to deal with. As a result,
these systems can either tolerate small periods of unavailability
(CP) or work in a weakly consistent manner (AP). CP and
AP refer to the CAP theorem, a.k.a. Brewer’s theorem, which
states that a distributed system can simultaneously provide
only two of the consistency (C), availability (A), and partition
tolerance (P) properties.

Data streaming as an intrinsic component. Data stream-
ing platforms are becoming an integral part of mission critical
systems. Early efforts include integrating RTI DDS into emer-
gency vehicle tracking [6] and Apache Kafka into spacecraft
[7] control systems. The reasons why COTS data streaming
platforms have proven to be advantageous are twofold: first,
they can abstract away several low level details associated
with message sending such as connection management, data



TABLE I: Comparison between business and mission critical application requirements.

Application Link type Risk Available bandwidth Tolerated latency Fault tolerance*

Business intelligence High-speed Ethernet,
Optical fiber No > 100 Gbps hours CP, AP

First-aid responding LTE, 5G High < 10 Gbps < 10ms for a connected ambulance CA
Military coordination SATCOM Medium < 5 Mbps < 20s AP
Aircraft control LTE, SATCOM High < 1 Mbps (cockpit) < 2s for position reports CA

*C = Consistency, A = Availability, P = Partition tolerance.

buffering, and re-transmissions, therefore leaving engineers
free to focus on high-level communication patterns (e.g., who
should get a given message, should senders push or receivers
pull it). Second, COTS tools tend to be more robust and well-
maintained compared to custom (or domain-specific) solutions
thanks to large testing campaigns and frequent code reviews
[8].

B. Related work

A few efforts have compared different data streaming
platforms with respect to their performance, reliability and
security functionalities. Fu et al. [1] compare the latency and
throughput of five data streaming platforms, namely Apache
Kafka, RabbitMQ, RocketMQ, ActiveMQ and Apache Pulsar,
on a customized testing framework. The authors vary features
such as the message size, number of producers/consumers,
and number of partitions in their analyses. Maharjan et al. [2]
perform a similar study, but also consider the Redis platform in
their comparisons and use a standard benchmarking tool, i.e.,
the OpenMessaging framework, as part of their methodology.
In addition to throughput and latency, Dobbelaere and Esmaili
[9] evaluate the reliability features of COTS data streaming
platforms. In particular, the authors show that throughput
can drop more than 50% in both Apache Kafka and Rab-
bitMQ when replication is in place. In common, none of the
above studies consider analyzing data streaming platforms in
mission-critical scenarios.

Recent research has proposed the adoption of COTS data
streaming platforms on mission-critical applications. For ex-
ample, Liu and Jiang [3] developed a data streaming frame-
work for the communication between shipboard information
system modules based on Apache Pulsar. Rosa et al. [4]
deployed the standard Data Distribution Service (DDS) API
on top of the Derecho distributed coordination library and ana-
lyzed it in the context of an avionics application. Albano et al.
[10] performed a qualitative comparison between the Remote
Procedure Call (RPC), message passing, and publish/subscribe
architectures when applied to smart grids. Unlike these efforts,
we provide a comprehensive analysis (both qualitative and
quantitative) of COTS data streaming platforms when oper-
ating on a highly constrained infrastructure, i.e., subject to
high link delays, low bandwidth capacity, and frequent node
disconnections, all common characteristics of modern mission-
critical systems.

III. DATA STREAMING PLATFORMS

A. Design choices

Data streaming platforms can be characterized as a combi-
nation of several design choices. Next, we discuss some of the
most important ones.

Communication pattern. Data streaming platforms can be
either broker-based or brokerless. Broker-based tools assume
the existence of a central intelligence (a.k.a., the message
broker) which is responsible for managing the message de-
livery to all interested parties. Most existing brokers adopt
a publish/subscribe model where messages are categorized
(or routed) according to topics/routing keys. This design
adds a decoupling layer between data senders (or publish-
ers/producers) and receivers (or subscribers/consumers) as
they don’t have to be simultaneously connected for a message
to be delivered. In other words, communication happens
asynchronously. Brokerless tools, on the other hand, realize the
data communication by establishing point-to-point connections
directly between senders and receivers. In both cases, data
streaming platforms may support different messaging proto-
cols to forward data, including AMQP, MQTT, XMPP, Web-
Sockets and custom protocols (e.g., the Kafka Wire Protocol).

Data forwarding model. Data streaming platforms can
forward messages to receivers in two modes: push and pull.
Push-based tools push messages to receivers as soon as
they can, which is good for low latency messaging. As a
downside, this design choice can easily overwhelm receivers
when the latter is not able to process messages as fast as they
come. A common solution to this problem is to configure
a prefetch limit in the broker which bounds the number of
unacknowledged messages that a receiver may have at any
given time. Pushing messages to receivers may also cause
issues when receivers are no longer processing messages, e.g.,
due to a subtle disconnection. Pull-based tools, on their turn,
wait for consumers to ask for data. In this case, consumers
can request a message (or batch of messages) from a given
offset. Tight loops may happen when there is no message past
the offset which can be minimized by setting longer pooling
intervals.

Data persistence. Data streaming platforms can offer dif-
ferent levels of data persistence, which refers to the ability
to store messages for future consumption and/or recovery.
Data persistence can be useful for several reasons, such as
delivering messages to applications that join the system at
a later time and keeping the data available even when a
publishing application has terminated. Current platforms can



TABLE II: Example data streaming platforms.

Platform Family Communication pattern Forwarding model Persistence Consistency model

Kafka Distributed log Broker-based Pull Yes Weak / Strong
RabbitMQ Message queue Broker-based Push Yes* Strong
ZeroMQ Message queue Broker-based / brokerless Push No Weak / Strong
Redis In-memory data store Broker-based Pull / push Yes* Weak
OpenDDS Data distribution service Brokerless Push Yes* Weak / Strong

*Optional persistence support.

use different strategies to persist data, including in-memory,
disk, or database persistence, each with its own trade-offs
between performance, durability, and consistency.

Consistency model. Broadly speaking, data streaming plat-
forms follow one of two consistency models: strong or weak
consistency. Strongly consistent platforms require data to be
the same in all of its nodes at any time. In other words,
a message will not be forwarded to a receiver before all
broker replicas (assuming a broker-based system) commit it
to their local logs. Weakly consistent platforms, on the other
hand, can tolerate delays and keep forwarding messages while
updating state between a leader broker and its replicas. Weakly
consistent platforms can have a broad range of operational
modes. For example, a message can be considered ready to
be delivered after either the leader or a quorum of nodes have
committed its data. The leader election strategy (e.g., user-
defined, randomly selected) and the behavior upon a network
partition/re-connection (e.g., delegate/return leadership to a
preferred node) are also flexible parameters.

B. Example tools

Table II summarizes some of the most common data
streaming platforms currently available. Our goal is not to
be exhaustive, but rather to offer a glimpse into the different
types of existing platforms. The “Family” column defines
broader groups of platforms that have several features in
common. The remaining columns follow the discussion in
Section III-A. Based on our investigation, we could identify
four main platform families which are further described below.

Distributed logs. Distributed logging solutions provide
messaging services while storing a copy of each message
into a log file (or topic) by default. This feature enables new
consumers to access the log file and read messages from any
point in time (or message offset). Exemplars of this family
include tools such as Apache Kafka and Apache Pulsar.

Message queues. Unlike distributed logs, message queues
usually do not store a copy of a message after it is delivered,
making it impossible for different consumers to get the same
message. While allowing several optimizations such as using
efficient in-memory data structures to hold data until its deliv-
ery, current message queuing systems frequently present worse
performance compared to distributed logs, e.g., due to the need
to forward messages individually. Modern message queues
started offering support for non-destructive message consump-
tion as separate plug-ins such as the RabbitMQ streams.

Other tools in this family include ActiveMQ, ZeroMQ, and
RocketMQ.

In-memory data stores. Although originally designed as
a high-throughput and low-latency alternative to traditional
(i.e., disk-oriented) database systems, in-memory data stores
have also gained visibility for their messaging capabilities in
the latest years. In particular, the ability to simultaneously
store, retrieve, process, and forward data of almost any type
to subscribers has proven to be largely useful for high-
performance applications (e.g., gaming, trading systems). Most
in-memory data stores organize data as key-value pairs and use
message keys to identify interested subscribers. Example tools
from this family are Redis and Hazelcast.

Data distribution services. Data Distribution Services are
a family of tools that implement the DDS protocol from
the Object Management Group (OMG) for streaming data
among connected nodes. While abstracting away many low-
level networking tasks (e.g., message addessing, serialization
and delivery) from users, the latter is still responsible for
configuring features such as data persistence and QoS policies.
Data distribution services adopt a brokerless (or peer-to-peer)
communication model by design, and example tools from this
family include OpenDDS, Eclipse Cyclone DDS, RTI Connext
DDS, and eProsima Fast DDS.

IV. METHODOLOGY

We compare the suitability of different data streaming
platforms to a mission-critical deployment by evaluating their
capabilities in a military coordination scenario. In addition to
the long know-how of our industry partner, this application
enables us to easily push the platforms under test to their
limit due to the need for simultaneously stressing several
requirements. Figure 1(a) depicts our application scenario. We
assume several battle units on land, air, and sea communicating
over a tactical network. Each unit comprises multiple members
such as soldiers and air crafts that must share information
(e.g., position reports) both within and in between units. Each
unit is also organized into a star topology meaning that the
communication always flows through a local command point
(red dashed boxes). Different units connect to each other
through a satellite network, and the whole system requires:
i) ordered, secret, authenticated, and guaranteed delivery for
every message; and ii) tolerance to disconnections at the
unit level, meaning the log of messages from within and in-
between units must be synchronized upon a unit re-connection.
Battle unit disconnection is a common situation in the military



Battle unit
(Air Force)

Battle unit
(Navy)

Battle unit
(Army)

Headquarter

Local command
point

(a)

Broker 3

Prod Cons

Broker 2

Prod Cons

Broker n

Prod Cons

Battle unit /
Headquarter

Broker 1

Prod Cons

(b)

Fig. 1: a) Military coordination scenario adopted in our evaluation; b) Reference data streaming platform deployment.

domain where the whole unit disconnects from a tactical
network to move to a different place on the battlefield and
then re-connects from the new place.

We deploy our example application using different data
streaming platforms and compare (both quali- and quantita-
tively) to which extent each platform can meet every applica-
tion requirement. Figure 1(b) presents our reference deploy-
ment architecture. We assume a cluster based setup where each
battle unit hosts a message broker (i.e., cluster node) located
at its local command point. We replicate message queues (or
logs) among all nodes participating in the cluster to ensure
they remain operational upon a battle unit disconnection. In
other words, each broker should be able to: i) keep forwarding
messages from/to members within a unit when this unit
is disconnected; and ii) automatically synchronize intra-unit
messages with other units upon a re-connection. A similar
situation appears, e.g., when an ambulance equipped with
various health sensors must reach out to a patient in a remote
location. Each node in our reference architecture also hosts a
data producer/consumer that mimics the battle unit members
(e.g., a ship, soldier, or aircraft).

We implement our reference deployment architecture on
top of Mininet version 2.3.0 and consider two data streaming
platforms in our experiments: Apache Kafka (version 2.8.0)
and RabbitMQ (version 3.9.3). The latter is henceforth called
rMQ for simplicity. We focus on these two platforms for
two main reasons: i) they are broker-based tools and thus in
line with our reference deployment architecture; and ii) they
are well documented tools and widely deployed in several
different domains. The source code, configuration files, and
generated logs from our experiments are publicly available
[11]. We run our experiments in a 10 core Intel Xeon Silver
4210R @ 2.40 GHz server with 32 GB of memory and 2
TB of storage. The server is equipped with Ubuntu 22.04
(kernel version 5.15) and has hyper-threading disabled. Unless
stated otherwise, each producer in our deployment constantly
generates data at 30 Kbytes/s, mimicking real actors (e.g.,
soldiers) in a battle unit. Finally, we adopt three metrics to
evaluate the data streaming platforms: message latency, loss

0 100 200 300 400
Time (s)

0

20

40

60

80

100

Th
ro

ug
hp

ut
 (

M
by

te
s/

s)

Kafka-10-nodes
Kafka-20-nodes
rMQ-10-nodes

Fig. 2: Total bandwidth demand from both Kafka and rMQ
for different cluster sizes.

0 50 100 150 200
Latency (s)

0.00

0.25

0.50

0.75

1.00

CD
F

Kafka-1ms
Kafka-500ms
rMQ-1ms
rMQ-500ms

Fig. 3: Cumulative distribution function (CDF) of the message
latency from both Kafka and rMQ for different link delays.

ratio, and the total throughput (or bandwidth demand) required
by the whole cluster to forward messages.

V. MAIN FINDINGS

A. Performance

(R1) Do data streaming platforms scale in a mission
critical setup? Figure 2 shows the aggregated throughput
(or total bandwidth demand) from both Kafka and rMQ
for different cluster sizes. As can be seen, data streaming



platforms in general require a high replication level to work on
mission-critical setups which results in high communication
overhead. Also, rMQ requires significantly more bandwidth
than Kafka – approximately 13x for a 10-node topology. This
is mainly due to two reasons: i) unlike Kafka, rMQ does not
compress messages exchanged between cluster members, e.g.,
for replicating data; and ii) rMQ brokers deliver messages one
at a time, which forbids batching and increases the control
traffic overhead.

(R2) Can parameter tuning improve performance? Most
data streaming platforms ship with a large number of config-
urable parameters (e.g., replication factor, batch size, acknowl-
edgment type). While this flexibility is essential for the proper
operation of the data streaming platform on different domains,
the resulting high-dimensional configuration space makes it
difficult for users to determine the best configuration option (if
any) for their application. In this sense, we evaluate the extent
to which parameter tuning can improve the performance of
data streaming platforms in a mission-critical setup. We use the
same 10-node topology described in (R1) for this experiment
and apply a grid search approach on a reasonable set of Kafka
parameters. We consider more than 15 parameters, including
broker, sender and receiver parameters. Please refer to our
public repository [11] for an exact list and plots depicting our
experimental results.

We measure the total bandwidth demand of Kafka before
and after the tuning process using a network monitoring tool,
and find that tuning Kafka significantly reduces the demand
by up to an order of magnitude compared to the default
configuration. Despite its great potential, there are two main
challenges associated with the data streaming platform tuning
process: first, it takes a considerable amount of time (a few
days in our case) to find a sweet spot among the configuration
parameters; and second, it may be necessary to accommodate
several goals (e.g., minimize both bandwidth demand and
latency) during the tuning process, which makes the problem
even more complicated. We discuss these issues in further
detail and point to alternative solutions in Section VI.

(R3) How do data streaming platforms perform in a
highly constrained network? While the performance of data
streaming platforms has been widely studied in local and wide
area networks (LANs and WANs respectively), little is known
about their response in highly constrained infrastructures, e.g.,
networks presenting low-bandwidth, high link delay, and high
probability of data loss, such as the ones we encounter in
mission-critical domains. In this experiment, we shed light on
this question by emulating a highly constrained network on
top of Mininet and investigating the data streaming platform
performance when forwarding messages. As in the previous
experiments, we use the topology described in Figure 1(b),
but set the link delay to 500 ms for all links (i.e., the round-
trip time – RTT is approximately 2 seconds). According to
our industry partners, this is in line with current SATCOM
military networks. Moreover, we adjust both Kafka and rMQ
connection timeouts accordingly so that the tools can work
appropriately with such high link delays.

Figure 3 shows the cumulative distribution function (CDF)
of the message latency in Kafka and rMQ for different link
delays. Overall, the latency increases significantly (more than
300% and 85% at the median for Kafka and rMQ, respectively)
in a highly constrained network compared to a baseline
scenario with negligible link delay. Moreover, we can see that
rMQ performs consistently worse than Kafka. That is mainly
due to two reasons: i) AMQP connections require several RTTs
before messages can be forwarded; and ii) rMQ brokers must
wait for consumers to acknowledge that they have received a
message (or group of messages) before sending the next one.

B. Reliability

(R4) Do data streaming platforms experience message
loss upon a network partition? A common characteristic on
mission-critical networks is the high probability of network
partitions, either because of the existence of unstable links
(e.g., a distant cellular tower) or because of sudden node
disconnections such as when a battle unit moves. In this sense,
it is important to assess the reliability of current data streaming
platforms upon network partitions. For that, we repeat the
experiment described in (R3) while randomly disconnecting a
node for approximately 20% of the experiment duration. The
node disconnects after the system has reached its steady state
and re-connects to the cluster after the disconnection period
expires.

We examine the data delivery performance of a Kafka
producer co-located with the disconnected broker by recording
message reception status of each message for all consumers.
We observe a loss ratio of approximately 0.25 (i.e., around
25% of all messages were lost) during the network partition
period (plot can be found in the public repository). Moreover,
these failures only affect the topic/log whose leader broker
is disconnected. This result confirms the findings of previous
studies [8] that attribute such behavior to the data reconcilia-
tion process of ZooKeeper (the distributed coordination service
used by Apache Kafka). When the disconnected broker rejoins
the cluster, ZooKeeper may discard data or retrieve it from a
stale log. We do not observe similar behavior in the newer
Raft-based Kafka.

C. Security

(R5) Which security mechanisms are available on data
streaming platforms? Mission-critical systems are increas-
ingly being targeted by attackers. As a result, there has been
an uptick in novel defenses for hardening these systems
(e.g., [12], [13]). Although security is still not a primary
concern on most data streaming platforms, the support for
different security mechanisms on them is expanding quickly.
As part of our analysis, we briefly summarize the security
mechanisms available on COTS data streaming platforms as a
way to identify: i) common flaws not covered by the deployed
solutions; and ii) potential misuses of the available security
modules.

Most existing data streaming platforms center their security
efforts around three main services: authentication, authoriza-



tion, and data encryption. For authentication, both Kafka and
rMQ support the Simple Authentication and Security Layer
(SASL) framework [14]. Although they differ on the set of
natively supported SASL authentication mechanisms, a large
group of authentication protocols including LDAP, Kerberos
and OAuth2 is available through external plug-ins. Regarding
authorization, both Kafka and rMQ use access control lists
(ACLs) to control which users are allowed to perform certain
operations on given resources. However, none of the tools have
native support for specifying complex policies such as the
ones used to manage user groups and require external modules
to deploy, e.g., role- or attribute-based access control (a.k.a.
RBAC and ABAC policies, respectively). Finally, Kafka and
rMQ provide data encryption by means of the TLS protocol
where both tools support version 1.3. None of the security
mechanisms mentioned above are enabled on the platforms we
studied by default. Therefore, users must explicitly configure
and activate them according to their needs and preferences.

(R6) What kind of misuses are data streaming platform
security mechanisms mostly susceptible to? Given our expe-
rience deploying different data streaming platforms on a highly
secure environment, we decide to share some of the lessons we
learned in terms of configuration mistakes. The most common
issue is the fact that current platforms are not secure by default,
meaning the user must explicitly set a security mechanism
to enforce policies other than “no action”. For example,
Kafka’s data encryption approach requires platform operators
to explicitly set TLS listeners on each broker otherwise
traffic will flow in plaintext. Moreover, operators must also
remember to delete any existing plaintext listener, which are
automatically initialized. A second main challenge we faced
was properly configuring an ACL. Since none of the analyzed
tools provide a high-level description language for specifying
access control policies, operators may end up having to set
permissions at an extremely fine granularity, which makes the
process cumbersome and error-prone, especially in large-scale
scenarios. Furthermore, there is no way to validate a deployed
configuration other than exhaustive (i.e., brute force) testing.

VI. RESEARCH DIRECTIONS

Automatic parameter tuning. As we observed in Sec-
tion V-A, proper parameter tuning can play a crucial role
in the performance of current data streaming platforms. Un-
fortunately, the large number of parameters and the complex
and non-linear interactions among them make tuning the
configuration of data streaming platforms labor-intensive and
time-consuming. While automatic configuration tuning tools
exist (e.g., [15]), they normally: i) focus on performance-
related parameters without paying attention to their side effects
on, e.g., reliability, security, and execution cost; and ii) require
a large number of training samples to create accurate models to
suggest new configurations. An interesting direction for future
investigation is to apply more recent data-driven approaches
(e.g., reinforcement learning from human feedback) to explore
the large configuration space while considering other aspects
besides performance. For example, a reinforcement learning

agent can learn and receive rewards based on the human
preferences for the system’s behavior.

High-coverage testing. Modern distributed systems, in-
cluding data streaming platforms, usually adopt complex de-
signs that involve intricate communication protocols, non-
determinism, and the combination of several interdependent
modules. As a result, it becomes extremely hard to test all
possible states that these systems can reach out which causes
bugs to be hidden until production. Despite recent efforts
to extensively test distributed systems while in-house, few
initiatives have targeted (or been adopted on) data streaming
platforms. In this sense, an important open research challenge
is to devise automated and systematic methods and tools
for high-coverage testing of data streaming platforms. This
includes a framework for test specification as well as tracing.

VII. CONCLUSION

In this paper, we explore how different data streaming
platforms can support mission-critical applications. We use a
military coordination scenario as a representative use case and
assess the platforms based on their performance, reliability,
and security. We find that existing platforms have different
trade-offs depending on their design and configuration and
that they need to cope with varying network quality and
security threats. We also suggest some research directions for
enhancing the platforms in this domain, such as automatic pa-
rameter tuning, high-coverage testing, and policy-based access
control. We hope that our work can inspire further research
and development in this domain.

REFERENCES

[1] G. Fu, Y. Zhang, and G. Yu, “A fair comparison of message queuing
systems,” IEEE Access, vol. 9, pp. 421–432, 2021.

[2] R. Maharjan, M. S. H. Chy, M. A. Arju, and T. Cerny, “Benchmarking
message queues,” Telecom, vol. 4, no. 2, pp. 298–312, 2023.

[3] K. Liu and Y. Jiang, “High performance shipborne message queuing
service prototype system based on apache pulsar,” in 2021 IEEE 2nd
International Conference on Information Technology, Big Data and
Artificial Intelligence (ICIBA), vol. 2, 2021, pp. 865–870.

[4] L. Rosa, W. Song, L. Foschini, A. Corradi, and K. Birman, “Derechodds:
Strongly consistent data distribution for mission-critical applications,”
in MILCOM 2021 - 2021 IEEE Military Communications Conference
(MILCOM), 2021, pp. 684–689.

[5] K. Fowler, “Mission-critical and safety-critical development,” IEEE
Instrumentation & Measurement Magazine, vol. 7, no. 4, pp. 52–59,
2004.

[6] Track and monitor vehicles and assets. Accessed: 2023-03-29. [Online].
Available: https://www.rti.com/developers/case-code/vehicle-tracking.

[7] Mission-critical, real-time fault-detection for nasa’s deep space network
using apache kafka. Accessed: 2023-03-29. [Online]. Available:
https://videos.confluent.io/watch/xRmEDYjAhiVu56xcmMy6Yr

[8] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany, “An analysis
of network-partitioning failures in cloud systems,” in Proceedings of the
13th USENIX Conference on Operating Systems Design and Implemen-
tation, ser. OSDI’18. USA: USENIX Association, 2018, p. 51–68.

[9] P. Dobbelaere and K. S. Esmaili, “Kafka versus rabbitmq: A comparative
study of two industry reference publish/subscribe implementations: In-
dustry paper,” in Proceedings of the 11th ACM International Conference
on Distributed and Event-Based Systems, ser. DEBS ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 227–238.

[10] M. Albano, L. L. Ferreira, L. M. Pinho, and A. R. Alkhawaja, “Message-
oriented middleware for smart grids,” Elsevier Computer Standards &
Interfaces, vol. 38, pp. 133–143, 2015.

https://www.rti.com/developers/case-code/vehicle-tracking.
https://videos.confluent.io/watch/xRmEDYjAhiVu56xcmMy6Yr


[11] Pinetdalhousie/mission-critical-messaging-platforms. Accessed: 2024-
01-15. [Online]. Available: https://github.com/PINetDalhousie/
mission-critical-messaging-platforms

[12] N. Burow, R. Burrow, R. Khazan, H. Shrobe, and B. C. Ward, “Moving
target defense considerations in real-time safety- and mission-critical
systems,” in Proceedings of the 7th ACM Workshop on Moving Target
Defense, ser. MTD’20. New York, NY, USA: Association for Comput-
ing Machinery, 2020, p. 81–89.

[13] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “Rt-tee: Real-time system
availability for cyber-physical systems using arm trustzone,” in 2022
IEEE Symposium on Security and Privacy (SP), 2022, pp. 352–369.

[14] Sasl overview (gnu simple authentication and security layer
2.2.0). Accessed: 2023-09-12. [Online]. Available: https://www.gnu.
org/software/gsasl/manual/html node/SASL-Overview.html

[15] M. Bilal and M. Canini, “Towards automatic parameter tuning of stream
processing systems,” in Proceedings of the 2017 Symposium on Cloud
Computing, ser. SoCC ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 189–200.

BIOGRAPHIES

Md. Monzurul Amin Ifath is a Doctoral student at Dalhousie University,
where he conducts research on distributed systems, computer networks,
and machine learning. Monzurul holds a Bachelor’s degree from BUET,
Bangladesh, and has three years of experience working with DRDC and
GDMS-C on collaborative projects. His research aims to develop novel
solutions for challenging problems in the domain of data streaming platforms.

Miguel Neves received his PhD in computer science from UFRGS, Brazil, in
2020. He is currently an AI Researcher at Samsung Research. Previously,
he worked as a Postdoctoral Researcher at Dalhousie University. Miguel
has over four years of experience with research and development projects
in collaboration with companies such as Dell, Intel, and GDMS-C. His
current research interests lie on the interplay of artificial intelligence, security,
networking, and distributed systems.

Brandon Bremner is a Software Engineer with over six years of experience
in the industry. Brandon has worked on several innovative research and
development projects in the cyber and acoustic domains. He currently works
at General Dynamics Mission Systems Canada (GDMS-C) as a Software
Engineering Developer. Brandon has a Bachelor of Computer Science with
a Specialization in Communications Technologies and Cyber Security from
Dalhousie University.

Jeff White received his BSc in Computational Science from the University
of Saskatchewan in 1984. He has worked at the University of Saskatchewan,
Alberta Research Council, Alta Vista and for over the last 20 years with
General Dynamics Mission Systems Canada (GDMS-C) as a lead systems
architect. He has been the technical lead on several research and development
projects, including future tactical networks, distributed infrastructure services
and applications frameworks, and efficient data distribution mechanisms.

Tomas Szeredi received his PhD in physics from McMaster University
in 1993. He has worked for IBM, MacDonald Dettwiler, and for over 20
years at General Dynamics Mission Systems Canada (GDMS-C). Tomas
has extensive experience designing, developing, and deploying large scale,
complex, distributed systems. Tomas is currently a Senior Software Systems
Architect at GDMS-C focusing on Army land systems and Innovation.

Israat Haque is an Associate Professor in the Faculty of Computer Science at
Dalhousie University and works in the areas of Software-Defined Networking
(SDN) and the Internet of Things (IoT), focusing on the performance, security,
and reliability aspects of wired and wireless networked and distributed
systems. She received her Ph.D. from the Department of Computing Science
at the University of Alberta. Then, she held an NSERC post-doctoral position
at the University of California, Riverside, before joining Dalhousie University.

https://github.com/PINetDalhousie/mission-critical-messaging-platforms
https://github.com/PINetDalhousie/mission-critical-messaging-platforms
https://www.gnu.org/software/gsasl/manual/html_node/SASL-Overview.html
https://www.gnu.org/software/gsasl/manual/html_node/SASL-Overview.html

	Introduction
	Background and motivation
	Mission-critical applications
	Related work

	Data streaming platforms
	Design choices
	Example tools

	Methodology
	Main findings
	Performance
	Reliability
	Security

	Research directions
	Conclusion
	References
	Biographies
	Md. Monzurul Amin Ifath
	Miguel Neves
	Brandon Bremner
	Jeff White
	Tomas Szeredi
	Israat Haque


